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Objective and Scope of the book 

 
The objective of this textbook is to provide a solid grounding in the principles of incompressible 

fluid mechanics for beginning graduate students.  The book, and the accompanying course which 

would utilize it, should provide a student with the background to continue their studies into 

specialty areas (e.g. aerodynamics, boundary layers, turbulence, etc.), and parallel areas (e.g. heat 

transfer and thermodynamics). The book is relevant to students pursuing graduate degrees in 

mechanical, civil, chemical, aeronautical, or nuclear engineering.  I have also had students with 

an initial degree in physics take my course, upon which this book is based, and found that their 

background allowed them to use the book successfully.   

 

The book does not cover control volume fluid mechanics or hydrostatics, since these are topics 

that students should have covered during their undergraduate studies.  It also does not cover 

numerical methods, since I feel that doing so distracts from the understanding of the fundamentals 

of fluid mechanics, and that the time is better used providing a broad theoretical background. It 

is my belief that students must develop a solid theoretical understanding of fluid mechanics before 

they can practically employ effective numerical solution techniques.  

 

The focus of the book is on how a fluid is modeled, the development of the basic equations of 

fluid mechanics, the simplification of these basic equations using appropriate assumptions, the 

establishment of proper boundary/initial conditions, and methods of reducing the resulting 

equations through judicious parameter scaling.  While a number of traditional and non-traditional 

examples are solved in the book using straight-forward analytical techniques, the solution of more 

complicated problems using advanced analytical (e.g. asymptotics) or numerical techniques (e.g. 

finite difference or finite elements) are not considered.  I feel that once a student understands the 

process of modeling and appropriately reducing the governing equations, they can then consider 

solution techniques, both analytical and numerical, through advanced courses on those topics.  

However, as appropriate, equation-solving programs, such as MATLAB or the website Wolfram 

Alpha, will be employed to solve problems not amenable to analytical closed-form solutions.  

 

This book provides a student with a broad scope of the cumulative areas of incompressible fluid 

behavior, including the processes of modeling a fluid, the properties of importance, how 

properties change and modify in an Eulerian environment, and the extension to areas of practical 

application (boundary layers, drag, non-Newtonian flows, and the basics of turbulence).  The 

material covered is applicable to a one-semester survey course, or could be extended to a second 

semester, depending on the depth to be pursued. 

 

One practice I have tried to follow throughout the book is to assure that there is sufficient 

development and demonstration of key topics and examples, and not to shortcut the development 

of example problems.  In many texts, a classic problem is presented with too few solution details, 

such that a student cannot follow the complete process from problem statement to solution.  I 

have tried to provide that completeness, at the expense of added length. 

 

I have also included a series of study problems at the end of each chapter, as appropriate.  These 

are intended for use for further study, and to illustrate the application of the material in a chapter.  

In some cases, the problems will require the use of material from previous chapters as well.  In 

http://www.mathworks.com/index.html?s_tid=gn_logo
http://www.wolframalpha.com/
http://www.wolframalpha.com/
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this fourth edition, each end of the chapter study problem is linked to a detailed solution via an 

attached solutions file.  How to access the solutions is described on the following page. 

 

In this edition of the book, I have added material on the basics of non-Newtonian boundary layers 

to Chapter 16, which makes the chapter a more complete introduction to the differences between 

Newtonian and non-Newtonian fluids. I have also added some further discussion of turbulent flow 

structure, and referenced some videos that describe how large turbulence computation programs 

model and calculate 3-D turbulence properties.  Beyond that new material, I have modified and 

improved several graphs, and added a few more end of chapter problems.  I also include a detailed 

appendix of the principal equations covered in the book. Finally, as mentioned above, I have 

electronically linked each end of chapter study problem to a detailed solution in an attached 

solutions file.  If you have enjoyed and utilized one of my previous editions, I think you will find 

this fourth edition a nice upgrade, particularly the addition of study problem solutions. 

 

As I noted in the prior editions, since this is an electronic book, I have attempted to provide 

electronic links to as many of the terms and references as possible. Where appropriate, I have 

linked references directly to bibliographic sources on the web, which hopefully avoids exhausting 

web searches for sources that are often hard or expensive to obtain. 

 

How to "Read" this Book 

 
This book contains 17 Chapters and an appendix within one hyperlinked Adobe Acrobat PDF file 

(down load a free Adobe Acrobat Reader app here; alternatively, you can download another nice 

PDF reader from Foxit PDF here, also free).  The first 12 chapters comprise Part I, which covers 

the basic concepts of graduate fluid mechanics; the last five chapters comprise Part II, which 

covers practical applications of the basic concepts to key areas of fluid mechanics (i.e. boundary 

layers, drag, non-Newtonian flows, and turbulence). The book begins with a Table of Chapters, 

with each chapter title hyperlinked to the respective chapter; left clicking on a chapter title will 

take you to the beginning of the selected chapter.   

 

Each chapter begins with a Contents section, listing the key topics within the chapter.  Each topic 

and subtopic listed in the Contents section is again hyperlinked to that topic location within the 

chapter, so that if you read the book electronically (as you should), you can quickly access any of 

the topics/subtopics by simply left clicking on the link. There are also links within the chapters, 

which will take you either to other portions of a chapter, or to electronic references.    

 

To return to the location of a previous link using Adobe Acrobat Reader, simultaneously hit the 

"Alt" and "" keys on the keyboard, or use a "previous view" icon accessed by selecting in order: 

“View”, then “Page Navigation”, then left clicking the “Previous View” icon.  However, I 

recommend that you make the “previous view” icon (looks like a circle with a left pointing arrow) 

permanently viewable in the Reader Toolbar. If you want to return to the beginning of the book, 

just hit the "Home" key.  To return to a previous link using the Foxit PDF Reader, there is a return 

icon at the bottom-left of the reader frame. 

 

In in this edition, I have also added bookmarks to the PDF file. Selecting the bookmark icon at 

the upper left of a page will expose the list of bookmarks (it is quite extensive), which will also 

https://get.adobe.com/reader/
https://www.foxit.com/pdf-reader/
https://get.adobe.com/reader/
https://www.foxit.com/pdf-reader/
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allow you to quickly navigate to a chapter or section of a chapter. I think you will find this a nice 

addition for quickly accessing particular sections of the book. 

 

If you choose to print each chapter (or any pages of the book or solutions), you should have the 

book PDF file resident on your computer, and then open and print the pages you wish.  Do not 

try to print directly from a website.  This sometimes works, but it just as often creates 

complications. 

 

How to view solutions to the end of chapter study problems 
 

The end of chapter study problems are intended to be used to practice the material covered in each 

chapter.  However, I recognize that after working on a problem you might want to see if the 

solution you arrived at is correct, and/or use the problem solutions to help you better understand 

the application of the chapter material.  Thus, this fourth edition of the book includes a problem 

solution linked to each of the study problems.  

 

To view the solution to a study problem, left click on the problem number at the start of the 

problem statement.  The solution will appear in the Reader frame from a separate attached 

solutions file.  In these solutions, the problem statement is not highlighted, while the solution is 

highlighted in yellow.  You can scroll through the problem to follow the solution process. When 

you want to return to the book from a problem solution, scroll back to the start of the solution and 

again left click on the solution problem number. You will be returned to the page in the book 

where the problem statement appears. Additionally, the solutions file also has bookmarks for each 

study problem, which will let you navigate quickly to any problem within the solutions file. 

Remember, to return to the book, left click on the number of any study problem within the 

solutions file. To open the solutions file directly, you can use the paper clip icon (on the far left 

of the viewing frame) in either Adobe or Foxit Reader.  Hopefully, access to the study problem 

solutions will help you further understand the material covered in the chapters. 

 

Use this material whatever way works best for you.  And enjoy it.  

 

If you like the book, find any errors, or have suggestions for additions to the book, please send 

me an email and let me know your thoughts. 

 

Note that this is a public domain document, so feel free to pass on copies electronically to all who 

might be interested in the topic. I am self-publishing this book, and it is open access at no charge. 

However, if you feel you would like to provide some compensation for the use of this book, feel 

free to send me a check for whatever you would like to 1209 Oxbridge Drive, Lutz, FL 33549, 

USA. 

 

Chuck Smith 

June 2023 

  

mailto:crs1@lehigh.edu
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1.1 The Concept of a Fluid 
 
We all inherently know what a fluid is.  Most laypersons, when asked for an example of a 
fluid, would probably cite liquids, like water, as a fluid.  However, gasses also qualify as 
a fluid — although most people don't readily think of gasses as a fluid, since they are 
generally not visible. In general, all liquids and gasses are fluids.   But what properties 
qualify a substance as a fluid?  And how does a fluid differ from a solid? 
 
In general, a fluid is a substance that will deform continuously under an applied shearing 
stress (i.e. a force applied tangentially to a surface of the fluid).  In solid mechanics, we 
learn that a solid will deform under an applied shear stress, but it will only deform a fixed 
amount proportional to the applied stress.  In other words, a solid will deform in some 
proportion when a shear stress is applied, but once a balance between the stress and the 
amount of deformation is reached, a solid will cease to deform and will remain in a state 
of static deformation (unless it undergoes creep, due to thermal or environmental effects). 
On the other hand, a fluid will continue to deform as long as a shear stress is applied.   
 
Another way of defining a fluid is as a substance that cannot sustain a shearing stress.  
The key here is that the application of a shear stress causes a fluid to deform 
continuously.  This implies that the applied shear stress must balance with the rate of 
deformation of the fluid.  We will use this concept tying fluid shear stresses to the rate of 
deformation (generally termed the strain rate) to characterize different types of fluids, and 

https://en.wikipedia.org/wiki/Creep_(deformation)
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to relate shearing stresses on a fluid to the strain rates through the use of a proportionality 
constant known as the coefficient of viscosity. 
 
1.2 A Fluid as a Continuum 
 
We now have a way of judge if a substance behaves as a fluid. However, to deal with a 
fluid mathematically, we must be able to develop ways to model the fluid behavior; and 
to model a fluid appropriately, we need to consider the collective behavior of all the 
molecules that comprise the fluid.  In most macroscopic (large-scale) situations, we do 
not perceive the individual molecular behavior.  However, from a microscopic 
perspective, and statistical mechanics, we recognize that individual fluid molecules move 
in rather randomized paths, and interact with other molecules through linear and 
rotational collisions.  
 
During these collisions, molecules exchange both momentum and energy, which 
collectively give rise to the properties we normally associate with macroscopic materials, 
such as pressure, temperature, internal energy, and density.  However, these collective 
properties require that the mean-free paths of the molecules be very small, such that 
macroscopic property changes appear continuous.  This requires that the random 
molecular interactions are so manifold within a given volume of the fluid that one cannot 
discern a change in a macroscopic property as molecules move in and out of a given 
volume. As pointed out by Frank Smith (2003), the limiting volume for a fluid to exhibit 
"continuous" behavior is roughly 10-9 mm3 of air at standard conditions.  Such a volume 
would contain approximately 3x107 molecules, which is sufficient to establish the 
appearance of continuous properties in air. Since liquids have smaller mean free paths, 
liquids can also be considered continuous fluids at (and even below) this limit. 
 
Since most engineering applications deal with volumes much larger than this lower limit, 
properties within essentially all fluids (with the exception of very low pressure gases, 
such as at the edge of outer space or in extreme vacuums) can be considered to behave in 
a continuous manner.  The assumption of a fluid as a continuum allows the application of 
mathematical modeling approaches that assume continuous behavior down to 
infinitesimal volumes – i.e. volumes that are very small, but still larger than the 
molecular limit required for continuous behavior within a fluid. 
 
Recently, the consideration of nano-scale structures containing nano-scale fluids has 
challenged the continuum assumption, and has required the application of alternative 
methods of fluid modeling.  An interesting presentation on the manifold issues 
encountered with microfluid mechanics is found at this Wikiversity site. However, for the 
purposes of most engineering concerns, and within this text, we will consider fluids as a 
continuum. 
 

https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Statistical_mechanics
https://en.wikiversity.org/wiki/Microfluid_Mechanics
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1.3 The Concept of Viscosity  
 
There are a number of different types of fluids, each characterized by the way the fluid 
deforms relative to an applied shear stress.  To assess the type of fluid behavior, we first 
must model how a shear stress applied to a fluid results in a deformation rate, i.e. strain 
rate, within the fluid.  The simplest way to illustrate this shear stress/strain rate 
relationship is to consider a fluid element (a small region of fluid) sheared in one plane 
by a single shear stress, , as shown in Fig. 1.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1  A fluid element deformed at a strain rate /t by an applied shear stress . 
 
We consider the changes here small, but continually increasing with time, such that the 
strain rate, /t, will be a constant value as long as the shear stress  is maintained 
(which means that the shear strain angle, , will continuously increase with time).  In 
most common fluids, like water, air, and oil, the strain rate will be linearly proportional to 
the applied shear, such that: 
 

 
t


  (1.1) 

 

as indicated in figure 1.1.  If the differential in velocity due to the shear stress is u across 
a distance y, then from figure 1.1 we can geometrically show that: 
 

 ( ) 



=

y
tutan , if  is considered small. (1.2) 

 

Using Eqs. 1.1 and 1.2, we can show that: 
 

 
y
u
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=




  (1.3) 

Now, taking the limit as y becomes small in Eq. 1.3, mathematically we have: 
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dy
du

y
u

0y
=






→
lim    or   

dy
du

  (1.4) 

 

Assuming a proportionality constant of µ in Eq. 1.4, we can write: 
 

 
dy
du

=  (1.5) 

 

In Eq. 1.5, µ, is termed the coefficient of viscosity, often called the absolute or dynamic 
viscosity of the fluid.  The larger the value of µ, the more viscous the fluid.  The units of 
µ are stress-time, with units of [FT/L2] or [M/(LT)], where F, M, L, and T represent 
respectively force, mass, length, and time in the units system being employed.  Viscosity 
typically varies with temperature and pressure, although temperature is generally the 
more dominant effect, with liquids generally becoming less viscous with increasing 
temperature, whereas gasses become more viscous (generally) with increasing 
temperature. 
 
Some typical values of absolute viscosity for various substances at standard conditions of 
one atmosphere pressure and 20°C are: 
 

 Air:    1.84x10-5   kg/(m-s) 
 Water: 1.0x10-3    kg/(m-s) 
 SAE 30 oil: 0.29          kg/(m-s) 
 
Therefore, water is more than 50 times more viscous than air, and motor oil is 290 times 
more viscous than water! The following gives comparisons for other selected fluids: 
 

Fluid 

Absolute Viscosity at 

Room Temperature 

(kg/m-s) 

Air 1.84 x 10-5 

Water 1 x 10-3 

Olive Oil 1 x 10-1 

Glycerol 1 x 100 

Liquid Honey 1 x 101 

Golden Syrup 1 x 102 

Glass  (Molten) 1 x 1040 

 

https://en.wikipedia.org/wiki/Viscosity
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Another convenient form of viscosity that is often used in fluid mechanics is termed the 
kinematic viscosity, , which is defined as the ratio of the absolute viscosity to the fluid 
density, i.e.: 
 

 



= ,  (1.6) 

 

where  is the symbol for fluid density (e.g. kg/m3).  Therefore, the units of kinematic 
viscosity will be in [L2/T].  For the same three fluids cited previously, the kinematic 
viscosities are: 
 
 Air:    1.53x10-5   m2/s 
 Water: 1.01x10-6   m2/s 
 SAE 30 oil: 3.25x10-4   m2/s 
 
Note that the kinematic viscosities of the three fluids vary much less from each other than 
the absolute viscosities. Since both viscosity and density vary with temperature, so will 
kinematic viscosity.  The chart below shows the variation of the kinematic viscosity of 
some common fluids with temperature.  
 

 
 
The following tables list the absolute and kinematic viscosity for water and air at 
atmospheric pressure, over a range of temperatures.  
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Table 1: Viscosity of Water at Atmospheric Pressure 

    

Temperature 
Density 

Absolute 

Viscosity 

Kinematic 

Viscosity 

- t - -  - -  - -  - 

(oC) (kg/m3) (kg/m-s) x 10-3  (m2/s) x 10-6 

0 1000.0 1.787 1.787 

5 1000.0 1.519 1.519 

10 1000.0 1.307 1.307 

20 998.0 1.002 1.004 

30 996.3 0.798 0.801 

40 992.4 0.653 0.658 

50 989.2 0.547 0.553 

60 983.2 0.467 0.475 

70 978.2 0.404 0.413 

80 972.6 0.355 0.365 

90 966.3 0.315 0.326 

100 972.4 0.282 0.290 

 
Table 2: Viscosity of Air at Atmospheric Pressure 

    

Temperature Density 
Absolute 
Viscosity 

Kinematic 
Viscosity 

- t - -  - -  - -  - 

(oC) (kg/m3) (kg/m s) x 10-5   (m2/s) x 10-5 

-50 1.469 0.687 0.468 

0 1.295 1.736 1.341 

10 1.249 1.787 1.431 

20 1.206 1.837 1.523 

25 1.186 1.862 1.570 

30 1.166 1.886 1.617 

40 1.129 1.934 1.713 

50 1.094 1.982 1.812 

60 1.061 2.029 1.912 

70 1.030 2.075 2.014 

80 1.001 2.121 2.119 

90 0.974 2.166 2.225 

100 0.947 2.210 2.333 

150 0.835 2.423 2.900 

200 0.747 2.624 3.512 

300 0.617 2.994 4.854 

400 0.525 3.330 6.342 
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You can find more information on both absolute and kinematic viscosity on the internet.  
Some useful sites are: Gas viscosity calculator, Viscosity-Wikipedia, The Physics Hyper 
Textbook and The Engineering ToolBox 
 
1.4 Types of Fluids: Newtonian and Other   
 
In section 1.3, we made the assumption that shear stress in a fluid will vary linearly with 
the strain rate.  In the majority of fluids, such as air, water, and motor oil, this proves to 
be a good assumption.  This linear relationship between shear stress and strain rate was 
first proposed by Newton in his classic "Principia: the Mathematical Principles of Natural 
Philosophy" in 1686 (although he did not use the same terms, but close enough).  The 
above linked translation to English is from 1864.  In honor of his observation, all fluids 
that display liner shear-strain rate relationships are termed a Newtonian fluid. 
 
However, what about fluids that do not display such a linear relationship?  They are all 
lumped into a category known as non-Newtonian fluids, which is then split into 
subcategories, depending on the shear–strain rate behavior. Figure 1.2 shows four 
possible generic behaviors (idealized) of non-Newtonian fluids, compared with a 
Newtonian fluid.  These non-Newtonian fluids are designated as: (1) dilatant (shear-
thickening), which increase in resistance with increasing shear stress; (2) pseudoplastic 
(shear-thinning), which decrease in resistance with increasing shear stress; (3) plastic 
(strongly shear-thinning), which show a very stong decrease in resistance with a shear 
stress increase; and (4) Bingham plastic, where the material behaves initially like a solid, 
until a limiting shear stress is reached, above which it continuously yields as a plastic.  
An ideal Bingham plastic (shown), would display a linear relationship after it begins to 
yield; however, most real Bingham plastics will generally display a plastic-type behavior 
after yielding.  
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1.2  The generic behavior of various non-Newtonian fluids relative to 
Newtonian fluid behavior. 

Shear 
stress 
 

Shear strain rate  

Yield 
stress  

Ideal Bingham plastic  

Plastic  

Dilatant  

Newtonian  

Pseudoplastic  

http://www.lmnoeng.com/Flow/GasViscosity.php
http://en.wikipedia.org/wiki/Viscosity#Viscosity_of_selected_substances
http://physics.info/viscosity/
http://physics.info/viscosity/
http://www.engineeringtoolbox.com/dynamic-absolute-kinematic-viscosity-d_412.html
http://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
http://redlightrobber.com/red/links_pdf/Isaac-Newton-Principia-English-1846.pdf
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The modeling and assessment of non-Newtonian fluids, although of significant interest, is 
quite messy.  Most practical engineering applications generally are concerned with fluids 
that behave in a Newtonian manner.  Therefore, in this book, we will generally deal with 
Newtonian fluids.  However, Chapter 16 of this text will examine some simple non-
Newtonian fluids in basic flow configurations, to illustrate the variations of non-
Newtonian from Newtonian fluids.   
 
1.5 The Differential Element  
 
Fluids, like all discrete matter, are governed by Newton’s second law, where inertial 
accelerations/decelerations of a body are balanced by the sum of the forces applied to the 
body, no matter how small.  As long as a fluid can be considered a continuum, and each 
particle of the fluid can respond independently to the applied forces, we generally find it 
useful and necessary to model the fluid behavior using a differential fluid element.  This 
differential element is assumed small enough such that property changes across the 
element are minimal (but not negligible), but large enough to still be assumed a 
continuum (i.e. no discontinuities of the fluid motion within the differential element).  
This approach allows us to ultimately express Newton’s second law ( amF 

= ) in terms of 
a very small, differential volume (i.e. an infinitesimally small control volume).  The 
geometry of this differential volume can be expressed in terms of an appropriate 
reference coordinate system (generally either Cartesian, cylindrical, or spherical), such 
that we can describe both the differential volume and the surfaces surrounding this 
differential volume in terms of the coordinate directions (e.g. x, y, z for a typical 
Cartesian coordinate), as shown in figure 1.3 
 
 
 
 
 
 
 
 

Figure 1.3  An infinitesimal differential fluid element 
 
The volume of a differential element in a Cartesian system, as shown in figure 1.3, is 
defined as d = dxdydz, or the product of the three orthogonal dimensions of the 
differential element.  Note that this element is not necessarily a cube, since no restriction 
is placed on the magnitude of the differential dimensions, other than the assumption that 
they are small enough such that second-order and higher changes (i.e. spatial derivatives) 
of the fluid properties (e.g. velocity) in a selected direction are negligible, relative to first-
order, linear changes of the property in that same direction.  This is important, since this 

y 

x 

z 

dx dz 

dy 

Vol = d = dxdydz 
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assumption allows us to develop differential equations modeling the property changes 
throughout the fluid by use of a truncated Taylor series expansion (more on this in 
Chapter 5). 
 
Another important characteristic of this differential element is that it allows a systematic 
representation of the various bounding surfaces, which is important for establishing 
contact forces (such as pressure).  For example, the area dzdy in figure 1.3 is the area (i.e 
the magnitude) of the surface bounding the right and left sides of the differential element.  
In order to characterize both the magnitude and the direction of orientation of a surface, 
we require a systematic method for establishing the spatial orientation of each surface 
relative to a selected coordinate system.  Accordingly, we define the direction that a 
bounding surface faces by a unit vector oriented normal to that surface.  By convention, 
this unit vector always points outward from the differential volume.  Therefore, for the 
surface bounding the right side of the differential element shown in figure 1.3, the normal 
vector would point to the right, as shown in figure 1.4.  However, for the same magnitude 
surface bounding the left side of the differential element, the normal vector would point 
in the opposite direction (i.e. to the left), as shown.  As required, both of these normal 
vectors point outward from the differential element. 
 
 
 
 
 
 
 
 

Figure 1.4 Normal vectors for the left and right faces of a differential element 
 

Note that for the right-facing surface the normal vector points in the positive x-direction 
(for the coordinate system shown).  However, if we were considering the outward normal 
for the left-facing surface of this differential element, the surface vector points to the left, 
in the negative x-direction, which is (of course) outward from the differential element for 
the left surface.  The direction of the outward normal is particularly important when 
determining the absolute direction that a force will act when applied to a particular 
surface of the differential element.  We will discuss this issue, and its importance, further 
in section 1.7 below. 

We now illustrate how we make use of the differential element concept to describe the 
respective forces that act on a fluid.  To do this, we note that the forces on a fluid are 
separated into two basic types:  (1) Body forces, and (2) Surface forces. 
 
 

y 

x 

z 

dx 
dz 

dy 

Normal Vector (pointing outward) 

https://en.wikipedia.org/wiki/Taylor_series
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1.6 Body Forces  
 
Body forces are forces that develop within a fluid without physical contact, and are 
proportional to the mass of the fluid contained within a region.  Particular examples are 
forces due to gravitational or magnetic fields.  For a differential fluid element, as shown in 
figure 1.5, the local body force due to gravitational attraction is given by 

( )dxdydzgdgFd B


== , where BFd


 is the differential vector body force acting on the 
differential fluid element,  where  is the local fluid density, g  is the gravitational vector 
field, and d is the volume of the differential element. 
 
 
      ( )dxdydzgdgFd B


==  

 
   
   
 

Figure 1.5 Illustration of gravitational body force generated on a differential 
element 

 
In this text, we will only address gravitational effects, since it is the most common body 
force encountered by a fluid.  However, magnetic effects can be quite important when 
dealing with the presence of a magnetic field within electrically conductive fluids, such 
as mercury, or even seawater.  In fact, the field of magnetohydrodynamics is primarily 
concerned with the influence of magnetic fields on electrically conducting fluids. 
 
1.7  Surface Forces  
 
Surface forces are forces exerted by direct contact at a fluid boundary.  The most 
common examples of such forces are normal forces generated by pressure, and shear 
stresses generated by fluid friction. 
 
 Surface forces, regardless of their source, are vectors that are comprised of:  (a) one 
normal force, which acts perpendicular (normal) to a particular surface, and (b) two 
tangential forces, which act tangential to the surface, and perpendicular to each other.  
Figure 1.6 shows a general example of a surface force acting on a planar surface, and its 
directional components relative to a Cartesian coordinate system fixed on the surface 
(here, the z-direction is taken as normal to the plane).   
 
 
 

y 

x 

z 

dx 
dz 

dy 

Vol=d 

g 

http://www.scholarpedia.org/article/Magnetohydrodynamics
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We assume that F


 is an arbitrary surface force acting on the plane.  We can then 

represent F


 by its respective components, where Fsz is the normal component of force 
acting perpendicular to the surface (in the z-direction), and Fsx and Fsy act respectively in 
the x-direction and y-direction, where x and y are oriented at right angles within the 
plane. 
 
1.8  Stresses 

 
Although we are ultimately concerned with the total forces acting on either a body or 
surface (e.g. an airplane wing or the inside surface of a pipe), for the purposes of 
mathematically modeling the fluid behavior, it is more efficient to write the governing 
equations for fluid mechanics in terms of very localized stresses, where stress = force/unit 
area.  Here we discriminate between the normal and tangential stresses as follows: 

 

1)  normal stress  
0→

=
Aii lim  

A
Fn



     (1.7) 

2)  shear stress 
0→

=
Aij lim  

A
Fs



  (1.8) 

 
Here, i and j are direction coordinates which reflect respectively the defining surface of 
action and the direction of the stress, according to the reference coordinate system 
employed.  Note that a stress has both (a) a direction, and (b) a surface upon which it 
acts.   For normal stresses, the direction of action is along the normal to a respective 
surface.  However, for shear stresses, the direction of action will be tangential to the 
surface and perpendicular to the surface normal.  Thus, we need to employ a method for 
defining stresses that clearly characterizes all the directional forces (i.e.  one normal, and 
two shear forces) that act on any given surface.  We do this by using a double subscript 
notation that characterizes both (1) the plane, or surface, upon which a stress acts, and (2) 
the direction in which the stress acts.  This creates a higher-order type of vector 
description of a stress field known as a tensor, which is a collection of nine scalar 
components that describe both the direction and the surface of action for all possible 
stress components.  For a given coordinate system, the double subscript notation is 

z 
y 

x 

Fsy 
     Fsz 

(or Fn) 
Fsx 

F


Figure 1.6   Surface forces acting on an arbitrary planar surface. 
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defined as ji , where   is the generic stress component.  Here, the first subscript (i) 

indicates the surface of application (defined by the direction of the normal to the surface) 
and the following subscript (j) indicates the direction of action of the stress.  For a 
Cartesian coordinate system, an example is: 
 

i.e. = xy  stress (normal or shear) (1.9) 

 
       

 
 
This raises the question of which direction a calculated stress will actually act on a 
specified surface.  One needs to recognize that a “positive” stress (as determined by an 
appropriate calculation) will not necessarily act in a “positive” direction relative to a 
specified coordinate system.  While this seems strange at first, one can easily realize that 
for a particular geometry and flow, an imposed stress will have an absolute direction in 
which it will act (which is independent of the chosen coordinate system).  For example, 
pressure exerted by a fluid on a surface will always act “against” the surface, and 
gravitational forces will always act toward the center of the earth, regardless of how we 
choose our coordinate system.  Therefore, a stress created by a particular flow may act in 
a particular inherent direction (e.g. to the right of this page), but this may be construed as 
acting in either a positive direction (coincident with our reference coordinate) or a 
negative direction (in opposition to a reference coordinate), depending on how we chose 
to orient our coordinate system, and the particular surface of action that is selected.  
Confused?  Let’s clarify this process further by developing a sign convention for keeping 
track of the direction of a positive stress. 
 

Stress Component Sign Convention 
  
 Plane Direction     Absolute Stress Component  
 + + + 
 - - + 

 + - - 
 - + - 
 

  
 
The preceding table defines all the possible signs for planes and directions of action, and 
the corresponding sign of the absolute stress component.  Note that a surface is defined as 
either a “positive” or “negative” surface depending on the direction of the outward normal 
for a selected surface (relative to the coordinate system).  The directions of the stress 
components acting on a specified surface are then established according to the sign of the 

Product   Component Sign 

direction of action (x, for this case) 
 
surface of application (y, for this case) 
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absolute value of the stress component, which is either assumed (for purposes of 
differential modeling and equation derivation) or calculated (if a mathematical expression 
is already available).  The convention for defining a “positive” stress, as indicated above, 
depends on the product of the signs of: (a) the surface vector (the outward normal) and (b) 
the direction of the stress.  If the product is positive, the absolute stress component is 
positive, whereas a negative product indicates a negative absolute stress component.   
 
As an example, consider the application direction of shear stress components acting on 
various surfaces of a differential element volume, where all the absolute stress 
components are assumed to act positively.  Here, we define the sign of all external 
surfaces of the differential element by their outward pointing normal relative to the 
Cartesian coordinate system shown.  For example, the outward normal for the top surface 
of the differential element shown in figure 1.7 points in the positive y-direction.  Thus, 
yz, a z-direction shear stress, which acts in a “positive” absolute direction on this y-
surface, will act in the positive z-direction, as shown, since the product of the sign of the 
surface normal (+) and the shear stress directional sign (+) must yield a positive (+) 
absolute sign. 
    
 
 
 
 
 
     
 

Figure 1.7  Illustration of typical orientations for “positive” stresses acting on  
 selected surfaces of a differential fluid element 

 
Correspondingly, for xy , a y-directed shear stress acting on the right surface of the 
differential element (with outward normal in the positive x direction), the shear stress will 
also act in a positive y-direction in order to represent a positive absolute shear 
component.  However, if one considers the same y-directed shear stress acting on the left 
surface of the differential element (with an outward normal in the negative x direction), 
the absolute direction for xy will now act in the negative y-direction, as shown in figure 
1.7. 
 
Note that this sign convention is incorporated into the governing differential equations 
when they are derived, and is implicit in the equations when they are integrated (in either 
closed form or numerically) to determine the velocity field for a particular fluid flow.   
Thus, when the resulting velocity equations are subsequently differentiated to establish 
quantitative (absolute) values for the stresses, the stress sign convention provides a 

y 

outward normal, x-surface (+) 
 

x 

z 

outward normal, y-surface (+) 
 
yz 

xy 
xy outward normal, x-surface (-) 
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logical, systematic method to establish the absolute direction that a calculated stress will 
act. 

 
Example:  Consider a Couette Flow (Couette, 1890), a simple viscous flow created 
between two infinite flat plates, where an upper plate moves at a velocity Uo 
parallel to a fixed lower plate, as shown.  
 
  
 
 
Without going through the derivation of the velocity flow field (we do this later in 
Chapter 6), we will simply note here that the velocity expression for a steady, laminar 
flow of a fluid between the moving and fixed surfaces is given (for the coordinate system 
shown) by: 
 

î 
h
yUĵvîuV o 






=+=


  (1.10) 

 

u and v represent the velocity components in the x and y directions, respectively, so by 
comparison we have: 
 

( )  
h
yUyu o 






=   and   0v =   (1.11) 

 

In Eq. 1.11, u(y) is the x-direction equation for the velocity as a function of y, Uo is the 
constant velocity of the upper plate, and h is the constant spacing between the plate 

surfaces (i.e. the thickness of the fluid layer).  The unit vector î indicates that the flow is 
in the x-direction.  Now, from Eq. 1.5 the local shear stress for this one-directional flow 
is proportional to the local rate of deformation of the fluid, or the gradient of the velocity, 
given by: 
 

Shear Stress  0 
h

U
dy
du o

yx ===  (1.12) 

 

Here  is the absolute fluid viscosity, which is the proportionality of the shear stress to 
the velocity gradient, or the rate of fluid deformation. 
 
So, having determined the local “absolute” magnitude of the shear stress within the fluid, 
we can now assess in which direction the stress will act.  What is not intuitively apparent 
is that the direction of the stress depends on which surface is of interest to us.  For 
example, are we interested in the stress (and thus force) exerted on the fluid by the upper 
moving plate, or on the moving plate by the fluid?  Or are we concerned with the stress 
exerted by the fluid on the fixed lower plate, or by the lower plate on the fluid?  Just as 

Uo y 

x 
h 
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we did when establishing the direction of action of a specified stress component on a 
differential element, we must first establish our surface of interest (and thus action), and 
then determine the absolute direction (relative to our selected coordinate system) for our 
calculated stress.  Figure 1.8 below illustrates several different shear stress scenarios for 
selected surfaces of interest. 
 
 
 
 
 
 

 
Figure 1.8   Absolute directions of the shear stress acting on selected surfaces  
 for a Couette flow. 

 
Consider, for example, the direction of action of the calculated shear stress, yx, acting on 
the upper plate (which is proportional to how much force would have to be exerted to 
keep the plate moving).  As shown on the left schematic of figure 1.8, the outward 
normal for the surface of the upper plate in contact with the fluid is in the negative y-
direction.  Since the absolute value of yx that we calculated in Eq. 1.12 was positive, this 
means that in order for the sign product of the surface and the shear stress direction to 
yield a positive orientation, the shear stress must act in a negative x-direction, as shown.  
This makes physical sense when one considers the physics of the problem.  As we move 
the upper plate to the right, the fluid resists, and we experience a force (i.e. stress)  on the 
plate that acts in opposition to the plate movement (i.e. to the left, or negative x-direction 
relative to our selected coordinate system).   
 
On the other hand, if we wish to determine the direction of action of the shear stress 
acting on the fluid adjacent to the upper plate, we consider the right schematic of figure 
1.8, which isolates the fluid between the plates.  Here the outward normal for the upper 
fluid surface points in a positive y-direction (out of the fluid).  Thus, since the absolute 
value of yx must still have a positive orientation, the surface-direction sign product must 
again be positive, which means that the shear stress on the upper fluid surface must act in 
the positive x-direction.  At first, this result might seem confusing, since this is opposite 
to the result we obtained when considering the upper plate surface.  However, if we again 
consider the physics of the situation, the movement of the upper plate to the right in 
essence “pulls” the adjacent fluid to the right, which is felt by the fluid as a stress in the 
positive x-direction.  Clearly, the stress has the same absolute value at this location, but 
the direction of action depends on the surface of consideration.  As Newton pointed out, 
every action causes an equal and opposite reaction. 
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yx 

yx 
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x 
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Using the same approach and convention, the direction of action of the shear stress on the 
lower, fixed surface can also be determined as shown in figure 1.8 -- and again the 
“absolute” direction of application depends on whether one considers the contact surface 
as the plate or the fluid.  
 
As a further exercise, consider a change of orientation of the coordinate system, to that 
shown below.  Here the reference x-y coordinates point in the opposite directions from 
the original coordinate system employed, and have their origin on the surface of the 
upper plate, rather than on the lower plate. 
 
 
 
 
 

While this is physically the same flow situation, using this coordinate system the velocity 
equation for the fluid between the plates is now given by: 
 

i 
h
y1UV o

ˆ






 −−=


   or    ( ) 






 −= 1
h
yUyu o  (1.13) 

 

While this equation looks quite different, it describes the same exact linear velocity 
distribution, only referenced to the oppositely oriented coordinate system.  Accordingly, 
if we calculate the corresponding shear stress we have: 
 

 0
h

U
dy
du o

yx ===  (1.14) 

 

Note that this is identical to the value determined in Eq. 1.12, using a markedly different 
coordinate system.  However, since the coordinate system is oriented differently, we 
might intuitively expect that this would have a significant influence upon the “absolute” 
direction of the applied shear.  To examine this, consider figure 1.9, which assesses the 
shear stress application to the same surfaces considered in figure 1.8, only with the 
oppositely-orientated coordinate system. 
 

 
 
 
 
 
 
 
 

Figure 1.9  Absolute directions of the shear stress acting on selected surfaces  
  for a Couette flow—oppositely-oriented coordinate system. 
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Note that although the reference coordinate directions and origin are different, when we 
apply our stress direction convention, the “absolute” direction of the applied shear 
stresses is identical, both in magnitude and absolute orientation, as they should be.  So, 
regardless of how we define our reference coordinates, the final results of our modeling 
process, and the analysis of the governing equations, will yield the same absolute result, 
as long as we apply our convention for the action of a stress on a specified surface. 
 
 
References 
 
Smith, F. M. (2003). Fluid Mechanics, McGraw-Hill, Boston 
Couette, M (1890). Ann. Chem. Phys., ser.6, vol. 21, pp. 433-510. 
 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 2 
 

 18 

Chapter 2 
 

Vectors and Vector Operators: The Basics 
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A fluid can move and change its orientation and properties continuously in space and 
time.  Thus, to characterize fluid behavior properly we must know both the magnitude 
and direction of changes at any point.  This requires that we represent fluid behavior in 
terms of vector functions, which describe the magnitude and direction of both fluid 
motion and property changes throughout the extent of the fluid.  Although there are 
excellent books that cover the details of vector calculus (e.g. Schey, 1997), and a student 
of fluid mechanics is expected to have had prior mathematical instruction on the basics of 
vector calculus, the present chapter reviews a few of the basic concepts of vector calculus 
that are particularly important for the derivation and utilization of the governing 
equations of fluid mechanics. 
 
2.1 Coordinate Systems 
 
To properly establish a vector representation of a fluid property (such as velocity) 
requires that we first establish an appropriate coordinate system.  Note that a vector 
function representing a fluid property will always reflect an absolute behavior, which is 
inherent in the fluid behavior (e.g. water always flows downhill).   However, how we 
choose to represent that absolute behavior mathematically depends on the coordinate 
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system we employ.  It is to our advantage to choose a coordinate system that most easily 
represents the type of behavior of interest.  For example, if we are concerned with flows 
over flat surfaces, or within rectangular tubes, a Cartesian or rectangular coordinate 
system (x, y, z) is best suited for representation, since all property changes will occur 
either along the planar boundaries or normal to them, and the Cartesian coordinate system 
can be easily aligned with these boundaries.  Alternatively, a cylindrical or radial 
coordinate system (r,, z) can best describe, and be aligned with, flows that pass either 
around, along, or through geometries that are radially symmetric, such as cylinders and 
circular tubes, pipes, and ducts.  And finally (at least for our purposes), spherical 
coordinates (r, , ) provide a coordinate system that is well suited to flows over or 
within spherically-symmetric geometries, such as geophysical flows within the 
atmosphere.  For the purposes of the present text, we will confine our interests to the 
former two coordinate systems, Cartesian and cylindrical, which have the broadest 
applications, and are admittedly simpler to employ.  However, note that the same 
principles that we develop for Cartesian and cylindrical coordinate systems apply equally 
well in spherical coordinates, or any other coordinate system of choice, albeit yielding 
more complicated governing differential equations. 

 
2.1.1 Cartesian Coordinates 

 
A typical Cartesian coordinate system is shown in figure 2.1 below, characterized by 
three orthogonal coordinate axes initiating at a common origin.   
 
 
 
 
 
 
 
 
Normally used with planar or rectangular geometries, a Cartesian coordinate system will 
generally be oriented such that two of the axes lie in the primary plane of interest (e.g. on 
the surface of a flat plate), with the other axis projecting perpendicular, or normal, to the 
plane of interest.  As with all coordinate systems, a vector property, call it a , when 
described in a Cartesian system will consist of three directional components (ax, ay, az), 
which indicate the magnitude of the vector contribution in each coordinate direction.  
This allows the vector to be expressed in terms of the directional components as: 
   

zyx ak̂aĵaîa ++=
  (2.1) 

 

îĵ

k̂

y 

x 

z 

a  

Figure 2.1    Schematic of a Cartesian coordinate system 
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Here  k̂ and ,ĵ ,î are unit vectors, which are each of unity magnitude and oriented in the x, 
y, and z directions respectively, as shown in figure 2.1.  Note that ax, ay, and az can be 
either constants or, more likely, functions of one or more of the coordinate variables x, y, 
and z.   
 

2.1.2 Cylindrical Coordinates 
 
Similar to the Cartesian system, the cylindrical (also called radial or polar) coordinate 
system employs three coordinate axes: r, , and z.  However, only two of these (r and z) 
originate from a common origin, as shown below.  
 
 
 
 
 
 
 
 
 
 
The third coordinate is a reference angle for the r axis, and describes the angular location 
of the r axis relative to a fixed reference.  This coordinate system will generally be used 
for axisymmetric geometries, such as rods and tubes, with the z coordinate axis located 
along the axis of rotational symmetry (e.g. the centerline of a rod or tube).  Here, we can 
describe a vector a  in terms of directional components ar, a, and az as: 
   

zzθθrr aîaîaîa ++=


, (2.2) 
 

In Eq. 2.2, zθr îand,î,î  are again unit vectors of unity magnitude, and oriented 

respectively in the r, , and z directions, as shown in figure 2.2.   
 
There are two things to note about the cylindrical coordinate system that make it more 
complicated than the Cartesian system (at least when performing vector calculus 
operations).  The first complication is that the r and z coordinates reference spatial 
changes, whereas the  coordinate references an angular change. This creates some 
complication when one takes the derivative of a vector expressed in cylindrical 
coordinates, since derivatives with respect to z and r yield spatial property changes, while 
derivatives with respect to  indicate angular property changes.  Consequently, it is the 
effect of these angular changes of the r coordinate that yields the corresponding spatial 
change with respect to .  Since these angular changes are a combination of changes in 

y 

x 

z 

r 
 

rî
î

zî

Figure 2.2    Schematic of a radial coordinate system 
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both r and , the terms comprising the governing differential equations will be a bit more 
complicated, and in some cases contain additional terms, relative to the Cartesian form of 
the governing equations.   
 

The second complication is that the θr îandî unit vectors within the cylindrical system 

change their spatial orientation with changes in the angular coordinate, .  Thus, a 
change in the angular orientation of a vector will also result in a corresponding change in 
the orientation of the θr îandî unit vectors, since these unit vectors are oriented 

respectively along ( rî ) and normal to ( θî ) the r coordinate axis, and r changes its angular 

orientation whenever there is a change in .  For example, if r changes its angular 
orientation (i.e. rotates) by 180, the θr îandî unit vectors will change their orientation by 

180 as well.  This coupling of θr îandî with  manifests itself when one differentiates a 
vector in cylindrical coordinates, which results in non-zero unit vector derivatives for 

θr îandî , as we will discuss in section 2.2.1. 
 
2.2. Vector Differentiation 
 

Generally, vector differentiation is performed in essentially the same manner as non-
vector differentiation.  Going back to basics, if we let a  be a vector such that )t(aa 

= , 
we can define a derivative with respect to t as: 

 
 
 
 
 

So, if ( ) îtta 2=


, then ( ) ( ) ît2dtîdtîdtdtdtad 22 =+=


, since we assume that the unit 

vector î  is not a function of t (which is the case for the Cartesian coordinate system).  Of 
course, the process is the same for partial differentiation as well.  However, the 
assumption that a unit vector is not a function of the independent coordinate variables 
depends on the coordinate system employed, as shown in the following. 
 

2.2.1 Derivatives of Unit Vectors 
 

First, let’s consider the easiest situation, the Cartesian coordinate system.  This is really 
simple, because the Cartesian unit vectors -- k̂,ĵ,î -- are of constant magnitude (unity) and 
independent of changes in x, y, z.  Thus, 
 

t
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    for all Cartesian unit vectors. 

  

So, when performing a vector operation, whether it is the formation of a derivative or an 
integration, we treat Cartesian unit vectors the same as we do constants in any operation. 
 
Now, let’s consider the cylindrical coordinate system.  Here, zî  is independent of  r, z,   
-- so we can treat the zî  unit vector as a constant during differentiation.  However, the 

unit vectors rî and î , while they are independent of changes in r and z, they are (as 

pointed out in section 2.1.2 above) dependent on changes in .  Thus, when we consider 
the differentiation of unit vectors in the cylindrical coordinate system, we obtain the 
following: 
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 (2.3) 

 

Here, differentiation of rî  and î  with respect to r and z yields zero values; however, 

differentiation with respect to  yields two non-zero values, which are unit vectors 
themselves.  This is of particular importance when dealing with vector calculus 
operations employing theoperator, which we will discuss in section 2.3.  
 

Example:  Using the basic concept of a vector derivative, the following demonstrates 

how we establish the non-zero partial derivative for 
θ
ir



 ˆ
.  Here, we represent rî  as a 

vector of unity magnitude, oriented along the coordinate r.  As shown in the figure 
below, we assume this vector undergoes a small angular change of .  Since the 
orientation of rî  is a function of , this means that the change of rî  with respect to  

is from rî () to rî (+).  Thus, we can write the derivative for rî  with respect to  
as: 
  

 


−+
=





→

)(î)(î
lim

î rrr

0

 (2.4) 

 

Now, to approximate the difference, ( ) ( )−+ rr îî  in Eq. 2.4, we examine the 
geometric change of these vectors, as shown below.  We label this difference  



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 2 
 

 23 

 rî , and note that  rî  is represented by the small arc created by the rotation of the 

unit vector rî  by an amount  in the î  direction.  Since the magnitude of rî  is unity, 

as indicted, then   rî = î . 
 
  
 
 
 
   
 
 
 

 

Thus, substituting our value of   rî  into Eq. 2.4 yields: 
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 (2.5) 

 

As an exercise, use a similar approach to derive the result for 


 î  by considering the 

changes in the unit vector î  for a small angular change, . 
 
2.3 Vector Operator  
 
To develop the governing equations of fluid mechanics, we must be able to model 
mathematically the changes in the various properties of a fluid, both spatially and 
temporally.  Sometimes we are concerned with property changes from one point to 
another (like with the Bernoulli equation, Section 7.3), and sometimes with the local 
property changes with time, particularly when developing the governing differential 
equations of motion.  These properties run the gamut from scalars (e.g. fluid density and 
pressure) to vectors (e.g. velocity and vorticity).  To model these changes, we have 
several different mathematical methods to establish these property changes, described 
variously as the divergence, the curl, and the gradient of a property field.  These 
descriptions can often get rather complicated, since we have to consider the various 
possible changes that can take place with respect to all the coordinate directions. 
 

To help facilitate these “change” descriptions mathematically, we have a very convenient 
mathematical operator that allows us to write a bit of short hand for the various changes.  
This operator is designated the “del” operator, and is written as:  
 

y 

x 

z 

 

rîî
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1 ˆ : = r i note 

( )+rî
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=   (in Cartesian coordinates) (2.6) 
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=   (in cylindrical coordinates) (2.7) 

 

Examination of the above definitions illustrates that the  operator reflects the 
cumulative changes for all three respective coordinate directions. For example, the first 

derivative function for the Cartesian coordinate expression in Eq. 2.6 above, 
x

î



, 

assesses the changes in a property relative to the x-direction—the unit vector indicates 
that this change is an x-direction contribution to a spatial derivative vector.  Applying this 
 operator to a designated property (e.g. directly for a scalar property, and via a dot or 
cross product operation for a vector property), we can establish how that property is 
spatially “changing” at a specified point.   
 

However, one must exercise care when using the  operator in cylindrical coordinates, 

since, as pointed out in Section 2.2.1, the differentiation of the unit vectors rî  and î , 

which change their orientation with respect to the angular coordinate , will yield other 
unit vectors.  This is particularly important to understand when performing operations 
with the  operator.  The rule is that when performing operations that involve both vector 
differentiation and subsequent vector operations, one must always perform the derivative 
function (of both the magnitude function and the unit vectors) first, and then perform the 
prescribed vector operation.  For example, if we are taking the dot product of rîb with the 

angular derivative of = iaV ˆ
, (where a and b are constants) we would perform the 

operation as: 
 
 

( ) ( ) ( )  −=−+=

















+




=




=




 


 abii1aibiiaibiaibVib rrrrr

ˆˆˆˆˆˆˆˆˆ


 

 

Note that if we didn’t consider the derivatives of the unit vectors in this operation, our 
result would have been zero!  So, the rule is:  perform all derivative functions first, before 
performing the vector operations. 
 
Now, let’s consider the operations that can be performed using the  operator: first on a 
scalar field, and then on a vector field.  Recall that a scalar field is one for which the 
property has magnitude, but no direction.  Pressure, fluid density, and temperature are 
examples of scalar properties:  they will have a magnitude at a location, but do not have a 

Differentiation Vector Operation 
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direction associated with the property.  On the other hand, velocity, acceleration, and 
vorticity (angular rotation) are vector properties that have both a magnitude and a 
particular direction at any given location.  The application of the  operator will yield 
very different types of information about a property field, depending on whether the 
property is a scalar or a vector.  And from the point of view of modeling of fluid 
behavior, it is important to understand what information results from the application of 
the  operator. 
 

2.3.1 Gradient 
 
Consider a scalar field ( i.e.  a property like pressure or fluid density) given by

),,( zyxf= .  Such a property describes what we term a scalar field, which means that 
the function f(x,y,z) will describe the magnitude of the property  at any coordinate 
location within a region (the property “field” encompassed within the coordinate space).  
Clearly, this scalar property only has magnitude, but no direction of action.  However, if 
the scalar property is changing with location (e.g. a change in pressure as we walk up a 
mountain), we can establish the local rate at which the property will change as we move 
in any direction from a specified location within the field.  Clearly, these changes will 
have both a magnitude and an associated direction of that change.  Taken collectively for 
all coordinate directions, these changes are termed the “gradient” of the property and can 
be mathematically determined by performing the  operation directly on the scalar 
function , such that: 
 

z
k̂

y
ĵ

x
î




+




+




=  (2.8) 

 

The result of this operation is a vector function,  , with magnitude and direction 

indicating the spatial rate of change of  . 
 
Example:  Consider the static pressure field in a swimming pool given by

zgpzp o +== )( , where  is a constant fluid density, g is the gravitational 
constant, po is the pressure at the surface of the pool, and z is a Cartesian coordinate 
pointing vertically downward from the pool surface.  Accordingly, the gradient of the 
pressure in the swimming pool is given by: 
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=   (i.e. a constant change in z-direction) 
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Here, the gradient indicates that the pressure is increasing at a constant magnitude in 
the positive z direction (i.e. as we move farther below the surface of the water).  
Other examples of scalar fields within a fluid where a gradient can exist include fluid 
density, temperature, and concentration fields.  We’ll show how this concept is 
utilized in section 2.4 below, and later in Chapter 4. 

 
2.3.2 Divergence 

 
Now let’s consider the changes that can take place in a vector field (again in Cartesian 
coordinates), k̂VĵVîVV zyx ++=


, which has both magnitude and direction.  Clearly, 

since the  operator is a vector operator, in order to operate on a vector field, one must 
employ an appropriate vector operation.  Our options are the dot product of two vector 
functions, or the cross product (or curl) of two vector functions.  Here we consider the dot 
product first, with the  operator prescribed to operate (left side of the dot product) on the 
vector field (right side of the dot product), with the result: 
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=


 (2.9) 

 

Equation 2.9 is a scalar termed the “divergence,” which indicates the degree of total 
“expansion” of a vector field at a point.  Note that this expansion (of course a negative 
value would indicate a contraction) is the sum of the local respective changes in all three 
coordinate directions.  The divergence is intimately related to the compressibility of a 
fluid – i.e. the spatial change in the local density at a point.  We will show later, in 

Chapter 4, that for incompressible fluids (like water), V

 = 0 is an expression of the 

conservation of mass, if the vector V


 represents the velocity field of a fluid.  Thus, if the 
density of a fluid is constant (i.e. incompressible), the local velocity changes in all 
coordinate directions must exactly balance each other (i.e. there can be no “expansion,” 
or “contraction” of the volume that an incompressible fluid occupies).  However, if a 
fluid is compressible (like air), the local velocity changes may not balance, which 
indicates an expansion or contraction of the fluid.  We discuss this further in Chapter 4. 
 

Example:  Divergence in Cartesian Coordinates  
 

Consider a velocity field given by îaxV =


 (a = constant).  Here, there will be a non-
zero divergence, indicating that the fluid is expanding at a point. 
 

xV i j k axi a a
x y z x

ˆ ˆ ˆ ˆ    
 = + +  = = 

    
       

 x 

y 
 

expansion in x 
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                  expansion at a point 
Now consider a velocity field given by ĵyîxV −=


. 

 

 ( ) 011
y
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xĵyîx
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−




=−












+




+




=       

     

In this latter case, the divergence is zero, indicating that the fluid is nonexpanding.  
Here, any expansion in the x-direction (a positive change) is balanced by a 
corresponding contraction (a negative change) in the y-direction.  This balanced 
expansion/contraction is reflected by increasing or decreasing velocity components to 
and from a point. 
 
Example:  Divergence in Cylindrical Coordinates 
 
As was noted in section 2.2.1, when dealing with the differentiation of a flow field 
described in cylindrical coordinates, one must be careful to perform any indicated 
differentiation (of both the vector magnitude and the unit vectors) first, and then 
perform the prescribed vector operation.  To illustrate the importance of this process, 
consider the divergence of a velocity field given by r0 iVV ˆ=


, where V0 is a constant.  

Here, the divergence is given by (using Eq. 2.7) 
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Here, the divergence of the flow field is infinite at the origin, and diminishes rapidly 
as the flow moves radially outward (a bit like a radially-symmetric explosion). While 
not a terribly realistic fluid flow, this example does illustrate the importance of 
completing the unit vector differentiation before performing the vector operation.  
Note that if we assumed that the derivative of the rî unit vector was zero, our result 
would also be zero, which certainly is not the case. 
 

Note that for a general vector field of zzrr îVîVîVV ++= 


, the divergence in 

cylindrical coordinates can be shown to be: 
 


















+




+


















+




+


















+




=  z

i
Vi

z
V

i
i

Vi
V

r
1i

r
i

Vi
r

V
i r

0r
0

z
r

0r
0r

0r
0

r

ˆ
ˆˆ

ˆ
ˆˆ

ˆ
ˆˆ

0 0 0 0 0 î
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 (2.10) 

  

Here, the last term in Eq. 2.10 is the result of the change in the rî  unit vector with 

angular displacement (i.e. a non-zero derivative of the unit vector, =


 iîr ). 

 

2.3.3 Cross Product or Curl 
 
Next, we consider the cross product of a vector field, with the  operator again prescribed 
to operate (left side of the cross product) on a vector field (right side of the cross product). 
The result for a velocity field (in Cartesian coordinates), k̂VĵVîVV zyx ++=


, is: 

 

( )V i j k V i V j V kx y zx y z
ˆ ˆ ˆ ˆ ˆ ˆ  

 = + +  + +
  

 
 
 

     

y yV VV V V Vz x z xi j k
y z z x x y
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= − + − + −

     

    
    

    
 (2.11) 

 

Equation 2.11 gives a resultant vector often termed the “curl” of V


.  The curl indicates 
the amount of angular change or rotation that occurs within a vector field due to changes 
in the vector property in directions normal to each coordinate direction.  If the vector 
field is a velocity field, the cross product will give the angular velocity of the fluid, which 
is expressed as a proportional “vorticity” in fluid mechanics.  We will show later (in 

Chapter 7) that when V


 = 0, a velocity field is said to be “irrotational” -- a condition 
which allows some significant simplifications to be made to the governing equations of 
fluid mechanics. 
 

Example:  Consider a two-dimensional velocity field given by îVîbyV x==


 (a 
simple uniformly sheared flow, like a Couette flow, as shown).  Eq. 2.11, the cross 
product for this two-dimensional flow, simplifies to: 
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Thus, the rotation of the fluid would be like a ball rolling left to right (or clockwise 

around the z-coordinate, which points out of the page).  In contrast, if îaxV =


 (the 

flow field shown to have non-zero divergence in section 2.3.2), then 0V =


 , 
indicating that although the flow is expanding, it has no rotation.  This is also the case 

x 

y 

0 
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for the second flow field we examined in section 2.3.2, ĵyîxV −=


.  For that case, 

again 0V =


, which indicates a non-expanding field; additionally, one can show 

that 0V =


, which indicates that the flow field also exhibits no rotation. 
 

Note that in cylindrical coordinates, the curl for a velocity field given by 

r r z zV V i V i V iˆ ˆ ˆ
 

= + +  will be: 
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   (2.12) 

 
Here, the last two terms in Eq. 2.12 are the result of changes in the î unit vector with 

angular displacement (i.e. a non-zero derivative of the unit vector, ri
î

−=


  ).  Thus, 

taking the cross product yields an extra z-direction component. 
 
2.3.4  The Laplacian and Other Useful identities Using the  Operator 

 
In the derivation and presentation of the various equations of fluid mechanics, it is 
common, and often useful, to present portions of the equations in terms of functions of 
the  operator.  This provides both a shortcut method for concisely representing manifold 
complex terms, and also allows equations to be represented in a more generic fashion, 
applicable to all coordinate systems.  Among the  operator functions that prove 
particularly useful is the Laplacian, 2, which evolves from equations that incorporate the 
divergence of the gradient of a scalar property.  Examples of such scalar fields in fluid 
mechanics include pressure, temperature, or density fields.  For example, if we consider a 
scalar field, , in Cartesian coordinates the divergence of the gradient of  is written: 
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ĵ

x
î
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So here, the Laplacian 2 (generally read as “del squared”) is: 
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=  (2.13) 

 

Equation 2.13 is a nice compact way to express the sum of the second-order derivatives 
of a scalar with respect to all coordinate directions.  Note that an equation of the form 

02 =  is classically termed the Laplace equation (which arises in many different areas 

of engineering and science), and thus the designation of  2 as the Laplacian. 
 
In cylindrical coordinates, the Laplacian is of course more complicated, due to the need 
to perform the unit vector derivative operations with respect to , and is given by: 
 

2 2 2 2 2
2

2 2 2 2 2 2 2

1 1 1 1r
r r r r z r r r r z
        

 = + + = + + + 
        

 (2.14) 

 
 

 
Note that the Laplacian function in cylindrical coordinates is often written in the more 
“compact” manner on the left side of Eq. 2.14.  However, writing the expanded function, 
to the right, illustrates the additional term that arises from unit vector differentiation 
 
There are a number of other -based functions that are commonly employed to 
consolidate differential vector equations, and which are often confusing if one doesn’t 
follow the proper order of operation (i.e. which operation you perform first).  The general 
rule for multiple operations is that one performs the right-most operation first, and then 

work back to the left.  For example, for F


  one would perform the curl of F


first, 

( )F


 , then perform the curl of that result [i.e. ( )F


 ].  If for F


  we 
intended the operation on the left to be performed first, we would use parentheses to 
indicate a variance in the order of operation.  For example, if the expression was written 
as ( ) F


 , we would perform the del cross product first, then take the cross product 

of the result with F


.  The catch here is that sometimes certain operations don’t work in 
the right-to-left hierarchy, and thus inherently must be performed in the only logical 
manner available (I’m not sure how this practice evolved, but it has).  For example, 

consider FF


 .   By performing the right hand operation first, this would suggest that we 

should have  operate on F


first.  However, a vector operation (dot or cross product) is 

not indicated for F


 , and this can’t be a gradient operation, since F


 is a vector.  So one 

must perform the only vector operation available, F


, first and then (since the result is a 

Additional term due to 
unit vector differentiation 
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non-vector functional operation) operate on .F


  So, in essence, the proper way to write 
this operation should be:  ( )FF


 .   

Another confusing function is the Laplacian operating on a vector, F2


 .  Here, if we 
follow the origin of the Laplacian above, we would write: )F(F2


= , which again 

doesn’t make sense.  So, what is generally implied by this representation is: 
 

( )FF
zyx
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2

2
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=  (2.15) 

 

A subtle point, but one that can be confusing when faced with manifold “compact” 
representations of vector equations. 
 
One of the nice aspects of using the  operator is its capability to express more 
voluminous governing equations in compact form (as we shall see in Chapters 4 and 5).  
Once an equation is written in this consolidated format (like the Laplace equation,

02 = ), it is applicable to a flow in any general coordinate system.  In addition, certain 
operator functions can often be expanded into sometimes more convenient identity 
operator functions, which may often assist in the simplification, interpretation, or 
metamorphosis of the original equations.  Some of the most common identities 
employing the  operator are listed below (Where f and g represent generic scalar 

functions, and F


and G


 represent generic vector functions): 
 

(a)   0f =  (2.16) 
(b)   ( ) fggffg +=  

(c)   ( ) 0F =


 

(d)   ( ) ( ) FFF


2−=     [i.e. ( ) ( )FF


−= ] 

(e)   ( ) ( ) fFFfFf +=


 

(f)   ( ) ( ) ( ) FfFfFf


+=   

(g)   ( ) ( ) ( ) ( ) ( )FGGFGFFGGF


+++=  

(h)   ( ) ( ) ( ) ( ) ( )FGGFGFFGGF

−+−=  

(j)    ( ) ( ) ( )GFFGGF


−=  

(k)   ff 2=  

(ℓ)    FF 2


=   [i.e. ( )F


= ] 

(m)  ( )FF 22

=  

(n)   ( )FF 22
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Although some of the expressions in Eq. 2.16 look a bit daunting, we will show in the 
following chapters how some of these identities can be put to good use in the derivation 
and evolution of the governing equations of fluid mechanics. 
 
2.4   Review of Line and Surface Integral Theorems 
 
There are several theorems of vector calculus that prove very useful in either developing 
or simplifying the equations of fluid mechanics, many of which reflect the use of the  
operator in some form.  Most of these evolve from the divergence theorem of Gauss, 
which demonstrates a remarkable equivalence between the integration of a vector 
property over a surface and the volume integral of the divergence of the property over the 
volume encompassed by the surface. Here, we expand the functional applications of 
Gauss’ theorem to include not only the divergence, but also the curl of a vector field, and 
the gradient of a scalar field as well.  Note that we will not develop a mathematical proof 
of these theorems, but will simply state and explain their use, and the applicability to the 
equations of fluid mechanics.  For further background on the development, and the 
application of these theorems, one is referred to the very useful book by Schey (1997) or 
any good book on vector calculus. 
 

2.4.1  The Gauss Divergence Theorem 
 

The Gauss Divergence Theorem states that if F


 is any continuously differentiable vector 
field, extending over a volume, , which is encompassed by a surface area, A (e.g. the 
velocity field inside of a ball-shaped spatial volume), then: 
 

A A
F d n FdA F dAˆ( )


  =  =        (2.17) 

 

 (where n̂  is the outward normal unit vector to the surface, such thatdA dA n̂= ) 
 

Recalling that the divergence of a vector field gives the degree of expansion (or 
contraction) at a point, the left side of Eq. 2.17 is the summation of the divergence of the 
vector field within a specified volume.  In fluid mechanics one construes this as the 
change in the velocity field within a bounded volume (again, think of the volume 
enclosed by a ball-shaped region).  This expansion (or contraction) is equivalent to the 
right side of Eq. 2.17, which represents the “flux” of a vector field across the surface 
surrounding the volume in question.  The flux is simply the component of the vector field 
that crosses the bounding surface (e.g. the component of a velocity field that is normal to 
the surface).  For example, if a fluid is flowing in or out of our envisioned ball, and thus 
crossing the ball’s surface, then there is a flux of velocity in or out of and across the 
surface.  On the other hand, if a fluid (or some component of the velocity vector) flows 

https://en.wikipedia.org/wiki/Divergence_theorem
https://en.wikipedia.org/wiki/Divergence_theorem


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 2 
 

 33 

parallel to the surface bounding the ball, there will be no flux of the velocity (or that 
component) across the surface. 
 
What this divergence theorem describes is essentially the principle of conservation of 
mass in fluid mechanics.  As we will show in Chapter 5, this theorem also proves quite 
useful in demonstrating the coincidence between the governing integral equations of 
fluid mechanics for a control volume, and the comparable point-wise differential 
equations. 
 

2.4.2  The Curl Theorem 
   
This is a variation on the divergence theorem, in essence using the same mathematical 

arguments that Gauss employed, but for the curl of F


instead of the divergence.  This 
yields the following relationship, which is similar to Stokes’ theorem for a bounded 
surface, which we will discuss below in Section 2.4.4.   
   

A A

F d n FdA F dAˆ( )

  =  = −     (2.18) 

Equation 2.18 equates the summation of the curl of F


 within a fixed volume to the 
negative of the surface integral of the cross product of the vector field over the bounding 
surface.  At first glance, Eq.2.18 seems like a rather complicated expression, with unclear 
physical relevance.  However, if one thinks in terms of a velocity vector field, the left 
hand term of Eq. 2.18 reflects the summation of the rotational behavior within a defined 
volume, which is proportional (for incompressible flows) to the angular momentum of 
the fluid within that volume.  This equates to the right hand term of Eq. 2.18, which is the 
summation of the component of the velocity that acts parallel to the bounding surface 

surrounding the fluid volume (recall that Ad


always points out and perpendicular to the 

bounding surface, thus the cross product AdF


 will only include that component of F


oriented parallel to the surface).  Equation 2.18 proves to be a particularly useful 
relationship for deriving and simplifying the equations of fluid mechanics that relate to 
the vorticity and circulation of a fluid, which we discuss in Chapters 10 and 11. 
 

2.4.3  The Gradient Theorem 
 
This is yet a further variation on the divergence theorem, again using the same 
mathematical arguments, but for the gradient of a continuously differentiable scalar 
function, , giving: 
 

A A

d n dA dAˆ( )

  =  =     (2.19) 
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The left side of Eq. 2.19 is the summation of the gradient of  over a fixed volume.  
Recalling that the gradient reflects the degree and direction of change of a scalar 
property, the left side reflects a summation of the total spatial change of the property  
over a fixed volume.  The right side of Eq. 2.19 is the summation of the scalar  acting on 
the surface bounding the volume .  As we will show in Chapter 7, Eq. 2.19 proves 
particularly useful for assessing the behavior of the scalar properties of height and 
pressure in the derivation of the Bernoulli equation for an inviscid fluid.   
 
The previous three relationships are quite remarkable in that they provide vehicles for 
assessing the behavior of a vector field within a fixed volume by simply assessing certain 
characteristics of that vector field at the bounding surface of the volume.  One might be 
tempted to envision a similar diagnostic technique that would assess the internal behavior 
of the human body, or a house, simply by assessing their external characteristics.  
However, we (humans), and our houses, are not continuously differentiable, 
homogeneous material, but are composed of a number of different media.  So such an 
approach, while attractive, won’t submit to the surface integral approach.  One needs an 
identifiable, contiguous medium to apply these volume-to-surface theorems. 
 

2.4.4  Stokes’ Theorem 
 

 We often don’t need to consider the behavior for a volume, but are only interested in the 
behavior over a two-dimensional surface bounded by a continuous curve, such as a circle.  
Such a situation is addressed by Stokes’ Theorem, which equates the integral of a 

continuously differentiable vector field F


around a closed curve C as equal to the integral 

of the normal component of the curl of F


over the surface bounded by C, or: 
 

A A C

n̂ ( F)dA ( F) dA F ds          (2.20) 

 

Here, ds  is a differential line element lying along a curve C, and n̂  is a unit vector 
normal to the surface.  

 
 

Stokes’ theorem is an important relationship in fluid mechanics, and one with which we 
should be comfortable.  The equivalency of Eq. 2.20 can be demonstrated relatively 
easily, as we do in the following example. 
 

Example:  Demonstration of Stokes’ Theorem 

n̂
A 

C 

ds

https://en.wikipedia.org/wiki/Stokes'_theorem
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y 

x xo 

yo Let’s demonstrate how Stokes’ Theorem applies to an 
arbitrary vector field in both Cartesian and cylindrical  
coordinates.  
 
Assume an arbitrary vector field given by ˆ ˆF yi xj   .  By comparison of both 

integrals, show that Stokes’ Theorem  ( i.e.  
C A

F ds F dA     ) holds over a 

rectangular surface with corners at          0 0 0 0x, y 0,0 , x ,0 , x , y , and 0, y , as 

shown.  
 

First, we examine a line integral around the rectangular surface, which must be 
integrated in a counter-clockwise direction (according to the right-hand rule).  To 
perform this integration, we break the line integral into four integrals of the lines 
bounding the rectangle.  Each of these line integrals must be integrated in the proper 
direction (shown on the figure), and between the appropriate starting and terminating 
integration limits.  Finally, we note that ˆ ˆds dxi dyj  .  However, when integrating in 
one coordinate direction, we only use the differential element corresponding to that 

coordinate (e.g. when integrating in the x-direction, we only use ˆds dxi ). 
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x x y yy y x 0

ˆ ˆ ˆ ˆ ˆ ˆF ds yi xj dxi yi xj dyj

ˆ ˆ ˆ ˆ ˆ ˆyi xj dxi yi xj dyj
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Now examine the surface integral, where  
 

 y xF yF xˆ ˆF k k 1 1 2
x y x y
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x x y y
x y

o o0 0A A
x 0 y 0

ˆ ˆF dA 2 k dxdyk 2dxdy 2x y 2x y
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Thus, by inspection and comparison, ( )
C A

F ds F dA =    , and Stokes’ theorem 

holds. 
 

But what about demonstrating Stokes’ hypothesis in cylindrical coordinates?  Let’s 
assume an arbitrary vector field given in cylindrical coordinates by: 
 

 r r r r
ˆ ˆ ˆ ˆF r sin i r cos i F i F i =  +  = +   

 

Again by comparison of both integrals, show that Stokes’ Theorem ( i.e. 

( )
C A

F ds F dA =    ) holds over a circle of radius R, centered on the origin., as 

shown.  
 

Again, we first examine the line integral, which again 
must be integrated in a counter-clockwise direction 
(according to right-hand rule).  Since the radius of the 
circle constitutes the boundary, this means that the 
differential element acts tangential to the circle 
boundary in the θ direction, or ˆds Rd i=  . 
 

( )
2 2

22 2 2
r 0C

0 0

ˆ ˆ ˆF ds R sin i R cos i Rd i R cos d R sin R (0 0) 0
=  = 

= 

  =
= =

 =  +    =   =  = − =    

Now examine the area integral, where Eq. 2.12 gives: 
 

( )FF F F F1 1z r z ri i rF ir zr rz z r r
F ˆ ˆ ˆ



   
= − + − + −

     

     
     

    
 

 

( ) ( ) ( )
 

2
r

r cosrF r sinF1 1 1ˆ ˆ ˆ ˆF i i 2r cos r cos i cos i
r r r r r



   

     
  = − = − = −  =  

       

 

 

( ) ( )
Rr R 2 2 2

2
z z 0A A

r 0 0 0

r Rˆ ˆF dA cos i rd dr i rdr cos d sin 0 0 0
2 2

= = 


= =

  =    =   =  = − =     

 

Thus, again by inspection and comparison, ( )
C A

F ds F dA =    , and Stokes’ 

theorem holds. 
 

Note that we might have tried a vector field like r r r
ˆ ˆ ˆ ˆF r i r i F i F i  =  +  = + .  However, 

you would find (try this) that 2 2

C
F ds 2 R =  , but ( ) 2 2 2

A
F dA 2 R R  =  − .  

Why aren’t these the same?  Because the field is not continuous (a condition for 

R 
 r 

 

0 0 0 0 
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Stokes’ theorem to apply), since θ = 0 and θ = 2 occupy the same location, but are 
not identical. 

 

If one thinks of the vector field, F


, as a velocity field, V


, then the curl of V


 will give 
the angular rotation or vorticity (see section 4.3).  So Eq. 2.20 provides a method to relate 
the collective vorticity over an area (which we will learn in Chapter 8 is the circulation, 
or total rotational strength of an area of flow) to the line integral of the velocity around 
the periphery of that area.  Equation 2.20 is again a remarkable relationship, since it 
implies that we can assess the rotational strength of a vortical flow by simply measuring 
the tangential component of velocity at the edge of a region.  This allows (for example) 
one to assess the “strength” of a tornado or a hurricane by appropriate measurements at 
the edges of those huge cyclonically rotating regions (of course, measurement of those 
edge velocities is still no easy process).  We will examine and make broad use of the 
Stokes’ theorem when we derive various vorticity and circulation theorems in Chapters 8, 
10, and 11. 
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Study Problems 
 
1.  Using the basic concept of a vector derivative, as done in section 2.2.1, show how the 

 non-zero partial derivative for r
i i
θ

ˆ ˆ


= −


.   

2. If  is a scalar function, show by expansion in Cartesian coordinates that the following hold: 
 

 a.  0=  
 b.    is normal to a line of constant  
 

3. For a vector function V ui vj wkˆ ˆ ˆ= + + , show by expansion in Cartesian coordinates that the 
following hold: 
 

a. ( )V 0  =  

b. ( ) ( )
2VV V V V

2
 

 =   + 
 

 

c. ( )V V  is normal to V  
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4. In cylindrical coordinates 

  
z

î
r
1î

r
î zr




+




+




= 

 

 and  
  ( )z,,r =  and r r z zV v i v i v iˆ ˆ ˆ

 
= + +  

a. Determine an expanded expression for   

b. Determine an expanded expression for V  
 

5. If  jxiyF 2ˆˆ +=


  and f = x + y2, by calculation of the left and right functions in the equations, 
show that the following are valid: 

 

 a. ( ) ( ) FFF


2−=  
b. ( ) ( ) ( ) FfFfFf


+=  

 
6. If  += irirF r

ˆˆ
  and f = r + r, by calculation of both the left and right functions in the 

equation, show that the following is valid: 
 

( ) ( ) ( ) FfFfFf


+=  
 

7. If jxiyF 2ˆˆ +=


 and jxyiyG 2 ˆˆ +=


, by calculation of both the left and right functions in the 
equation, show that the following is valid: 

 

( ) ( ) ( )GFFGGF


−=  
 

8. If jxixyF 2ˆˆ +=


, determine F


 , and then show that the following is valid: 
 

 ( ) 0F =


 
 

9. If += irirF 2
r

ˆˆ
, determine F


 , and then show that the following is valid: 

 

 ( ) 0F =


 
 
10.  Let 2ˆ ˆV yi x j= + .  By comparison of both integrals, show that Stoke's Theorem  

(i.e. ( )
C A

V ds V dA =    ) holds over a square with corners at (x,y) = (1,1),  

(1,-1), (-1,-1), and (-1,1). 
 
11. Let ĵxyîyV 2 +=


.  By comparison of both integrals, show that Stoke's Theorem  

 (i.e. ( )
C A

V ds V dA =    ) holds over a square with corners at  (x,y) = (2,2), (2,3), 

(3,3), and (3,2). 
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12. Let r
ˆ ˆV r cos i r sin i=  +  .  By comparison of both integrals, show that Stoke's Theorem  

 (i.e. ( )
C A

V ds V dA =    ) holds over a circle of r = R. 

 
13. Let r

ˆ ˆV r sin i r cos i=  +  .  By comparison of both integrals, show that Stoke's Theorem 

  (i.e. ( )
C A

V ds V dA =    ) holds over a circle of r = R. 

 
14. Let 2 2

r̂
ˆV r cos i r sin i=  +  .  By comparison of both integrals, show that Stoke's Theorem  

 (i.e. ( )
C A

V ds V dA =    ) holds over a circle of r = R. 

 
15. Let r

ˆ ˆV r sin i r cos i=  +  .  By comparison of both integrals, show that Stoke's Theorem  

 (i.e. ( )
C A

V ds V dA =    ) holds over a quarter circle of r = R 

from 0 to
2


 =  = .  Note: be sure to do you follow the boundary in 

three segments correctly --- (1) r = 0 to R for 0 = , 

 (2) 0 to
2


 =  =  for r = R, and (3) r = R to 0 for 
2


 = . 

 
 

R 
 

r 
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Chapter 3 
 

Kinematics, Flow Lines, and the Substantial Derivative 

Contents 
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3.3  The Substantial (or Material) Derivative  ........................................................................... 59 
 
3.4  The Substantial Derivative: Cartesian and Cylindrical Coordinates  ................................... 62 
 3.4.1  Substantial Derivative, Cartesian Coordinates  ......................................................... 62 
 3.4.2  Total Acceleration, Cartesian Coordinates  ............................................................... 63 
 3.4.3  Substantial Derivative, Cylindrical Coordinates   ...................................................... 63 
 3.4.4  Total Acceleration, Cylindrical Coordinates  ............................................................. 63 

 
 
The assessment and prediction of the impact and consequences of fluid motion require 
that we develop convenient physical descriptions that allow the effective modeling, 
mathematical formulation, and analysis of fluid behavior.  This is simplified by 
employing the concept of a fluid as a continuum, wherein fluid properties are considered 
to be distributed smoothly throughout the space of consideration. This generally implies 
that although a fluid is a collection of molecules, for essentially all cases of practical 
interest these molecular collections will behave as a continuous medium (a gas at 
extremely low pressures is a particular exception).  Thus, when examining a fluid 
property (e.g. density), we assume that the property displays no discontinuous behavior 
within the region of consideration.  Another way of putting this is that the spatial 
derivatives of any fluid property (i.e. the change in a property in any direction) will 
always have a finite value.  This does not mean that a property cannot undergo large 
changes, but just that it cannot undergo a discontinuous change. 
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To approach the modeling and eventual analysis of fluid behavior requires that we be 
able to spatially describe fluid properties within a region of interest (e.g. within a pipe or 
over an airplane wing).  We must also be able to account for changes with time (if the 
flow behaves in a time-dependent manner), such as the increase in the velocity of a water 
stream during a hard rain.  Since in this book we generally focus on the behavior of 
incompressible fluids, the primary properties of interest will be velocity and pressure, 
with velocity being the more problematic property to deal with appropriately.  Of 
particular interest is how we properly account for fluid acceleration, since acceleration is 
a key property in Newton’s second law of motion.  Our ultimate objective is to develop a 
form of Newton’s second law that can describe the behavior of a continuously distributed 
fluid.  However, application of Newton’s second law to a fluid creates a fundamental 
problem, since this requires that we can somehow collectively identify and follow the 
acceleration/deceleration of all the fluid particles comprising a fluid, and likewise the 
collective forces acting on those particles.  If we employ the Lagrangian formulations 
utilized for assessing the physics of discrete particles, we could end up with a particularly 
difficult bookkeeping process, since a Lagrangian approach considers the change in the 
spatial position of particular particles as a function of time alone.  However, by taking a 
more global point of view, we can exploit what we term a field concept, where we view 
the collective motion of all particles as a continuum within a specified region, or field. 
  
3.1 Acceleration of a Fluid Particle in a Velocity Field 
 
The use of a field concept is generally termed an Eulerian description, wherein we 
assume that a fluid property can be described as a function of its position in space (x, y, z 
in Cartesian coordinates) and its evolution with time (t).  Thus, in a Cartesian system we 
would describe a velocity field as )t,z,y,x(VV


= , where )t,z,y,x(V


 is the Eulerian 

velocity, as illustrated in figure 3.1.  This is somewhat akin to watching a river flow by 
through a telescope focused on a single point in the river; the speed with which the water 
passes across the telescope’s field of view is dependent upon the location that is viewed 
by the telescope, and the specific time when we make our observation.   
 
 
 
 
 
 
 
 

Figure 3.1 An Eulerian velocity field 
 

y 

x 

z 

( )t,z,y,xV
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In contrast, a Lagrangian description focuses on the motion of one specific particle 
within the velocity field, and tracks the positional change of that particle as a function of 
time.  This is like watching a small block of wood float by on that same river, and 
tracking the position of that block of wood from an initial instant of time onward. 
 
So, to summarize the difference between an Eulerian and Lagrangian description:   
   

Eulerian – Specifies the velocity field (i.e. velocity behavior in space and time). 
 This approach specifies how particles passing through a specified 

location will behave (think of it as viewing a series of particles passing 
by a small observation window). 

 
Lagrangian – Specifies how an individual particle will move through space as a 

function of time (like following a leaf in a wind storm). 
 

Now, Newton’s second law requires a balance between: (1) the forces acting on a 
particle, and (2) the momentum change of the particle, which is proportional to its 
acceleration.  Our problem is how do we mathematically relate the local motion of a fluid 
particle to the broader velocity field, of which the particle is a part, without having to 
follow all of the individual particles?  Let’s approach this by assuming that at any instant 
of time, t, the location of a particle can be represented (here we use Cartesian 

coordinates) by a position vector, kzjyixr ˆˆˆ ++=


, as shown in figure 3.2.  Note that 
although we perform this analysis in Cartesian coordinates, the result applies equally well 
in any coordinate system. 
 

 
    )z,y,x(rr 

=  

    k̂wĵvîu)t,z,y,x(V ++=


 (Cartesian) 
   
  
    
 

Figure 3.2   Representation of the Lagrangian change in position of a particle within 
an Eulerian field. 

 
Note that for the Cartesian coordinate system shown in figure 3.2, the components of the 
velocity in the x, y, and z direction are generally designated u, v, and w.  Now, as the 
particle moves within the velocity field over an infinitesimal amount of time, t, it attains 
a new position within the velocity field given by: 
 

y 

x 

z 

particle at time, t 

particle at  
time, t+dt 

particle 
path 

r rdr 
+
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( ) ( ) ( )kzzjyyixxrrr ˆˆˆ +++++=+=
  

 

where r is an infinitesimal position change that occurs over the time change t. 
 
Assuming that this positional change takes place due to motion of the particle within the 
velocity field, then the velocity of the particle, pV


, at the initial time t and the final time 

t+t is given by: 
 

 )t,z,y,x(VV
tp


=  at time t, 

and  
 )tt,zz,yy,xx(VV

dttp ++++=
+


  at time tt + . 

 

To establish the mathematical change in pV


over this time change, we can apply the chain 

rule of differential calculus, which allows us to express pV


  as:  
 

t
t
Vz

z
Vy

y
Vx

x
VVVV ppptpttpp 




+




+




+




=−=

+




 

 

where xp, yp, and zp are the differential changes in the relative coordinate position of 
the particle over the differential time change, t.  We recognize that the differential 
displacement components of the particle are given by the product of the local velocity 
component and the differential time change (i.e.  xp = ut, yp = vt, and zp = wt), 
since the particle will move at the local Eulerian velocity at its specified location within 
the velocity field.  Thus, we can write the expression for pV


 as: 

 

t
t
Vw

z
Vv

y
Vu

x
Vt

t
Vtw

z
Vtv

y
Vtu

x
VVp 

















+




+




+




=




+




+




+




=




 

 

Now, we divide through by t and take the limit of this differential velocity change, 
t/Vp 


, as t → 0.  The result is the total acceleration for the particle, pa , moving 

within the Eulerian velocity field, )t,z,y,x(V


: 
 

t
Vw

z
Vv

y
Vu

x
V

t
V

a p

0tp



+




+




+




=




=

→


 lim  

 

We reflect this particle acceleration by DtVDa p


= , where the derivative operator,  
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D( )/Dt, is known as the “total”, “substantial’, or “material” derivative (more on this 
later).  Thus, we write: 
 

 
t
V

z
Vw

y
Vv

x
Vu

Dt
VDa p




+




+




+




==


  (3.1) 

 
 
 
For the present case, we are concerned with the changes in the particle velocity itself.  
However, this total derivative operator, D( )/Dt, can also be used to mathematically 
establish the temporal changes in any other property associated with a material particle 
moving within an Eulerian velocity field, ),,,( tzyxV


, such as density, temperature, or 

position, as we will discuss in Section 3.3.   
 
Note that this particle acceleration within a velocity field is comprised of two different 
types of velocity change.  The first of these is a local rate of change, which is a result of a 
local temporal change in velocity taking place at the point of interest.  For example, if the 
velocity of a river increases with time at a specific point, that would cause a local 
acceleration of the flow at that point.  The second type of acceleration is the result of the 
advection (transport) of a particle through a spatially-varying velocity field.  As a particle 
is transported through a region of velocity change, a corresponding change in the velocity 
of the particle will occur. This transport-based acceleration is known as advective 
acceleration, since the velocity of the particle will change due to the advection 
(movement) of the particle through a spatially varying velocity field.  Using our river 
example again, if the banks of a river contract inward, such that the velocity of the river 
increases as it flows downstream, then a particle can be viewed to be accelerating at a 
point due to this advective increase in velocity.  Clearly, the total acceleration of a 
particle is the sum of both the local, temporal changes in velocity and the changes in 
velocity due to advection through a spatially-varying velocity field.   
 

t
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==

   (3.2) 

 

The acceleration of a particle, as derived above, is a vector derivative, comprised of three 
separate components of acceleration, as shown in Eq. 3.2 (for Cartesian coordinates). 
Equation 3.2 gives the components of acceleration for a particle at an arbitrary position 
within the Eulerian velocity field.  This means that Eq. 3.2 must also represent the 

Total acceleration 
of a particle 

Advective 
acceleration  

Local 
acceleration  
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Lagrangian acceleration of that particular particle, as determined by means of an 
Eulerian analysis.  This is significant since this provides a clear connection between 
Newton’s second law for Lagrangian particle mechanics and the acceleration of all fluid 
particles within a continuously distributed fluid.  This connection is important in making 
use of Newton’s second law to derive the governing differential equation of momentum 
for fluid motion.  However, let’s first assure ourselves that the acceleration reflected by 
the Eulerian equations derived above is truly identical to the comparable Lagrangian 
acceleration of an arbitrary particle. 
   

Example:   Here we examine a relatively simple Eulerian flow field, from which we 
will determine the Lagrangian velocity and acceleration for a specific particle moving 
within that flow field.  We then use this information to make a comparison of:  (1) the 
Lagrangian acceleration of that particular particle when it passes through a specified 
location within the velocity field, with (2) the general Eulerian acceleration at the 
same specified location within the velocity field.   
 
Let’s first assume a simple two-dimensional Eulerian velocity field given by

ĵ)y3(î)tx3(V −++=


, with x and y-direction velocity components t3xuE +=  and 
3yvE −= , respectively.  Here the E subscript indicates that these are Eulerian 

velocity components.  Now, we use this velocity field information to establish the 
following Lagrangian information for the movement of a particle within the velocity 
field: 
 

 a) 




=
=

),,(
),,(
tyxfy
tyxfx

initinit2L

initinit1L  for  
2yy
1xx

initL

initL

==
==

 @ 0t = ; 

  
 
    

 b) LL vandu ; 
 

 c) 
LL yx a  ,a ;  

and confirm that 

d) 
ELEL yyxx aa  and aa == . 

 

Here the L subscript indicates the Lagrangian expression for velocity or acceleration.  
Note also that ),,( tyxf initinit1 and ),,( tyxf initinit2 are the Lagrangian functions 
describing the x and y location of a particular particle that started at an initial position 

initL xx
init
= and initL yy

init
=  at an initial time of t = 0.  To derive the Lagrangian 

behavior of the particle within the velocity field, we assume that whenever a particle 

Equation for the path 
of the particle  

Initial starting point of 
the particle  
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is at a particular position within the field, it moves at the velocity for that position, as 
described by the velocity field, and thus EL uu =  and EL vv = . 
 

Solution:  
 

Part a)    Let  L
L E E L L L

dxu u x y t u x y t 3x t
dt

( , , ) ( , , )= = = = +  

Thus, L
L

dx 3x t
dt

− =  , which is a differential equation for Lx .  

 
To solve this differential equation, we need to evaluate both the homogeneous and the 
particular solutions of the equation, since the equation is linear with constant 
coefficients, but is inhomogeneous.  Therefore, we assume that the total solution is a 
linear combination of the homogeneous and the particular solutions of the equation, 
i.e. 
  LTotal Lh Lpx x x= +   
 

Thus, for the homogeneous solution:  
 

 3tLh Lh
Lh Lh 1

Lh

dx dx3x 0    3dt x C e
dt x

− =  =  =  

Here, C1 is an undetermined integration constant. 
 
Considering the particular solution, we assume a general solution of the form   

Lpx A Bt= +  and substitute this first-order polynomial into the differential equation 

to determine the coefficients A and B, which yields: 
 

  Lp
Lp

B 1B 3A 0 Adx 3 93x B 3 A Bt t
dt 13B 1 B

3

( ) ( )

 − =  = = −− = − + =  
 − =  = −


 

 
 

 Thus,   Lp
1 1x t
9 3

= − −   

 Now, summing Lhx  and Lpx  to get L Totalx , gives: 

  3t
L LTotal 1

1 1x  x C e t
9 3

= = − −  

 

Applying the initial condition, 0tt  a  1xf init1 === , we determine C1: 

Equating coefficients of 
like powers of t  

Lagrangian position of a particle 
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 3 0
L init 1 1 1

1 1 1 10x t 0 x 1 C e 0 C C
9 3 9 9

( )( ) ( )= = = = − − = −  =   

      
Thus, the Lagrangian x-position of a particle passing through x = 1, y = 2, @ t = 0 is: 
 

 
 

Similarly, to determine the function f2, we set:  
 

 2LLLE
2L

L f3y3)t,y,x(v
dt
df

dt
dyv −=−====     (a homogeneous equation) 

 

 So,   t3
22

2

2 eCfdt3
f
df −=−=       

   

Thus, for the initial condition L inity y 2 at t 0= = = : 
 

 3 0
L 2 2y 2 C e C 2( )−= =  =  

and, 
  
     
 
 

This is the y-location for of a particle passing through x = 1, y = 2, @ t = 0.  Lx  and

Ly  now give the Lagrangian location of that particular particle at any time t > 0. 
 
Now, using the solutions for Lx  and Ly , we differentiate with respect to t to obtain 
the Lagrangian velocity and acceleration: 
 

Part b): )1e10(
3
1

3
1e

3
10

dt
dxu t3t3L

L −=−==  

  t3L
L e6

dt
dyv −−==   

Part c) t3L
xL e10

dt
dua ==   

  t3L
yL e18

dt
dva −==  

 

Part d) The Eulerian acceleration we obtain from Eq. 3.2, the total acceleration, in  
         terms of the general position of a particle within the velocity field as: 
 

t
3
1

9
1e

9
10x t3

L −−=  

t3
L e2y −=  
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Now, since Lx  and Ly  represent the sequence of positions of a particular particle as 

it moves through the Eulerian field, we can now substitute the functions for Lx and 

Ly  into the Eulerian acceleration equations, to give us the comparable acceleration 
expressions for that particular particle as it passes through the velocity field. 
 

 
3t

xE

3t
xL

10 1 1a 9 e t 3t 1
9 9 3

10e a and

 = − − + + 
 

= =

 

  

 
3t 3t

yE yLa 9 2e 18e a( )− −= = =  

 

Not surprisingly, the Lagrangian and Eulerian expressions for the acceleration of the 
particle reduce to identical values, which illustrates that the Eulerian expressions apply 
not only for the particular Lagrangian particle we assessed in this example, but 
generically for any particle initiating from any position at any time.  You can further 
demonstrate this equivalency by assuming a different initial position (e.g. xinit, yinit = 2, 2) 
and/or a different initial time (and thus a different Lagrangian particle), and show that for 
all particles LE aa 

= .  Note that often the velocity component expressions may depend on 
more than one variable, creating a series of coupled differential equations.  To determine 
the Lagrangian behavior of these sets of equations will generally require the use of 
Laplace transforms, or (for non-linear cases) numerical solutions. 
 

Thus, the Total derivative of Eqs. 3.1 and 3.2 now provides us with a tool with which we 
can accurately assess the Lagrangian acceleration of any and all fluid particles within an 
Eulerian flow field.  We will put this tool to good use in Chapter 5, where we derive the 
governing differential equations of fluid motion. 
 
3.2 Flow Lines 
 

In the study of fluid mechanics, we often gain important information regarding a fluid 
flow by experimental observation techniques involving the introduction of a visible 
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marker into the fluid, such as the injection of dye into water or smoke into air.  We can 
also make good use of ad hoc observations of some natural contaminant in a flow, such 
as wind-blown dust or suspended dirt in a water flow.  Additionally, we can develop 
physical insight into the voluminous results of large computational studies by 
establishing the behavior of a particular type of flow line, known as a stream line, which 
illustrates the directional flow patterns within a flow at a particular time.  In this section, 
we examine three different types of descriptor flow lines, termed path lines, streak lines, 
and stream lines, all of which can help us both visualize and assess flow behavior.   
 
The first descriptor line we consider is a path line.  As the name implies, this is a line 
traced out by a selected particle moving within a flow over a given time interval, thus 
visualizing the path that the particle follows.  Note that since we follow an individual 
particle when describing a particular path line, the Lagrangian position functions for the 
particle, Lx  and Ly , (like we derived in the example in Section 3.1) describe the  series 
of locations comprising a path line.  A rough example of a path line would be a line 
connecting the temporal sequence of locations that a small piece of wood passes through 
as it floats along a river.  We could capture such a line if we were to take a photographic 
time exposure of the block of wood moving with the current of a river, or of any other 
easily visible object moving within a velocity field. 
 
The second descriptor line we find useful is a streak line.  Here, the name of this line is 
not as clearly descriptive of its characteristics, and it takes a bit of study to appreciate 
what it represents.   A streak line describes the present position of all particles that 
initially passed through a specific point at some earlier point in time.  So, if we can 
imagine coloring each fluid particle that passes through some fixed location, and then 
observing the trail of colored particles that emanate away from that point in space, this 
trail of colored particles will form a streak line.   A reasonable approximation of such a 
line can be generated by injecting dye into water or smoke into air at a fixed point (e.g. 
injection of dye via a hypodermic needle into a water flow).  Note, however, that to 
properly illustrate a true streak line, such injection processes need to be done very 
carefully to avoid disturbing the original flow by the injection process.   
 
In order to obtain a mathematical description of a streak line within a given velocity field, 
we have to determine a series of Lagrangian functions for particles that initiate at the 
same position in space, but over a sequence of initiation times.  Thus, we will need to 
generate a set of Lagrangian functions, Lx (xinit, yinit, tp, ti) and Ly ( xinit, yinit, tp, ti).  Here 
xinit and yinit are the initial x and y locations at particle insertion, ti is the time of the 
insertion of the particle at the initial position (xinit, yinit), and tp is the present time of 
interest (where tp > ti).  Thus, by varying ti, we can determine the present location of all 
those particles at some arbitrary later time, tp. 
 

http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
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Our final descriptor line is a streamline.  This is a line within a fluid for which the fluid 
particles lying along the line all have velocity vectors that are tangent to the line, as 
shown in two-dimensions in figure 3.3.  This defines an interesting line of constraint.  
Since the velocity is always tangent to a streamline, then there can be no flow across 
(perpendicular to) a streamline.  This is a very important property of a streamline --- one 
that we will exploit when dealing with inviscid (non-viscous) flows, and use to help 
simplify the governing equations of fluid mechanics.   
 
 
 
 
 
 
 
 
 

Figure 3.3 Illustration of the characteristics of a streamline 
 
Additionally, for a two-dimensional, incompressible flow, the tangential velocity 
constraint implies that the flowrate between two adjacent streamlines must always 
remain constant.  Thus, the spacing between streamlines is a general indicator of flow 
acceleration or deceleration, with the velocity of the flow between two adjacent 
streamlines increasing as the streamlines converge, and decreasing as streamlines 
diverge.  This is a bit of a simplistic interpretation, since we will see that there can be 
strong velocity variations between streamlines, particularly when they are curved.  
However, the convergence or divergence of streamlines provides a good visual indication 
of strong changes in the local velocity field, and as such can be used for effective 
qualitative interpretation of local flow behavior. 
 
Now, let’s examine how we can develop a mathematical equation for a streamline.  
Figure 3.3 is a sketch of a typical streamline relative to a Cartesian coordinate system.  
On the line, we have indicated a velocity vector that is tangent to the stream line.  
Additionally, we also envision a differential element along the streamline of length

k̂dzĵdyîdxsd ++=


, such that sd is also tangent to the streamline. 
 

Now, if V


and sd are both tangent to the streamline, then they are also parallel to each 
other.  Recalling that the cross product of two parallel vectors is zero, we can write:  
 

0)vdxudy(k̂)udzwdx(ĵ)wdyvdz(î
dzdydx
wvu
k̂ĵî

0sdV =−+−+−=
















==


 

y 

x 

z 
Streamline 

differential element along streamline of 
length k̂dzĵdyîdxsd ++=


  

sd V
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Since each component of this vector equation must be identically zero, we reorder each 
component to give three governing differential equations for a streamline given by: 
 

dz w dx u dy v ;   ;   
dy v dz w dx u

= = =  (3.3a) 

 

For a three-dimensional flow, we would have to necessarily satisfy all three of these 
equations.  However, if we consider only a two-dimensional flow field (depending only 
on x and y), the equation for a surface lying on the z-plane, vdxudy = , is the only 
relevant equation, thus: 
 

u
v

dx
dy

=    (3.3b) 

 

Equation 3.3b is the differential equation for a two-dimensional streamline in x and y, 
lying on the z-plane.  Note that this is also the slope of the streamline, which is the ratio 
of the respective velocity components. 
 
In cylindrical coordinates, the cross product of V  and ds is given by: 
 

( ) ( )
( ) ( ) ( )dr

ˆ ˆ ˆ ˆ ˆ ˆV ds v i v i v i dri rd i dzir r z z r z

ˆ ˆ ˆv dz v rd i v v dz i v rd v dr iz r z r r z



−

 = + + +  +
  

= −  + +  −
  

  

 

So, each component for a stream line in cylindrical coordinates can be rewritten as three 
differential equations: 
 

v v vdz dr drz r r; ;
rd v dz v rd vz

= = =
 

 

 (3.4a)

  

Again, for a three-dimensional flow, one has to satisfy all three of these equations.  
However, for a planar, two-dimensional flow field (depending only on r and θ), the 
equation for a surface on the z-plane, v rd v drr −


 , is the only relevant equation, which 

can be rewritten as: 
 

 
vdr r

rd v
=




 (3.4b) 

 

Equation 3.4b is the differential equation of a two-dimensional stream line in r and θ.  
Note that Eq. 3.4b is slightly different from Eq. 3.3b, since here the differential angular 
change, dθ, must operate on r to provide a linear differential displacement. 
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Path line passing  
through (x,y)=(1,1) 

3.2.1  Flow Line Examples: Steady Flow 
 

For the sake of example, consider a two-dimensional velocity field given by ĵyîxV −=


, 
such that u = x and v = -y.  Here, we will derive the appropriate equations for a path line, 
a streak line, and a stream line, all passing through the location x,y = 1,1.   
 

3.2.1.1  Path Line: Steady Flow 
 

To establish the path line for a particle inserted at point x,y = xinit,yinit = 1,1 at t = 0, we 
determine the Lagrangian functions ( )L L init initx x x y t, ,=  and ( )L L init inity y x y t, ,=  for the 

velocity field ĵyîxV −=


.  Using the same approach as employed in Section 3.1, and 
assuming that the velocity of a specific fluid particle at any position within the velocity 
field is the velocity specified for that position by the Eulerian velocity field function, we 
equate the following: 
 

 L
L L

dxu   x
dt

= =   L
L L

dyv y
dt

= = −  
 

or, rearranging and integrating gives:  
 

L

L
t

L 1

dx dt
x

x C e

=

=

 
L

L
t

L 2

y dt
y

y C e−

= −

=

 (3.5) 

 

Here Lx and Ly are the general Lagrangian functions for the x and y location of any 
arbitrary particle moving within this velocity field.  To establish the particular functions 
for the initial position,  x, y = xinit, yinit = 1, 1 at t = 0, we substitute into our equations for 

Lx  and Ly ,and solve for the arbitrary constants C1 and C2.  
 

 1CeC1x 1
0

1init === )(  0
init 2 2y 1 C e C 1( )−= =  =  

 
This gives the particular Lagrangian functions  
describing a path line for a fluid particle starting at  
position x, y = xinit, yinit = 1, 1 at t = 0 as: 
 

 t
L ex =   and   t

L ey −=  
 

A sketch of this path line is shown at the right. 
 
 
 
 

x 

y 

1 

2 

3 

1 2 3 
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3.2.1.2   Streak line: Steady Flow 
 

Here, we want to determine the location at the present time, t = tp, of all particles that 
passed through point x,y = xinit,yinit between a series of insertion times, t = ti , and the 
present time, t = tp, where tp   ti. 
 

Using the general Lagrangian functions for a path line, Eq. 3.5, that we developed in 
section 3.2.1.1, we set x,y = xinit,yinit at an arbitrary insertion time, ti.  Here ti is any time 
prior to the present time of interest, tp.  This develops a general equation for the location 
of all the particles inserted before t = tp.  Then, by determining the present location of all 
those particles at t = tp, we can connect all those particle locations to represent a streak 
line.   
 

Thus, for a particle inserted at location x, y = xinit, yinit at t = ti, the Lagrangian equation 
for a general particle location is given by:  
 

 it
L 1 initx C e x= =  it

L 2 inity C e y−= =  (3.6a) 
  

From Eq. 3.6a, we can solve for the constants, C1 and C2 as: 

 i

i

t
initt

init
1 ex

e
xC −==  i

i

t
initt

init
2 ey

e
yC == −  (3.6b) 

 

Note that C1 and C2 are constants for any arbitrary insertion time, ti.   Substituting the 
values of C1 and C2 into the equations 3.6a for Lx  and Ly , gives the general equations 

for the particle location at some later time, where t > ti.  We will term these sx  and sy , 
for the position of the streak particles.  Thus: 

 

 )( i

i

tt
init

tt
inits

ex
eexx

−

−

=
=  )( i

i

tt
init

tt
inits

ey
eeyy
−−

−

=
=  (3.7) 

 

In Eqs. 3.7,  xs, ys  give the x,y location of fluid particles comprising a streak line.  If we 
now set t = tp, Eq. 3.7 gives the present position of all the streak line particles, inserted at 
earlier times, ti, as: 
 

 )( ip tt
inits exx −=  and  )( ip tt

inits eyy −−=  (3.8) 
 
Eqs. 3.8 now give the present locations of all 
particles that passed through x = xinit, y = yinit  for 
any time t < tp.  To establish a streak line at the 
present time, tp, we simply plot the positions for a 
series of particles inserted at a series of earlier 
times, ti < tp.  An example streak line for  
(xinit, yinit) = (1, 1) is shown at the right. 
  

x 

y 

ti = tp 

ti< tp 
• 

• 

Example of a streakline composed 
of particles passing through a 
point (x, y) = (1, 1) for ti  ≤ tp. 
From ti<t<tp 
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3.2.1.3  Streamline: Steady Flow 
 
Applying Eq. 3.4 for a two-dimensional streamline to the velocity field ĵyîxV −=


, we 

can write:  
 

 

x
dx

y
dy

or
x
y

u
v

dx
dy

−=

−== ,
 

 

Integrating gives: 

 

.

lnlnlnln

constCxy
x
Cy

or
x
CCxy

===








=+−=

 

 

This is the general expression for any streamline within the specified velocity field.  To 
determine a particular streamline, we need to specify a point that we wish that streamline 
to pass through.  For example, if we want to identify the streamline that passes through 
the point x,y = 1,1, we substitute those position values into the general equation and solve 
for the streamline constant.  For this particular equation, we determine that C = 1.  Thus, 
xy = 1 is the equation of the streamline passing through    x,y = 1,1, and defines all other 
points that will lie along that particular streamline.  A sketch of this streamline is shown 
at the above right. 
 

3.2.2   Equivalence of Flow Lines in Steady Flow 
 
Note that for the example shown above, the path lines, streak lines, and streamlines are 
all identical lines.  One can demonstrate this in several ways.  For example, if the 
expressions determined in Section 3.2.1.1, 3.2.1.2, and 3.2.1.3 are used to determine the 
slope of the lines at any point along the line (e.g. at x,y = 1,1), the slopes of the lines will 
all be identical.  Alternatively, if the Lagrangian position functions for the path and streak 
lines are substituted into the streamline equation, they will identically satisfy the 
streamline equation.  Figure 3.4 shows plots of the path, streak, and stream lines 
determined in Section 3.2.1, which illustrates the coincidence of all flow lines for steady 
flow.  
 

Stream line, xy = 1 
passing through x, y = 1, 1 

x 

y 
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Figure 3.4 Plots of a path line, streak line (for tp =1, and 0 < ti <1), and streamline 

passing through x,y = 1,1 for velocity field ĵyîxV −=


. 
 

This coincidence of path, streak, and stream lines is characteristic of steady velocity 
fields, and is quite a useful experimental tool, since a photographic image of either a set 
of path lines (using a time exposure of discretely added visible particles to a flow) or 
streak lines (using a regular photograph of continuously injected material into a flow,  
such as dye or smoke) will reasonably represent the behavior of the corresponding 
streamline.  Figure 3.5 shows a photograph of the steady path/streak/stream lines 
visualized using smoke injection in a wind tunnel.   
 

 
 

Figure 3.5 Smoke path/streak/streamlines in steady flow over an automobile. 
 

Since the streamline pattern can provide valuable information regarding the pressure field 
of a fluid, as we will discuss in Chapter 7, such images can be quite helpful in designing 
and assessing geometric modifications to reduce internal energy losses in ducting or the 
drag on vehicles (i.e. thus the origin of the term “streamlining” of a car).  
 
However, if the velocity field is locally unsteady, path lines, streak lines, and streamlines 
cease to be coincident, and snap-shot or time-exposure images of particle or marker 
behavior cannot be used to establish streamline behavior.  An example of such an 
unsteady flow is the unsteady flow separation from the rear of a bluff body, such as a 
cylinder or truck traveling along a highway (which we discuss in Chapter 15).  While 
path, streak, and streamlines can be visualized or constructed (both experimentally and 
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computationally) for unsteady flows, one needs to be careful not to equate one type of 
descriptor line with another.  I illustrate the impact of unsteady flow on path, streak, and 
stream lines in the following section.  
 

3.2.3  Flow Line Examples: Unsteady Flow 
 
To illustrate the non-equivalence of flow lines in an unsteady flow, let's determine the 

path, streak, and stream lines for the velocity field jyitxV ˆˆ)( −+=


, with x and y-

direction velocity components txuE += and yvE −= .  Note that this is similar to the 
velocity field we considered in section 3.2.1, but with a linear time variation added to the 
x-direction velocity component.  We again consider the flow lines for particles passing 
through point x, y = xinit, yinit = 1, 1, at an initial time, t = 0. 
 

3.2.3.1  Path Line: Unsteady Flow 
 
Writing our path line equations similar to section 3.2.1.1, we have: 
 

 L
L L

dxu   x t
dt

= = +   L
L L

dyv y
dt

= = −  

 

Here, our Lu equation is inhomogeneous, so we again need to use a technique similar to 
our example in Section 3.1.  The result from the integration of these two equations is: 
 

 t
L 1x C e 1 t= − −  t

L 2y C e−=   (3.9) 
 

The Lx expression of Eq. 3.9 contains additional terms due to the time variation; the Ly  
expression is the same as we derived in Eq. 3.5 in Section 3.2.1.1.  For a particle released 
at t = 0 at location xinit, yinit = 1, 1 , C1 and C2 are: 
 

 2C1C1 11 =−=  and      1C2 =  
 

Thus, the corresponding path line expressions are: 
 

  t1e2x t
L −−=     and t

L ey −=   (3.10) 
 
 

3.2.3.2   Streak Line: Unsteady Flow 
 
Here, we again determine the location at the present time, t = tp, of all particles that 
passed through point xinit, yinit = 1, 1  between a series of insertion times, t = ti , and the 
present time, t = tp, where tp   ti. 
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Using our general Lagrangian functions for a path line, Eq. 3.9, from section 3.2.3.1, we 
set x, y = 1, 1 at an arbitrary insertion time, ti, where ti is again any time prior to the 
present time of interest, tp.  This develops a general equation for the location of all the 
particles inserted before t = tp.  By determining the present location of all those particles 
at t = tp, we can connect all those particle locations to represent a streak line.  Thus, for a 
particle inserted at location x, y = 1, 1 at t = ti, the Lagrangian equation for a general 
particle location is given by:  
 

 it
L 1 ix C e 1 t 1= − − =   it

L 2y C e 1−= =   (3.11) 
  

From Eq. 3.11, we can solve for the constants, C1 and C2 as: 
  

 ( ) it
i1 et2C −+=  it

2 eC =   
 

Since C1 and C2 are constants for any arbitrary insertion time, ti, we now substitute the 
values of C1 and C2 into the equations 3.9 for f1 and f2,  which gives us the general 
equations for the particle location at some later time, where t > ti.  We again will term 
these locations sx  and sy , for the position of the streak particles.  Thus: 
 

 
( )

( ) ( ) t1et2

t1eet2x

i

i

tt
i

tt
iS

−−+=

−−+=

−

−

     and    
( )i

i

tt

tt
S

e

eey

−−

−

=

=
   (3.12) 

 

In Eqs. 3.12,  SS yx ,  give the x,y location of fluid particles comprising a streak line.  If 
we now set t = tp in Eq. 3.12, this gives the present position of all the streak line particles, 
inserted at earlier times, ti, as: 
 

 ( ) ( )
p

tt
iS t1et2x ip −−+= −      and    ( )ip tt

S ey −−=    (3.13) 
 

Eqs. 3.13 now give the present locations of all particles that passed through x = 1, y = 1  

for any time t < tp.  To establish a streak line at the present time, tp, we simply plot the 
positions for a series of particles inserted at a series of earlier times, ti < tp.   

 
3.2.3.3  Streamline: Unsteady Flow 

 

Applying Eq. 3.4 for a two-dimensional streamline with jyitxV ˆˆ)( −+=


, we can write:  
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dx
y

dyor
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y
u
v

dx
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−=
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−== ,  

 

Integrating gives: 
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 ( ) ( ) 








+
=++−=

tx
CCtxy lnlnlnln  

or  

 ( ) .constCtxy
tx

Cy ==+
+

=  (3.14) 

 

Eq. 3.14 is the general expression for any streamline within the specified velocity field.  
To determine a particular streamline, we need to specify a point that we wish the 
streamline to pass through and the time of interest.  For example, if we want to identify 
the streamline that passes through the point x,y = 1,1 at time t = 0, we substitute those 
position values into the general equation and solve for the streamline constant.  For this 
particular streamline equation, we determine that at t = 0, C = 1.  This would give an 
equation for that streamline as: 
 

 1xy =    (3.15) 
 

However, the equation for a streamline passing through x,y = 1,1 at time t = 1, would 
yield an equation for that streamline as: 
 

 ( ) 21xy =+   (3.16) 
 

These are different streamlines, due to the time variation of the flow field, as shown in 
Figure 3.6. 
 

 
Figure 3.6 Plots of a path line, streak line (for tp =1, and 0 < ti <1), and streamlines 

for t=0 and t=1 passing through x,y = 1,1 for velocity field 
( ) jyitxV ˆˆ −+=


. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

y

x

Streak Line, tp = 1

Streamline, t = 0

Streamline, t = 1

Path Line, 0<t<1



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 3 
 

 59 

3.2.4   Non-Equivalence of Flow Lines in Unsteady Flow 
 
Figure 3.6 shows plots of the path, streak, and streamlines determined in Section 3.2.3.   
 

Clearly, these are all different flow lines, since the velocity field varies with time, t.  Note 
that the path line (black) and the streak line (red) have coincident starting and termination 
points.  This is because all particles start at x = 1,1, and the particle released at ti = 0 will 
trace the path shown (between 0 < t < 1) in figure 3.2. So at t = tp = 1, the end points 
(particles) of the path and streak lines shown will both occupy the same location.  
However, for 0 < t < 1 the path and streak lines will describe different lines. 
 

The variation in the velocity field is quite clearly shown by the streamlines displayed.  
Although the lines (Eq. 3.15 and 3.16) pass through the same initial location (x, y = 1, 1), 
because the u-velocity increases with time the streamlines will skew in a counter-
clockwise manner as the flow moves more rapidly in the x-direction with increasing time. 
 
Clearly, the various flow lines in figure 3.6 are not coincident, as they were in figure 3.4 
for a steady flow.  Thus, for an unsteady flow we cannot equate a path or streak line as 
representative of a streamline. As we will show in Chapters 7 and 8, the flow along a 
streamline can be directly related to the pressure field associated with a flow, and the 
surface pressure effects (e.g. lift and drag) on bodies within the flow field. Consequently, 
we must be careful in our interpretation of path and streak lines as steamlines, which is 
often done erroneously in experimental studies using particle, smoke, and dye 
visualizations (see this link, which gives a good, dynamic illustration of the variations 
that can occur).  We will discuss the characteristics and impact of unsteady behavior 
further in Chapters 7 and 8.   
 
3.3  The Substantial (or Material) Derivative 
 
In Section 3.1, we derived an expression for the acceleration of a particle in an Eulerian 
velocity field, which led to a derivative operator termed the total derivative.  However, 
this derivative operator can be employed more broadly to establish the rate of change of 
any property of a material fluid particle as a result of its movement through an Eulerian 
velocity field.  This of course assumes that we can also develop an appropriate Eulerian 
field description for the continuously distributed property (e.g. density, temperature, etc.) 
within the same spatial region as the velocity field.  When such a property field exists, a 
particle carried through the property field by the coincident velocity field will experience 
changes according to the appropriate property field description. 
 

To assess the generic property change due to the motion of a particle, let the function 
)t,z,y,x(FF =  represent the Eulerian field description of any property (either scalar or 

vector) coincident within the same spatial region of an Eulerian velocity field, )t,z,y,x(V


. 

http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
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Using the same approach we employed in section 3.1 for the change of a particle velocity 
within a velocity field, the change in a particle property, call it F, as the particle 
undergoes differential displacements of xp, yp, and zp over a differential time t, can 
be written using the chain rule as: 
 

 t
t
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z
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y
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x
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+




+
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=  

 

Again, since these displacements will be the product of the local Eulerian velocity 
component and the differential time change, we can write: 
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Dividing through by the time differential, t, over which the property change occurs, and 
taking the limit as t → 0, gives: 
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We again define this limiting change in the property F by the derivative operator, D( )/Dt, 
which we termed in section 3.1 as the “substantial” or “material” derivative.  Here the 
definition of the term should be more obvious, since this operator yields the time change 
of F (a substance or material property of a particle) as the particle is carried through the 
property field, )t,z,y,x(F  by the Eulerian velocity field, )t,z,y,x(V


. 

  

Thus, 
t
F

z
Fw

y
Fv

x
Fu

Dt
DF




+




+




+




=  (3.17) 

 
 
 
 

As we commented on in Section 3.1, this form of derivative operator, D( )/Dt, accounts 
not only for the local change of a property with time, but also the changes created by the 
advection of a fluid particle through a medium with spatial property variations (e.g. like 
experiencing a decrease in temperature as you hike up a mountain). 
 

Expressing the above equation in vector form gives: 
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   (3.18) 
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If the property under consideration is a vector, for example in Cartesian coordinates,
kfjfiff zyx
ˆˆˆ ++=


 ,we can write: 

 

  
t
ffV
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)(    (3.19) 

 

A simple example of the application of the substantial derivative is an examination of the 
change in a particle’s position with time as the particle passes through a velocity field.  

To examine this, we define an arbitrary particle position as kzjyixr ˆˆˆ ++=


, where x, y, 
and z are the Cartesian position coordinates of the particle.  Now, we seek the change in 
the position of the particle, Dr Dt , as it passes through the velocity field.  Here, equating 

f r= in Eq. 3.19, we write: 
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Or, considering only the non-zero derivative terms, 
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 (3.20) 

 

So, DtrD  is the velocity of the flow field itself at the point kzjyixr ˆˆˆ ++= , as it should 
be.  Note that in Eq. 3.20 the term tr 


 is zero since we are dealing with an Eulerian 

description, and a specified point, ),,( zyxfr = , and the position of that point is not a 
function of time. 
 

The general form of the substantial derivative derived above can be used to express the 
changes of any property of a particle as the particle moves through that property field.  
For example, the expression for a change in density,  (a scalar), is given by: 
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On the other hand, a change in vorticity (i.e. fluid rotation), 
  (a vector), where

kji zyx
ˆˆˆ ++=

 , is given by: 
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Note that we will use both of these expressions for density and vorticity change later, 
when we derive the respective differential equations for the conservation of mass, and the 
transport of vorticity. 
 

Example:  If we consider coincident velocity and density fields given by: 
 

 ( )btax1andi
h
yUV oo −+== ˆ

 

 

Then, the change in the density within the flow field is given by: 
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Thus, for this example, the velocity and density variations will result in the density at 
a point increasing both laterally and in the flow direction due to advection, but 
decreasing with increasing time.  

 
3.4 The Substantial Derivative: Cartesian and Cylindrical Coordinates 
 

3.4.1 Substantial Derivative, Cartesian Coordinates:   kwjviuV ˆˆˆ ++=
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3.4.2 Total Acceleration, Cartesian Coordinates 
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==  z-component of acceleration 

 

3.4.3 Substantial Derivative, Cylindrical Coordinates:   zzrr ivivivV ˆˆˆ ++= 
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3.4.4 Total Acceleration, Cylindrical Coordinates 
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==  r-component of acceleration  
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Study Problems 
 
1. A particular flow has the following field characteristics (assume these are non-dimensional): 
 

  velocity:    kzjy2tixV ˆˆ)(ˆ ++−=


  
  temperature:  yzx2T +=   
  density:    xe1 −−=   
 
 Determine (non-dimensionally) at time t = 1: 
 
  a.  The acceleration field  
  b. The rate of change of  at a point (2,1,1) 

 c. The rate of change of temperature at point (1,3,2) 
 

2.  A particular flow has the following field characteristics (assume these are non-dimensional): 
 

  velocity:    2 yˆ ˆ ˆV (2y y )i e j 2k−= − − +   
  temperature:  yt22 e)zx9(T −+−=   
  density:    yex1 −−= )(   
 
 Determine (non-dimensionally) at time t=0: 

 
a. The acceleration field at (0,0,0) 
b. The rate of change of  at a point (1,1,1) 
c. The rate of change of temperature at point (1,0,1) 
 

3. Consider the plane flow field, 
 

ˆ ˆV 2xi yj= +  
 

Develop expressions for: a streamline passing through a point (a,b)=(1,2); a path line initiated 
at t = 0 at point (a,b)=(1,2); and streak line at t = 1 for all the particles that passed through 
point (a,b)=(1,2) between t = 0 and t = 1.  
 

4. Consider the plane flow field, 
 

  ˆ ˆV xi ytj= +  
 
 Develop expressions for streamlines, pathlines, and streaklines through a point (a,b)=(1,1).  

Plot:  streamlines for t = 0, 0.5, and 1; a path line at t=1 for a particle introduced at t=0; and 
a streak line at t = 1 for all particles which passed through point (1,1) between t = 0  

 and t = 1.  Show all plots on one, full-page graph.. 
 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 3 
 

 65 

5. Consider the plane flow field, 
 

   
x ˆ ˆV i y(1 t) j

1 t
 = − + + 

 

 

 Develop expressions for streamlines, pathlines, and streaklines through a point (a,b)=(1,1).  
Plot:  streamlines for t = 0, 0.5, and 1; a path line at t=1 for a particle introduced at t=0; and 
a streak line at t = 1 for all particles which passed through point (1,1) between t = 0  

 and t = 1.  Show all plots on one, full-page graph.. 
 
6. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  2
r2

1 ˆ ˆV i 4r i
r 

 = − + 
 

 

 Determine:  
 

 a. An expression for the acceleration of a particle anywhere within the flow field. 
 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the   
  streamline from (x,y) = (0,2) to (0,0). 
 c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
7. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  r
1 ˆ ˆV i 4ri
r 

 = − + 
 

 

 Determine:  
 

 a. An expression for the acceleration of a particle anywhere within the flow field. 
 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the   
  streamline from (x,y) = (0,2) to (0,0). 
 c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
8. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  r2

1 rˆ ˆV i 4r 1 i
r 3 

   = − + −   
   

 

 Determine:  
 

 a. An expression for the acceleration of a particle anywhere within the flow field. 
 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the   
  streamline from (x,y) = (0,2) to (0,0). 
 c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
9. A non-dimensional, time-dependent velocity field in cylindrical coordinates is given by: 

  r
t ˆ ˆV i 4ri
r 

 = − + 
 

 

Determine:  
 a. An expression for the acceleration of a particle anywhere within the flow field. 
 
 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the streamline  
  from (x,y) = (0,2) to (0,0) for times t=1/2, 1, and 2 using three separate plots. 
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Chapter 4 
 

Motion and Deformation of a Fluid 
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In order to develop differential equations of motion for a fluid, we need to understand the 
general types of motion we must consider.  For simplicity, in this chapter we examine 
motion in two-dimensions, which is sufficient for our purposes of examining the types of 
motions that can occur, and determining how we can approach the mathematical 
modeling of these motions.  The objective here is to provide a physical background for 
the development of the governing differential equations, which is done in Chapter 5.  
 
4.1  Fluid Motions 
 
Initially, we consider the general motions that a fluid can undergo.  To do this, we 
examine an infinitesimal differential element of dimensions x by y in a Cartesian 
coordinate system, where the local vector velocity at the center 

of the element is assumed to be ĵvîuV +=


.  While the 
dimensions of the differential element are considered 
infinitesimal, we accentuate the size of the element here, for 
the point of illustration. 
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x 
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Note that for the all the behaviors considered, the velocity vector components u and v are 
assumed positive relative to the respective coordinate-axes.  Basically, we recognize that 
a fluid element can undergo translation, rotation, and angular and linear deformation 
(i.e. distortion), depending on how the velocity components change from the center of the 
element to the element boundaries. 
 
In the following sections, we examine each type of motion individually by considering 
the possible behavioral changes of the differential element over an infinitesimal time 
interval, t . 
 

4.1.1   Translation 
 

 Here we assume that the velocity across the 
element is uniform (no changes in either coordinate 
direction), which will only result in a translation of 
the element.  Assuming that t is so small that the 
velocities remain essentially constant during the 
time change, the magnitudes of the translation in 
the x and y coordinate directions are given 
respectively by ut and vt, as shown in figure 4.1.  
This results in the differential element retaining its 
original geometry while translating to a new position 
in space. 

 
4.1.2   Rotation  

 
 To illustrate and examine rotational motion of our differential element, we next assume 
that the velocities across the element change in a manner that will result in the pure 
rotation of the primary axes of the element (i.e. two orthogonal line segments fixed in the 
element, and initially aligned with the reference coordinate axes).  We assume that these 
changes yield a positive rotation of each line segment (counter clockwise for this case, by 
the right-hand rule).  We again assume that t is infinitesimal, and that the degree of 
rotation of the element can be characterized by the collective displacement of the two 
primary axes fixed in the element.  We characterize the displacement of these axes by the 
displacement of their extensions at the element boundary, as shown in figure 4.2.   
 
This displacement is the result of a change, from the center of the element to the element 
boundary, of the velocity normal to a line segment comprising a primary axis.  For 
example, for a line segment initially oriented along the x-axis, this velocity change is 
given by v/x, or the derivative v/x for the limit of an infinitesimal change.  Thus, the 

Figure 4.1 Translation of a 
differential element 
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subsequent displacement of the outermost point of this line segment is ( )( ) t2xxv  , 
where x/2 is the length of the line segment from the center of the element to the outer 
boundary, and t is the time interval of the displacement.  Clearly, this change is actually 
assumed quite small, although it is exaggerated in figure 4.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Rotation of a differential element 
 
We recognize that rotation of the element can only occur if the two orthogonal primary 
axes execute identical displacements relative to the fixed coordinate axes, and remain 
orthogonal.  Thus, a similar argument is made for the displacement of the line segment 
initially aligned along the y-axis, with its displacement being ( )( ) t2yyu − , which 
will reflect the same magnitude of displacement as the other line segment, and yield a 
positive rotation of the element.  Note that we need to assume ( )yu −  (where u is 
assumed positive) to reflect a displacement yielding a positive rotation of the element. 
 
Also, although the displacements are relative to the centroid of the element, this does not 
mean that the element cannot be undergoing other simultaneous motions.  Clearly, a flow 
can translate, rotate, and deform concurrently (as we will discuss in Section 4.2) -- here 
we simply illustrate how those individual motions can be envisioned geometrically, and 
then described mathematically. 
 

4.1.3  Angular Deformation   
 

To address deformation of a fluid, we first recognize that a fluid can undergo both 
angular deformation and linear deformation.  Here, we consider angular deformation, 
which can be characterized by the same types of displacements that we examined in 
section 4.1.2 for rotation.  We again assume that the change in the velocities across the 
element will yield a rotation of the primary axes (i.e. orthogonal line segments) of the 
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element about the element centroid.  However, for angular deformation to occur, the 
primary axes of the element are assumed to move in opposition to each other, as shown in 
figure 4.3 (note that this differs from the conjunctive motion of the axes, which yielded 
rotation).  Since we assumed u and v to be positive, angular deformation will occur when 
the extensions of the initially orthogonal line segments both undergo positive differential 
changes.  These positive changes reflect angular motion of the line segments counter to 
each other, which results in a subsequent loss of orthogonality of the primary axes, as 
shown in figure 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.1.4  Linear Deformation  
 
For linear deformation to occur, the velocity component in a specified coordinate 
direction must change in that direction.  In such types of deformation, the extensions of 
the primary axes remain orthogonal, but are assumed to undergo positive differential 
changes in the coordinate directions as shown in figure 4.4.  Thus, a positive differential 
change in the x-direction will be reflected by ( )xu  , resulting in a corresponding 
displacement (lengthening) of the x-directed line segment by ( )( ) t2xxu  , which 
reflects a linear extension of the element in the x-direction.  Correspondingly, a positive 
change in the y-direction, reflected by ( )yv  will result in a linear extension in the y-
direction of ( )( ) t2yyv  . 
 
Note that figure 4.4 illustrates positive extensions in both coordinate directions, and thus 
an overall expansion of the element, which might be expected for a compressible fluid, 
such as air.  However, whereas angular deformation can only occur by rotation of the line 
segments in opposition to each other, linear deformation in either coordinate direction is 
not constrained by such a requirement, if the fluid is compressible.  However, as we will 
show later, if a fluid is incompressible, conservation of mass requires that linear 
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Note that the assumed positive changes create 
angular changes in opposition to each other, 
resulting in deformation, rather than rotation. 

Figure 4.3 Angular deformation of a differential element 
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deformations in the coordinate directions must act in opposition to each other to assure 
that mass is conserved. 

 
 
 
 
 
 
 
 
 

 

Figure 4.4 Linear deformation of a differential element 
 
Of the described motions, which will result in stresses?  Obviously, only those motions 
that result in a relative change in the dimensions of the line elements yx  ,  (which 
implies the presence of strain) can create a stress.  Thus, only angular and linear 
deformations result in the generation of a stress within a fluid.  As will be shown, angular 
deformation is proportional to a shear stress, and linear deformation is proportional to a 
normal stress. 
 
Since fluid behavior is a combination of all of these four fluid motions (translation, 
rotation, and angular and linear deformations), we need to be able to express the 
cumulative motion of a fluid in a compact, mathematical manner in order to perform 
appropriate modeling of fluid behavior, and thus the development of the governing 
differential equations of fluid motion.  The following discussion of the Cauchy-Stokes 
decomposition of fluid motion, shows how to mathematically model, represent, and 
examine the differential motions of a fluid. 
 
4.2  Cauchy-Stokes Decomposition 
 
A useful first approach to understanding the motion and deformation of a deformable 
medium (e.g. a fluid) is to consider an approach for “decomposing” all potential fluid 
behaviors mathematically using what is known as the Cauchy-Stokes Decomposition  
Theorem, named after the two gentlemen who developed the concept (see Truesdale 
(1954) ).  Although the theorem is generic to three-dimensions, we will examine a two-
dimensional version here, since the two-dimensional mathematics are easier to follow and 
more physically instructive.  And of course, what we learn from the two-dimensional 
approach is directly extendable to three dimensions, as will be discussed later.   
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Figure 4.5 A conceptual model for two-dimensional Cauchy-Stokes decomposition. 
 
To begin, consider the motion of a fluid element in a two-dimensional Cartesian velocity 
field, ˆ ˆV ui vj= + , where ( )y,xVV


= , as shown in figure 4.5.  It is assumed that a fluid 

element, or particle, moves within the velocity field from a point p, at a vector location 
ĵyîxr +=

 , across an infinitesimal differential vector distance, ĵdyîdxrd +=
 , as 

shown. 
 
Here, we recognize that as the element moves along rd , it also moves through the 
velocity field, V


, such that its local velocity undergoes a change from pV


 (the velocity at 

point p) to a new value of VdVV p


+= at its new position at rdr 

+ .  Using the chain 

rule, we reason that we can express the change in velocity, Vd


, as: 
 

 V V u u v vdV dx dy dx dy i dx dy j
x y x y x y

ˆ ˆ        
= + = + + +   
        

 

 

Thus, we can differentially express the velocity at the new position as: 
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Expanding Eq. 4.1 in vector components, and noting the relationship of the individual 
terms to the four types of motion we discussed in section 4.1, we obtain: 
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How do we make these identifications in Eq. 4.2?  Well, the translation terms should be 
obvious, since translation is directly related to the local velocity.  The linear deformation 
terms are also reasonably obvious, since these reflect changes in the direction of each 
velocity component, and are thus linear changes (e.g. xu   is the change of the x-
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direction velocity in the x-direction).  However, the other derivatives are more 
problematic (and thus the question marks), since they reflect changes normal to the 
direction of the respective velocity component, which could reflect components of either 
rotation or angular deformation.  Since these terms represent a combination of behaviors, 
we attempt to separate these terms further using some mathematical manipulation. 
 
Let's first consider the x-direction term ( )dyyu   in Eq. 4.2.  If we split this term in 
half, and both add and subtract a term ( )dyxv21   (this contributes nothing additional, 
but allows us to manipulate the initial term), we end up with an expanded expression: 
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Rearranging the terms on the right side of Eq. 4.3 gives: 
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Similarly, we can show that: 
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Substituting Eqs. 4.4  into Eq. 4.2 for V


, and rearranging gives: 
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From this expanded expression, Eq. 4.5, we can now correlate the mathematical terms 
with the corresponding motion they represent.  Thus, we have illustrated how the motions 
and deformations of a fluid element moving through a velocity field can be 
mathematically “decomposed” into the constituent mathematical expressions reflective of 
translation, rotation, and angular and linear deformation. 
 
 

(Compare with sketched 

behaviors in section 4.1) 

  translation  linear deform. rotation  angular deform. 
   
 

(4.5) 
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4.2.1  Use of Tensors 
 
A higher-order form of vector that can help generalize Eq. 4.5 is a second-order tensor, 
which is a double-indexed mathematical expression reflecting (in this case) the plane of 
application and the direction of action of a tensor property relative to that plane.  For 
example, deformation acts in directions either normal or parallel to a specified plane, 
while motions of rotation only act normal to a specified plane.   
 
Note that a tensor is just a higher form of a vector. The word “tensor” is a generic term 
applied to mathematical functions which transform according to certain laws as a 
reference coordinate system is rotated about the origin.  For a Cartesian coordinate 
system (where unit vector differentiation has no effect), we define the rank or “order” of 
a tensor according to the number of scalar components required to completely define it, 
which is equivalent to the number of coordinates comprising the reference system raised 
to the order power.  So, for our two-dimensional example, there are two reference 
coordinates (x and y).  Raising the coordinate number (2) to the “zero” order (i.e. 20=1) 
yields one scalar component, which is the number of components required to specify a 
“zeroth-order” tensor, which is a scalar (of course), and is not dependent on the 
coordinate orientation.  Two raised to “first” order (21 = 2) indicates two scalar 
components are required to define a “first-order” tensor in a two-dimensional system, 
which is of course what we commonly term a vector.  And finally, two raised to the 
“second” order (22 = 4) indicates that four scalar components are required to define a 
“second-order” tensor in two dimensions.  For example, we can write a two-dimensional 
tensor (let’s use the stress tensor) ab

  in Cartesian coordinates as follows, where 
subscripts a and b are indices referencing coordinate directions for the components. 
 

( ) ( )  

















=+++=+++=

yyyx

xyxx
yyyxxyxxyyyxxyxxab ji

ji
jijijjiijjijjiii ˆˆ

ˆˆ
ˆˆˆˆˆˆˆˆˆˆˆˆˆ̂ˆˆ  

 
 
Here, the first unit vector in the dyads (the tensor components) indicates the action plane 
(at least for fluids), and the parenthetical vector indicates the direction of the action 
relative to that surface.  For example, the first dyad acts on the x-plane (a plane defined 
by a x-direction normal).  The subsequent direction of action relative to that x-plane is a 
vector given by xyxx ji + ˆˆ , where xx acts in the x-direction, and xy acts in the y-

direction.  
 

tensor dyad tensor dyad 

https://en.wikipedia.org/wiki/Tensor
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Tensors work well in describing multidirectional behavior, such as deformations and 
stresses in a fluid.  In common practice, the unit vectors are implied when writing tensors 
in matrix format, such that we can express the above as: 
 













=+++=

yyyx

xyxx
yyyxxyxxab jjijjiii ˆˆˆˆˆ̂ˆˆ  

 

For further background on tensors, and their use, you can check out a nice NASA 
technical memorandum by Kolecki (2002), for a reasonable explanation of the 
importance and applications of tensors. 
  

4.2.2  Decomposition in Tensor Notation 
 
Applying tensor notation to our decomposition expression, we now can express Eq. 4.1 as 
(where ĵdyîdxrd +=

 ):  
 

 

( ) ( )

p p p  at  p p

p p

u v
V V x xV V dV V dx dy V dr V V dr

u vx y
y y

u v u vV u i v j dx i dy j ii ij ji jj
x x y y

( )

ˆ ˆ ˆ ˆ ˆˆ ˆ̂ ˆ ˆ ˆˆ

  
    
 = + = + + = +   = + 
    
   

    
= + + +  + + + 

    

 

 

Expansion shows this is identical to Eq. 4.5, the decomposed formulation above: 
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So, rewriting Eq. 4.5 in terms of tensors, gives: 
 

 p

u 1 v u 1 v u0
x 2 x y 2 x y

V V dr dr
1 u v v 1 u v 0
2 y x y 2 y x

          
+ −      

          = +  + 
          
   + −   

             

 (4.6) 

 
 
 

2nd order tensor  surface of action + direction 

Rate-of-Strain Tensor,  Vorticity Tensor,  

http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
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Here, abE


 is known as the rate-of-strain tensor, since it mathematically reflects all the 

rates of strain that can result from velocity changes.  ab


 is termed the vorticity tensor 
(vorticity is discussed in section 4.3 below), since it mathematically expresses all the 
velocity changes that give rise to fluid rotation. Thus, we can write our final expression 
for the decomposed fluid motion as: 
 

 abab rdErdVV ++= 


 (4.7) 

 
 
 
Note that in two dimensions these tensors are written as: 
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and 

 































−

















−





=











=

0
x
v

y
u

2
1

y
u

x
v

2
10

yyyx

xyxx
ab


 (4.9) 

 

Here the vorticity tensor, ab


, has no components in the direction of the normal to the 
bounding planes (or bounding line in 2-D) of application.  As was shown in section 4.1.2, 
rotation (i.e. vorticity) requires a change in the velocity components acting perpendicular 
to the normal of the bounding plane.  Thus, a change in the velocity component normal to 
a bounding plane cannot contribute to rotation (such changes only contribute to linear 
deformation).  Additionally, since xy = yx in the rate of strain matrix, this implies that 

the rate of strain tensor, abE


, is a symmetric tensor; conversely, since  

xy = -yx in the vorticity matrix, this indicates that the vorticity tensor, ab


, is an 
antisymmetric tensor.  Confused? This YouTube site might help.  
 
If we expand our consideration of fluid motion to three dimensions (Cartesian), we of 
course end up with more terms in a tensor.  As was pointed out above, for a second-order 
tensor the number of components is equal to the number of independent coordinates 
raised to the second power.  So for a full three-dimensional system (x, y, z), tensors will 

Rate-of-strain 
tensor 

Vorticity 
tensor 

https://www.quora.com/Whats-a-symmetric-tensor
https://www.youtube.com/watch?v=15lOIXgFkPE
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contain nine scalar components (32).  So, in three dimensions the rates of strain and 
vorticity tensors become: 
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 (4.10) 

and 
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 (4.11) 

 

In Eqs. 4.10 and 4.11 we include a third component of velocity in the z-direction, w, such 
that k̂wĵvîuV ++=


.  Note that in three dimensions the rate-of-strain tensor remains 

symmetric and the vorticity tensor also remains antisymmetric.   
 
Note also that a (3-D) symmetric tensor, like the rate of strain tensor, has six independent 
components, since ij = ji, where i and j represent the system coordinates (e.g. x, y, or z).  
For the rate of strain tensor [where xy = yx, zy = yz, and xz = zx], the six unique 
components account for all the types of strain rates that can be applied to the various 
surfaces of a fluid [we will revisit this when the differential equation of momentum is 
derived in Chapter 5].  Conversely, a (3-D) antisymmetric tensor, such as the vorticity 
tensor, has only three independent components, since ij = - ji.  Note that along the 
diagonal the only value that can satisfy that criterion is 0, which reduces the independent 
components by three.  Thus, the independent vorticity components (three) reflect the 
respective rotations in each respective coordinate direction.  
 
Now that we have shown that we can mathematically decompose fluid motion into its 
component behaviors, we will make use of these elements to analyze and model fluid 
behavior.  In Chapter 5, it is shown that the rate-of-strain tensor is used to model the 
stress field within a fluid, and to assess the impact of surface forces on fluid motion via 
Newton’s second law: a critical step in the development of the governing differential 
equations of fluid momentum.  The vorticity tensor, and the parallel concept of 
circulation (the summation of vorticity over a fixed area), is employed to account for the 
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rotational behavior of a fluid.  To begin this process, in the following section we first 
address the concept of vorticity, and show how to assess and describe local fluid rotation. 
 
4.3  Vorticity 
 
Vorticity is the term applied to the angular rotation of a fluid.  To develop a mathematical 
description of the angular rotation, we examine the behavior of two infinitesimal 
orthogonal line segments fixed in a fluid, as shown below.  As was done in the 
examination of general fluid rotation in Section 4.1.2, we again assume that these line 
segments rotate in such a manner as to yield a positive rotation of each line segment 
(counter clockwise).  We also again assume that t is infinitesimal, and that the degree of 
rotation of the element can be characterized by similar infinitesimal angular changes, as 
shown in figure 4.6.   
 

 

Figure 4.6 Characterization of angular rotation of two orthogonal line segments 
 
The angular velocity of each line segment is assumed to be the differential change in 
angular rotation over time, t.  However, to relate the angular rotation to characteristic 
changes in the velocity components, we relate the angular rotation to the arc length 
displacement of the line segment, identical to the process employed in our discussion of 
rotation in Section 4.1.2.   Thus, for the rotation of the horizontal line segment shown 
above, this displacement is given by ( )( ) txxva = , and thus: 
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y 

x 
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Likewise, for the angular velocity of the vertical line segment: 

 
u of line y
y


 = −


 

 

The total angular velocity is then assumed to be the average angular velocity of the two 
orthogonal line elements, with their axis of rotation about the z-axis (out of the plane of 
this page), i.e. 
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The angular velocity for the other two coordinate directions can be derived similarly, 
giving: 
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 Thus, the total vector angular velocity for a fluid (in Cartesian coordinates) is given by: 
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    (4.12) 

 

Note that this is one half of the curl of the velocity field, which is the classical dynamical 
vector function relating angular velocity to the respective velocity.  Since the one half is 
cumbersome to carry along in equations involving fluid rotation, we generally drop this 
coefficient and simply characterize fluid rotation by the curl of the velocity field, which 
we term the “vorticity,” and indicate using a lower-case omega, V


== 2 .  Note 

that this definition of vorticity as V


= applies generically for all coordinate systems; 
however, care must be exercised in non-Cartesian coordinate systems.  Additional terms 
will appear when determining the vorticity in cylindrical coordinates, due to the unit 
vector dependence upon the angular coordinate,  (see section 4.4.4 at the end of this 
chapter).  In spherical coordinates, additional terms are generated by unit vector 
dependence upon both angular coordinates,  and . 
 

Example:  Given a simple shear flow, ( ) ,îhyUV =


  
determine the components of both the rate of strain  
and rotation tensors, and the vorticity. 

rotation about z-direction coordinate 
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Here, noting that ( )hyUu = and v = 0, we first calculate the components of the rate 
of strain and vorticity tensors we developed above. 
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Remembering that the first index subscript indicates the plane of action, and the 
second index subscript indicates the direction of the action, we can qualitatively 
represent each of the non-zero components of strain and rotation as shown below.  
Here we recognize that this flow, although very simple, comprises motions of both 
angular deformation (opposing rotations of the primary axes) and angular rotation (like 
rotation of the primary axes).  The result is a flow that angularly deforms at the same 
rate it rotates.  This simultaneous, and complimentary, angular deformation and 
rotation maintains a non-uniform translation of the fluid parallel to the x-axis, as 
illustrated below. 
 
 
 
 
 
 
 
 
With regard to the vorticity, the only vorticity component is in the z-direction (out of 
the plane of this page), such that: 
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Here the vorticity is negative relative to the reference coordinate, or of clockwise 
orientation, like a ball rolling from left to right. 
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Subsequent motion:  
a uniform shear flow 
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For some additional viewpoints on vorticity, and some further illustrations, take a look at 
the Wikipedia article at this link. 
 
 

4.4  Rate of Strain and Vorticity Equations:  Cartesian and Cylindrical Coordinates 
 

4.4.1 Rate of Strain, Cartesian Coordinates:   kwjviuV ˆˆˆ ++=
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4.4.2 Vorticity, Cartesian Coordinates:   kwjviuV ˆˆˆ ++=
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4.4.3 Rate of Strain, Cylindrical Coordinates:   zzrr ivivivV ˆˆˆ ++= 
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4.4.4 Vorticity, Cylindrical Coordinates:   zzrr îvîvîvV ++= 
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Study Problems 
 
1. Consider two three-dimensional flows with velocities, 1 2 3V c xi c yj c zkˆ ˆ ˆ= + + , and 

kycjxcizcV 321
ˆˆˆ +−=


  Determine the vorticity, the strain-rate tensor, and the rate of 

expansion for these flows (hint: the rate of expansion is given by the divergence). 
 

2. A two-dimensional flow in cylindrical coordinates is given by: rir2
QV ˆ











=


.  Compute the 

vorticity, the strain-rate tensor, and the rate of expansion for this flow (hint: the rate of 
expansion is given by the divergence). 

 
3. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  2
r2

1V i 4r i
r

ˆ
̂

 = − + 
 

 

 Determine:  
 
 a. The components of the rate-of-strain tensor;    
 
 b. The vorticity of a particle at (x,y) = (0,2) and (0,0). 
 
4. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  r
1V i 4ri
r

ˆ
̂

 = − + 
 

 

 Determine:  
 
 a. The components of the rate-of-strain tensor; 
 
 b. The vorticity of a particle at (x,y) = (0,2) and (0,0). 
 
 

http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
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5. A non-dimensional velocity field in cylindrical coordinates is given by: 
 

  r2

1 rV i 4r 1 i
r 3

ˆ
̂

   = − + −   
   

 

 Determine:  
 
 a. The components of the rate-of-strain tensor;  
 
 b. The vorticity of a particle at (x,y) = (0,2) and (0,0). 
 
6. The velocity field for a decaying, ideal line vortex is given by: 
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= t4
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v
2

exp   

  
Where  is a vortex strength parameter (a constant).  Let all parameters and variables be non-
dimensional, and  = 1.   
 
Determine: 

 
  a. The non-zero rate-of-strain components 
  b. The vorticity.  

  Plot separate graphs for 0  r  4 of the normalized (1) vorticity 










4 , and (2) strain  

  rate 










 r2
.  Show plots on each graph for  t = 0, 1, 6 (note: you will need to use  

  L'Hopital's Rule for r and t → 0). 
 

7. The velocity field for a decaying, ideal line vortex is given by: 
 

  









−










= t4

r
t8

Hrv
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2 exp   

  
 Where H is a vortex strength parameter (a constant).  Let all parameters and variables be non-
 dimensional, and  = 1.  Determine: 
 
  a.   the non-zero rate-of-strain components; 
 
 b.   the vorticity. 

Plot separate graphs for 0   r   4 of non-dimensional (1) velocity 






 

H
v8

,  

(2) vorticity 






 

H
16 , and (3) strain rate 












  

H
32 r

2

.  Show 3 plots on each graph 

for t = 0, 1, 3 (note: you will need to use L'Hopital's Rule for r and t → 0). 
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Chapter 5 
 

Differential Equations of Motion 
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In this book, it is assumed that students have a basic background in undergraduate fluid 
mechanics, particularly the use of basic control volume equations as they apply to 
conservation of mass and momentum.  If you feel that you don’t have a reasonable 
grounding in the basics of control volume analysis, it is recommended that you review 
this material in a standard undergraduate fluid mechanics text (e.g. Fluid Mechanics, Fox 
& McDonald, Chapter 4), since the derivation of the differential equations of fluid 
motion done in this chapter will make use of several underlying control volume concepts. 
 

5.1 Background  
 

To understand the capabilities of a control volume analysis versus a differential analysis, 
let’s review their respective strengths and weaknesses.  In both cases, we assume that we 
are conducting a coupled analysis of the equations of both continuity and momentum. 
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Recall from your undergraduate studies that a control volume approach develops 
equations that assume that the velocity and property distributions are known for a flow 
entering and exiting a fixed region in space, such as a pipe or jet engine.  In many 
practical cases, the velocities (and other properties, such as density and temperature) are 
often assumed to be uniform over the entrance and/or exit of the control volume.  Given 
the assumed flow characteristics, the solution of the appropriate integral equations is 
relatively straightforward.  However, the results of such calculations yield only the global 
characteristics of a flow system, such as the resulting force or thrust generated by the 
change in momentum across a control volume.  Thus, the control volume equations of 
momentum and mass provide useful, but generally approximate, results and are 
reasonably easy to employ. 
 
In contrast, a differential approach develops more sophisticated differential equations that 
can yield very detailed information regarding local velocity and other property 
information, requiring only the appropriate boundary and initial conditions to allow 
solution of the equations.  However, the differential equations are quite complex, such 
that their complete solution may require sophisticated mathematical techniques or very 
advanced numerical/computational approaches.  The solution of the differential equations 
provides detailed velocity and property field information, which can subsequently be: (1) 
employed to assess local forces on the constraining boundaries, or (2) combined with 
control volume approaches to assess more accurate global characteristics, such as thrust 
or flow-induced drag.  Luckily, for our purposes, there are a number of simple flows that 
lend themselves to complete differential analysis, for which one can develop closed-form 
solutions of the governing differential equations, before branching out into more 
complicated flows that generally require substantial numerical analysis to achieve a 
solution. 
 
In this and the following chapter, our objective is to develop systematically the basic 
differential equations of continuity (i.e. mass conservation) and momentum (i.e. the 
Navier Stokes equation).  As you will see, these sets of equations are key elements for 
our subsequent assessment of fluid behavior. In particular, in Chapter 6, we demonstrate 
the application of these equations for the determination of the velocity and shear stress 
fields for some simple laminar flows. In addition, Chapter 12 addresses solution 
techniques for more complicated laminar flows.  However, the differential equations of 
continuity and momentum are the general basis for the material we discuss throughout 
the rest of this book.  In the present chapter, we begin our assessment of fluid dynamics 
by the derivation of the differential equations of both continuity and momentum. 
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5.2  The Differential Continuity Equation: via a Differential Analysis 
 
Recalling our discussion in Chapter 1 of the characterization of forces acting on a 
differential fluid element, in this section we employ that same differential element 
approach for the analysis of fluid continuity, or conservation of mass.  We perform our 
derivation in Cartesian coordinates, but similar approaches can clearly be employed using 
cylindrical or spherical coordinates; the resulting equations for a cylindrical coordinate 
system are shown in Section 5.8.2.  The equations for spherical coordinates can be found 
here.  As we did in Chapter 1, we start by assuming an infinitesimal differential element 
of volume, dxdydzd = , where dx, dy, 
and dz are the differential dimensions of 
the element in the respective coordinate 
directions, as shown in figure 5.1.   
 
We next assume that the local density 
and velocity (in terms of the respective 
directional components) at the center of 
the element are given by , u, v, and w.  
Our objective is to assess the changes in 
mass both within and across this 
differential volume using an integral 
control volume equation applied to this 
differential element of the form: 
  

 0dVdt SCVC
 =+ 




....


 (5.1) 

 

In Eq. 5.1, C.V. implies integration across the entire control volume, and C.S. implies 
integration over the entire control surface bounding the control volume.  The volume of 
the differential element is dxdydzd = , and the areas of the bounding control surfaces, 
across which the fluid can move into or out of the differential element, are given by the 
respective sides of the element, dAx = dydz, dAy = dxdz, and dAz = dxdy.  To make our 
derivation process easier to follow, we note that we can separate the integral term 
reflecting the mass crossing the control surface of the differential element into the three 
integrals representing the mass crossing the x, y, and z surfaces respectively, such that:  
 

 AdVAdVAdVAdV
zSCySCxSCSC


++= 

........

 

 

Using the x-direction surface integral as an example, we now determine the amount of 
mass crossing the two x-surfaces of the differential element, in terms of the density, , 

dx 

x 

z 

y 

dz 

dy 
,u,v,w • 

Figure 5.1  The basic differential fluid 
element in Cartesian coordinates. 

http://www.maths.bris.ac.uk/~maajh/afluids/coords.pdf
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and the x-direction velocity, u. The result is  =
xSC

x
xSC

ndAiuAdV
....

ˆˆ
, where u is the x-

direction velocity component parallel to the outward normal unit vector (shown as n̂ ) for 

the x-surfaces of the differential element.  Note that in ˆˆ = , depending on the direction 
of the outward normal for the respective x-surface of the differential element, relative to 
the fixed coordinate system.  Also, note that this integration only requires knowledge of 
the x-direction velocity, u, since the y-direction and z-direction velocities are parallel to 
the x-surfaces, and will contribute no mass flow across those surfaces.   To begin, we 
need to establish the values of the density and the u-velocity at the point where they cross 
the two differential x-directed surfaces of area dAx = dydz  (the magnitude of both the left 
and right surfaces of the differential element shown in figure 5.1).   
 
To establish the changes of  and u that occur across the differential element, we start by 
assuming that  and u are the base values at the center of the differential element.  That 
being the case, we can make use of a Taylor series expansion for both  and u to 
approximate the values of density and velocity at the x-surface boundaries.  Recall from 
calculus that if we know (or we assume we know) the value of a function, call it F(x, y, 
z), at some spatial location, x, y, z, then we can determine the value of the function at a 
nearby location removed by a differential amount, call it x, as: 
 

 ( ) ( ) ( ) ( ) ( )termsorderhigher3x3x

F3

!3

12x2x

F2

!2

1
x

x

F
z,y,xFz,y,xxF +




+




+




+=+  (5.2) 

 

In the mathematical sense, this expression would be termed the power series expansion of 
F upon x.  We also note that the series must be convergent to a finite value, and not 
divergent.  However, convergence is always the case for real fluid systems.  Now, if x is 
very small, which it is since we are assuming that the differential element is 
infinitesimally small, then higher powers of x, such as x2 and x3, will be much 
smaller--so small, that they can be considered negligible compared to x.  This suggests 
that the higher-order terms in the Taylor series become negligible when we let x→0, 
such that x  dx.  We thus can approximate that: 
 

 ( ) ( ) ( ) dx
x
Fz,y,xFz,y,dxxFz,y,xxFlim

0x 


++=+

→

 (5.3) 

    

This form of the Taylor series is known as a truncated Taylor series, and is assumed 
applicable in the limit of an infinitesimal differential element. 
 

http://en.wikipedia.org/wiki/Taylor_series
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So, to establish property changes of  and u across the differential element in the x-
direction, we apply this truncated Taylor series to model the property values at the right 
and left faces of the element.  For example, for the density at the right face we write: 
 

 
2

dx
x2

dx
xfaceright




+=







+



+=  (5.4) 

 

Here  is the assumed value at the center of the differential element, and +dx/2 is the 
distance that the right face of the element is removed from the center of the element. Note 
that this is a change in the positive x-direction, and thus the plus sign (for emphasis of 
this point).  In contrast, the density at the left face of the differential element will be: 
 

 
2

dx
x2

dx
xfaceleft




−=







−



+=  (5.5) 

 

Here, the change in sign is a result of the left face being removed - dx/2 from the center 
of the element in the negative x-direction (thus, the negative value).  Similar expressions 
for the x-direction velocity, u, at the right and left faces of the differential element can be 
written as: 
 

 
2

dx
x
uuu faceright



+=     and    

2
dx

x
uuu faceleft



−=     (5.6) 

 

In Eq. 5.6, u is again the assumed value at the center of the differential element. 
 
Using these values of density and velocity at the right and left faces of the differential 
element, we can now assess the mass flows across the x-surfaces of the element in figure 
5.2.  

 

dx 
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dz 

dy 
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,u,v,w dzdy
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u
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dx
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u
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Outward 
normal 

Outward 
normal 

Figure 5.2  Representation of the differential mass flows across the x-surfaces of a 
differential fluid element. 



Introduction to Graduate Fluid Mechanics:  C.R. Smith   Chapter 5 

 

 88 

Note that we assume that all flows (velocities) are in the positive direction relative to the 
coordinate direction x [density has no direction, being a scalar].  By doing this, we realize 
that when we later solve the differential equations, that a positive or negative result for 
the u-velocity will reflect the direction of the u-velocity relative to the positive direction 
of the x-coordinate we employ for the solution procedure. 
 
We now use the respective values of density and velocity at the x-surfaces of the element 
to establish the mass flows across the element, for the x-direction only.  Recall from 
above that: 
 

  

 

Remember that the dot product of the velocity relative to the direction of the surface 

[defined by the direction of the outward normal ( ) from the element surface, 
relative to the coordinate system] determines whether the integrated mass flow is 
considered positive or negative.  And since we have assumed all velocities (for the sake 
of this derivation) to be in a positive coordinate direction, the outward normal unit vector,
n̂ , will determine whether the mass flow is considered positive or negative in the 
subsequent equation.  
 
So, utilizing our expressions from Eqs. 5.4, 5.5, and 5.6, we can sum the flows of mass 
across the x-surfaces (defined by their outward normal relative to the x-direction, as 
shown in figure 5.2), as: 
 

( )( ) ( )( )
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 (5.7) 

 

Eq. 5.7 reflects the only mass flows crossing the two x-surfaces of the differential 
element.  Now expanding the terms on the right side of Eq.5.7, and canceling and 
combining like terms, we have: 
 

dydz
4

dx
x

du
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dx
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4
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x
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or  

 =
xSC

x
xSC

ndAiuAdV
....

ˆˆ

in ˆˆ =
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dxdydz
x

udxdydz
x
uAdV

xSC 


+




=

..


 

  dxdydzu
x

)(



=  (5.8) 

 

If we perform similar mass flowrate balances for the y and z surfaces, conservation of 
mass applied to the differential control volume gives two similar expressions: 
 

 dxdydzv
y

AdV
ySC

)(
..





=


 (5.9) 

 

 dxdydzw
z

AdV
zSC

)(
..





=


 (5.10) 

 

Combining Eqs. 5.8, 5.9, and 5.10 for the mass flow rate in each of the three coordinate 
directions, we obtain the total mass flow across the differential element as: 
 

 AdVAdVAdVAdV
zSCySCxSCSC


++= 

........

 

 

 dxdydz
z
wdxdydz

y
vdxdydz

x
uAdV

SC 


+




+




=

)()()(

..


 (5.11) 

 

The time rate of change of mass within the differential element,  




..VC

d
t

, is modeled by 

assuming that in the limit of an infinitesimal differential element (d→0), the density, , 
is relatively uniform across d.  At first this assumption of uniformity might appear 
inconsistent with our previous approximation of the changes across the differential 
element using a truncated Taylor series.  However, if we assume a linear change across 
the element, the average value of the density within the differential volume will be just , 
the assumed value at the center of the differential element.  And since we will ultimately 
assume that d→0, we approximate that ( )dxdydzd

VC


..

, and thus, 

 ( ) dxdydz
tt

dxdydzd
t VC 


=











..

     since dxdydz  f(t) (5.12) 

 

Note in Eq. 5.12 that ),,,,( tzyx=  but dxdydz is not a function of time, and thus can 
be factored out of the derivative, as indicated.   
 
Substituting Eq. 5.11 and 5.12 back into Eq. 5.1, we obtain the cumulative conservation 
of mass balance for the differential control volume as: 
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u v w

d V dA dxdydz dxdydz dxdydz dxdydz 0
t t x y zc v c s

( ) ( ) ( )

. . . .

       
  +   = + + + = 

    
   

 

Since all terms are multiplied by the differential volume, d=dxdydz, we can factor this 
term out of the equation, leaving only the derivative functions comprising the differential 
equation.  It would seem that this equation is independent of the size of the assumed 
differential element, since d=dxdydz does not appear in the final equation.  However, 
remember that we assumed that our differential is infinitesimal (i.e. d→0), which 
allowed us to:  (1) apply the approximation of a truncated Taylor series, and (2) assume 
that  varies linearly across the element.   
 
Therefore, the differential equation for conservation of mass is: 
 

 ( ) ( ) ( )
z
w

y
v

x
u
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+




+




+



  or 0V
t

=+


 )(


 (5.13) 

 

Equation 5.13 is also termed the continuity equation [a term that we employ throughout 
this book], emphasizing the application of mass conservation to a continuous medium. 
Also note this is termed a “differential” equation, since it evolves from our assumption of 
an infinitesimal “differential” element with continuous properties. 
 
We can manipulate this equation further by expanding the mass flux terms to give: 
 

 0
z
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   (5.14) 

 

  
Dt
D  V


  

 

As we identify, the first four terms on the left of Eq. 5.14 comprise the substantial 
derivative of the density, and thus the changes in density that a particle experiences as it 
is transported through a velocity field.  The remaining three terms represent the product 
of the density and the divergence of the velocity field, such that the resulting equation can 
be written in a compact form as:  
 

 0V
Dt
D

=+
 

   (5.15) 

 

Equation 5.15 is a generic vector representation, which is applicable in any other 
coordinate system (i.e. cylindrical or spherical).  We further explore the significance of 
this vector form of the continuity equation in the following section. 
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5.3  The Differential Continuity Equation: via the Divergence Theorem 
 
The derivation of the differential equation of continuity that was done in section 5.2 
employs the application of a control volume analysis to a differential element, using 
several approximations to establish the balance of the derivative changes in velocity and 
density that occur across and within a differential element.  That approach necessitates 
some sweeping assumptions of behavior as the differential volume asymptotes to zero.  
An alternate derivation of the differential equation of continuity can be developed in a 
more mathematically elegant, although less physically obvious, manner using the 
application of the surface integral relationships reviewed in section 2.4 to the basic 
control volume equation (Eq. 5.1) of continuity.  Consider again the general control 
volume equation for continuity, given by: 
       

   =+




.. ..VC SC

0AdVd
t


 

 

For a fixed size control volume (i.e. the volume is constant), the time derivative can be 
taken inside the integral, since the limits of integration over that volume will be fixed, 
and thus not a function of time (Leibnitz rule), giving: 
 

  =+




.... SCVC

0AdVd
t


   

or 

 
S

d ( V) dA 0
t




+   =

   (5.16) 

 

In Eq. 5.16,  implies a fixed volume in space, with S indicating the bounding surface of 
that volume.  However, the Gauss divergence theorem (Section 2.4.1, Eq. 2.15) allows us 
to relate the surface integral of a vector property to the volume integral of the divergence 
of that property, such that we can write: 
 

  
S

( V) dA ( V) d


  =      (5.17)  

 

Substituting Eq. 5.17 into Eq. 5.16 yields; 
 

 d V d V d 0
t t

( ) ( )
  

  
+    = +   =   

    (5.18) 

 

However, since there is no stipulation of the size of the control volume to which this 
equation applies, this means that the integrand in this equation cannot depend on the 

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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volume of integration.  The only value of the integrand that satisfies this requirement is 
an integrand that is everywhere equal to zero, or 
 

 0V
t

=+


 )(


  (5.19) 
 

Equation 5.19 is, of course, the same as Eq. 5.13 that we obtained previously using a 
differential analysis. 
 
Another way to consider the concept of continuity is to consider a differential amount of 
mass, dM, which is moving through a velocity field, V


.  Assuming that this arbitrary 

amount of mass is distributed in a continuous manner over a differential volume, d, we 
can write = ddM .  Now, the change in this differential mass as it moves within the 
velocity field is then given by the material derivative of dM, such that: 
 

 ( ) ( ) 0d
Dt
DdM

Dt
D

==  (5.20) 

 

We set the derivative in Eq. 5.20 to zero, since there can be no change in the amount of 
mass as it moves through the field.  Expanding the right side of Eq. 5.20 gives:  
 

 ( ) ( ) 0
Dt
Dd

Dt
dDd

Dt
D

=


+


=   

or  

 ( )
Dt
D1

Dt
dD

d
1 


−=




 (5.21) 

 

Equation 5.21 indicates that the relative change in volume of the fluid element is 
balanced by an opposite change in the density of the fluid.  A substitution for D/Dt in 
Eq. 5.21 from the general continuity equation, Eq. 5.15, gives : 
 

 ( ) V
Dt
D1

Dt
dD

d
1 

=



−=




 (5.22) 

 

Equation 5.22 indicates that the divergence of the velocity field represents the relative 
rate of expansion of the fluid volume at a point.  This equation provides a useful physical 
interpretation of the divergence of the velocity, and will prove useful in the 
simplifications of the continuity equation, as discussed in the following section. 
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5.4  Special Cases of the Continuity Equation 
 
In its general form, the continuity equation is applicable to any fluid flow, regardless of 
the properties of the flow.  And as such, the equation is equally valid for incompressible 
as well as compressible flows, and heavy viscous flows or dilute gas flows, to illustrate 
some extremes.  Since it contains four dependent variables ( and three velocity 
components), it cannot be solved independently, and must be solved in conjunction with 
the other governing equations, such as the differential momentum equation [derived in 
section 5.6].  However, since the equation is a function of four independent variables 
(time and three spatial coordinates), utilization of the full equation is analytically and 
computationally complicated, and potentially intractable because of the degrees of 
freedom inherent in three-dimensional, unsteady flows.  Fortunately, many flows of 
engineering utility can be configured or constrained to reduce the degrees of freedom, 
which allows the application of a simplified form of the continuity equation.  Two of the 
constraints that are most commonly invoked are: (1) a steady flow, and (2) an 
incompressible fluid. 
 

5.4.1 Steady Flow 
 
A steady flow is one for which there is no time dependency of the flow. This assumes no 
local time rate of change in density at a point.  All incompressible flows and many 
compressible flows, such as flow around high-speed aircraft in steady flight, are well 
approximated by this assumption. The subsequent continuity equation reduces to: 
 

 ( ) 0V
z
w

y
v

x
u

==



+




+



 )()()(  (5.23) 

 

While Eq. 5.23 is a simpler equation, it still includes four dependent variables, and can be 
quite complicated to solve. 
 

5.4.2 Incompressible Flow 
 

A further simplification is to specify the fluid as incompressible ( = constant).  This is a 
reasonable approximation for essentially all liquids and isothermal flows of gases at low 
Mach numbers (roughly M < 0.3 for air).  This incompressibility assumption is 
appropriate for many industrial and domestic flow systems, such as ducting and piping 
systems, flows around automobiles and ships, etc.  For an incompressible flow, the 
substantial derivative of the density (D/Dt) is zero, such that Eq. 5.15 reduces to: 

   

0V
Dt
D

=+
 

  0V =


 (5.24) 
0 
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or   

0
z
w

y
v

x
u

=



+




+



     in Cartesian coordinates  

See section 5.8.2 for the continuity equation in cylindrical coordinates. 
 

Since 0V =


, this implies that the velocity field for an incompressible flow is non-
expanding.  This means that any changes in a velocity component in its respective 
coordinate direction must be balanced by collective corresponding changes of each of the 
other coordinate velocity components, such that no local expansion or contraction of the 
fluid volume occurs.  This is illustrated by Eq. 5.22 above, which indicates that:  
 

 
( ) V

Dt
D1

Dt
dD

d
1 

=



−=




  

 

Thus, when 0V =


, a fluid cannot undergo local expansion/contraction, the density, , 
will remain constant everywhere, and the fluid will behave incompressibly.  This will be 
true even if the fluid could be compressed, but is not for the particular flow process under 
consideration (e.g. low-speed flow of air through ducts or around bodies).  In general, a 
vector field that has zero divergence is termed a solenoidal field. 
 

5.5   Uses of the Continuity Equation 
 

The continuity equation is a particularly powerful equation, which models the balance of 
changes between density and velocity.  For incompressible flows, density change terms 
all drop out, and the equation relates the balance of velocity changes in the respective 
coordinate directions.  This balance can be used to good effect, for example, to establish a 
third component of velocity when the other two components of velocity are known [e.g. 
if the functional behavior of two velocity components is known for a flow, then the third 
velocity component can be established via the continuity equation].  This same process 
also applies, of course, for two-dimensional flows, where only one known velocity 
component is necessary to establish the second. Additionally, the continuity equation is 
used to simplify the differential equation of momentum (the Navier-Stokes equation), as 
will be illustrated in Section 5.6.   
 

Example:  For an incompressible flow, ( ) k̂wĵvîuz,y,xV ++=


, the x- and y-
direction velocities are given by u = ax and y = - by, where a and b are constants.  
Determine the velocity component w, where w = 0 over the x-y plane at z = 0. 
 
Here we apply Eq. 5.24 for incompressible flow, 0V =


, solving for the w term. 
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http://en.wikipedia.org/wiki/Incompressible_flow#Relation_to_solenoidal_field
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Integrating, gives 
 
 ( ) ( )y,xfzabw +−=  
 
But, w = 0 for all x,y at z = 0, thus ( )y,xf  = 0, and ( )zabw −= . 

 
Note that when a = b, then w = 0 everywhere, and this is a classic inviscid solution for a 
flow impinging in the y-direction toward the x,y origin (x = 0, y = 0).  We will revisit this 
type of flow in Chapter 9.  However, if b > a, then w will be away from the x-y plane  
(w > 0 for z > 0, and w < 0 for z < 0).  Likewise, if b < a, w will be towards the x-y plane.  
In both of these cases, the velocity change in the z-direction balances the collective 
velocity changes in the other two coordinate directions, either moving additional mass 
toward the x-y plane or moving mass away from it. 
    

Example:  Consider the generic flow behavior of a two-dimensional jet, which exits a 
nozzle into an otherwise quiescent flow as shown in figure 5.3.  

 
 

Figure 5.3  Behavior of a two-dimensional jet exiting into a quiescent flow. 
 

As experience shows, the velocity of the jet in the streamwise x-direction, u, will 
decrease continuously with distance, such that along the centerline of the jet (y = 0), 

0xu  .  Based on this observation, we want to establish how the v velocity, 
normal to the streamwise velocity, will behave. 
  
Here we observe that the two-dimensional, incompressible continuity equation (in x, 
y) is: 
 

 0
y
v

x
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=



+



     or rearranging,   
x
u

y
v




−=



  (5.25) 

 

Thus, if 0xu  , this implies that 0yv  , or that the normal velocity, v, is away 
from the axis of symmetry (in a positive y-direction for y > 0, and in a negative y-
direction for y < 0).  In actuality, the flow also entrains (draws in) a certain amount of 
flow from the quiescent fluid it is exhausting into, so that the streamline pattern for 
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Uo 
u(x) 

Ao 

A(x) 

y 

x 

the developing jet flow will appear approximately as shown in  figure 5.4.  We will 
show a solution for this particular type of flow later in Chapter 12. 
 

 
 
 
 
 
 
 

Figure 5.4  Approximate streamline pattern for a two-dimensional, steady jet. 
 

Example:  Consider a uniform, two-dimensional, incompressible flow that undergoes 
a change in its cross-sectional area, such as when passing through a nozzle 
(decreasing area) or a diffuser (increasing area).  For simplicity, we will assume that u 
is uniform at the entrance of a nozzle, with the initial velocity and cross-sectional area 
given by Uo and Ao at x = 0, as shown in figure 5.5.    
 

 
 
 
 
 
 
 

Figure 5.5  An example of uniform flow through a generic nozzle 
 

Additionally, we assume that the streamwise velocity, u(x), changes uniformly (all u-
velocity components at a cross-section will be equal in magnitude).  We first 
determine the behavior of the streamwise velocity, u(x), as a function of the cross-
sectional area, A(x).  We then determine the respective behavior of the normal 
velocity, v(x), and the effect of the change in cross-sectional area, dA(x)/dx. 
 

For a uniform flow through a constrained two-dimensional duct, as shown, using 
control volume considerations for an incompressible flow, we can write: 
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Considering both a nozzle (a flow accelerator) as shown in figure 5.5, and a diffuser 
(a flow decelerator), from Eqs. 5.26 and 5.25 we can make the following 
generalizations : 
 

 Nozzle: center  towardflow0
y
v0

x
u0

dx
dA)x(A 









  

 Diffuser: center fromaway  flow0
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To establish the normal velocity behavior, v(x,y), that is required to maintain a 
uniform streamwise velocity, u(x), we write that: 
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Integrating Eq. 5.27 for v(x,y), gives: 
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If we assume symmetry about x = 0, then we surmise that v(x,0) = 0 on the centerline 
at y = 0, and thus f(x) = 0.  Therefore, the general expression for v(x,y) is: 
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To particularize this result, let a nozzle have an area distribution given by
( ) ax

oeAxA −= , or an exponential nozzle.  For this case we have from Eq. 5.28: 
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Note that if we examine the streamline equation for this flow (Eq. 3.4), we have: 
 

 adx
y

dyay
eU

yaeU
u
v

dx
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ax
o
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−
==  

 

integrating, gives: 
 

 axCeycaxyln −=+−=  
 

Here C is a constant depending on the particular streamline.  For example, along the 
centerline, which passes through (x,y) = (0,0), we get C = 0, and thus the streamline is 
the x-axis.  However, for a streamline passing through (x,y) = (0, yo), C = yo and the 
corresponding streamline will be described by: 
 

 ax
oeyy −=   (5.29) 

 

Equation 5.29 describes the family of streamlines entering at x = 0.  Figure 5.6 shows 
representative streamlines for this nozzle, with various initial starting yo locations 
letting a = 1.  Note that in this example, the streamlines that pass through x = 0 at y = 
1 represent the boundaries of the nozzle. 

    
  
 
 
 

5.6  The Momentum Differential Equation for a Fluid: The Navier-Stokes Equation 
 
Continuing on with our derivation of the governing equations of fluid mechanics, we now 
address the development of an equation that models the balance of momentum changes 
and forces, according to Newton’s second law.  Recall that Newton’s second law can be 

generically described as ( ) amVm
t

F 
=




= , a balance of forces and changes in 
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Figure 5.6  Streamlines for a two-dimensional exponential nozzle, 
( ) x

oA x A e−= . 
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momentum.  Here, we will use the differential element concept to derive a differential 
form of Newton’s second law applicable to a fluid.  There are several ways to approach 
this derivation, one being the use of a control volume approach, similar to what we did in 
the derivation of the continuity equation in section 5.3.  However, a more physically 
appealing approach is to employ our differential element as an infinitesimal Eulerian 
region with fluid passing through it in a Lagrangian process.    
 
Since we can assess the Eulerian acceleration of a fluid using the substantial derivative, 
as we showed in Chapter 3, this provides us with a tool to establish the acceleration of a 
fluid encompassed by a differential fluid element.  The forces acting on the fluid can be 
related to: (1) surface forces acting on the respective bounding surfaces of the differential 
element, and (2) body forces associated with the mass contained within the differential 
element.  We again assess these differential forces by use of a truncated Taylor series.  
The result of this latter process yields a stress tensor and body force vector, which we 
model as balancing the acceleration of the fluid, as determined from the substantial 
derivative of the velocity field.  The figure 5.7, schematically illustrates both the generic 
process followed, and the desired end result, which is a single vector equation which 
balances velocity field momentum terms with surface and body forces. 
 
  
 
 Newton’s 2nd law applied to fluid element     
   

  Relates – 
 

  Stresses & Body Forces    Acceleration 
     
 Fluid Deformation Tensor    Substantial Derivative 
 & Body Force Vector 
 
 
   Velocity Field Terms 
    + 
   Surface & Body Forces 
 

Figure 5.7   The generic process for application of Newton’s second law to a 
differential fluid element. 

 
The differential equation that we will derive is termed the Navier-Stokes equation, 
acknowledging the initial derivation of the equation, originally by C.L. Navier in 1822, 
with a later refinement of the derivation by G.G. Stokes in 1845.  This equation is the 

,u,v,w 

dx 
dz 

dy 
• x 

z 

y 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
http://en.wikipedia.org/wiki/Claude-Louis_Navier
http://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet
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keystone for the science of fluid mechanics, and forms the general basis for much that 
follows in this text. 
 

5.6.1  Modeling of Differential Surface and Body Forces 
 
We begin by examining the surface forces, in the form of stresses, that exist at the 
surfaces of an infinitesimally small differential element of volume, dxdydzd = .  
Although stresses act on all surfaces of the element, to simplify our analysis, we first 
consider only the x-direction stresses that act on the six surfaces of the differential 
element, as shown figure 5.8.  For the purposes of our differential analysis, we again use 
a truncated Taylor series to represent the spatial changes in the x-direction stresses across 
the differential element.  Here one needs to recall the manner in which we define the 
direction of a positive stress acting on a surface, as discussed in Chapter 1.   
 

 
 
Note that we assume that all applied stresses act with a positive orientation (not 
necessarily direction) relative to the coordinate system employed.  By making this 
assumption during the initial derivation, when we later solve the resulting differential 
equation, the sign of the resultant stress will indicate whether the stress acts with a 
positive or negative orientation on the respective surface of interest (we will revisit this 
point when we engage in solutions of the Navier-Stokes equation in Chapter 6).   
 

xyRemember, 

surface direction 

 

dx 
dz 

dy 

x 

y 

z 

zx

yx

xx dx
x
xx

xx




+

dz
z
zx

zx



+
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y

yx
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+

Figure 5.8   Illustration of all x-direction stresses acting on the bounding 
surfaces of a differential element. Note that we use  to represent 
shear stresses, and  to represent normal stresses. 
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Recall that the direction for the positive orientation of a stress depends on the product 
sign of (a) the outward normal vector for a surface, and (b) the direction the stress acts on 
that surface.  Thus, a positively-oriented stress is indicated by either: (1) a positive 
surface normal with a stress acting in a positive coordinate direction, or (2) a negative 
surface normal and a stress acting in a negative coordinate direction.    
 
For our derivation, it is a little awkward to assume a base value for each stress at the 
center of the differential element, since stresses are associated with surfaces of action.  
Thus, we assume that all base values of the assumed stresses are those acting on the 
surfaces of the differential element that are closest to the origin of our coordinate system.  
For example, the normal stress, xx, acting on the x-surface in the x-direction is assumed 
to act on the left face of the differential element, as shown in figure 5.8.  Likewise, the 
shear stress, yx, acting on the y-surface in the x-direction is assumed to act on the bottom 
face of the differential element.  Note that since these respective surfaces have an 
outward normal that points in a negative coordinate direction, each of these assumed 
stresses is assumed to act in a negative x-direction to yield a positive orientation for the 
assumed stress, as per our convention. 
 
As was done previously in section 5.2, a truncated Taylor series is used to characterize 
the changes in the respective stresses across the differential element, using the differential 
dimension appropriate for the direction of expansion.  For example, to characterize the 
normal stress on the right facing x-surface, we expand xx across the differential distance 

dx, giving a normal stress of ( )dx
x
xx

xx



+ .  This stress has a positive orientation in the 

positive x-direction since the outward normal for the right facing surface is also in the 
positive x-direction.  Similarly, the x-directed shear stress on the top surface is 

( )dy
y
yx

yx



+ , since we expand across dy in a positive y-direction.  Likewise, this stress 

has its positive orientation in the positive x-direction since the outward normal for the top 
surface points in a positive y-direction.  The other similarly modeled x-directed stresses 
on the differential element are as shown in figure 5.8. 
 
Having modeled our assumed x-directed stresses on the differential element, we now 
apply Newton’s second law, admFd 

= , using the differential stresses shown in figure 
5.8 to model the resultant x-direction surface forces on each face of the differential 
element. 
 
To characterize a generic differential body force, we assume that this mass-based force is 
characterized by some directional force field we define as 


.  Such a physical field could 
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be a gravitational field (normally the case), a magnetic field, or even possibly an electric 
field (if it can cause a mass-based force on the fluid material in question).  Commonly, 
we assume that g


= , where g is a gravitational field, appropriately oriented relative to 

our selected coordinate system.  
  
Having characterized all the relevant surface stresses and the body force field, we can 
now model the total forces acting on the differential element.  Note that to establish the 
surface forces, we further assume that the modeled stresses act uniformly across the 
differential area of the respective bounding surfaces.  For example, the x-directed 
differential force acting on the top surface of the differential element (call it dFy+dy, x) will 
be a product of the x-directed shear stress times the differential area it acts on, dAy =dzdx, 
yielding: 
 

 ( )dxdzdy
y

dF yx
yxxdyy 












+=+ ,  

 

Other x-directed surface forces are modeled similarly from the assumed stresses. 
For the body force, we assume that both the density and the body force vector are 
essentially uniform across the infinitesimal differential element.  Similar to the approach 
employed for derivation of the differential equation for continuity, the density is assumed 
to vary linearly across the differential element (since the element is assumed 
infinitesimal), and thus we use the assumed center value of density, , when determining 
the body force.  Thus, the differential mass contained within the element is assumed to be 
the product of the density and the differential volume, dm = (dxdydz).  Since the body 
force is proportional to the mass, the subsequent differential body force is modeled as the 
product of the differential mass and the body force vector field, or ( )dzdydxFd body =


. 

 

If we now sum all x-direction forces acting on the differential element, eliminating like 
terms, we obtain: 
 

 
 

 

xx
x x xx xx

yx
yx yx

zx
zx zx

dF dxdydz dx dydz dydz
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                            dy dxdz dxdz
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                            dz dydx dydx
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 yxxx zx
x xdF dxdydz

x y z
  

=  + + + 
   

  (5.30) 

 

 
5.6.2  The Differential Momentum Equation 

 
Substituting Eq. 5.30 into the x-direction component of Newton’s second law for the 
differential element, xx a dmdF = , where we employ the substantial derivative of the x-

direction velocity, u, to model ax, we have: 
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+




+




=
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+
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z
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y
uv

x
uu

t
udxdydzdxdydz

zyx
zxyxxx
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 yxxx zx
x

u u u uu v w
x y z t x y z

       
 + + + =  + + + 

       
 (5.31a) 

 

Similarly, for the y and z directions, we obtain: 

 xy yy zy
y

v v v vu v w
x y z t x y z

       
 + + + =  + + + 

       
 (5.31b) 

 

 yzxz zz
z

w w w wu v w
x y z t x y z

       
 + + + =  + + + 

       
 (5.31c)  

 
Eqs. 5.31a,b,c  are the respective component equations for Newton’s second law applied 
to a differential fluid element, and collectively they comprise the vector equation, 

( ) amVm
t

F 
=




= .  Note that these equations are in their most general form, and will 

apply to any fluid, regardless of its properties (i.e. viscous or visco-elastic, compressible 
or incompressible, etc.). 
 

5.6.3  Relating Stresses to Fluid Rates of Strain 
 
Since we are considering a homogeneous, continuous medium, we can reduce the stress 
tensor components in the above equations from nine to six by noting that the moments 
imparted about the center of our differential element by the shearing stresses must be in 
balance when the material is in equilibrium (see Timoshenko and Goodier, 1970).  This 

dFx dm ax = Du/Dt 
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allows us to equate the shearing stresses for adjacent sides of our differential element to 
each other, so that: 
 

 yxxy = ,  zxxz = ,  and zyyz =  
 

We are still far from a satisfying set of equations, since we still have six different stresses 
within the governing equations.  Now our objective is to represent these stresses in terms 
of strain rates, which can be directly related to the fluid deformation, and thus reflected 
by spatial derivatives of velocity, as was illustrated in Chapter 4.  Since we are dealing 
with a fluid continuum, we assume that the stress tensor for a fluid is linearly related to 
the strain rate tensor of a fluid, in the same manner that the stress tensor for a solid 
material is related to the strain tensor of a solid.  This assumption of a fluid with a linear 
stress to strain rate is termed a Newtonian fluid, after Sir Isaac Newton.  Newton, in his 
Principia Mathematica (1687), first hypothesized that most fluids demonstrate a linear 
relationship between the applied stress and the rate of strain (although Newton expressed 
it a little less concisely).  This concept was later adapted by Stokes (1845), who 
developed the mathematical model of a Newtonian fluid that is employed in modern fluid 
mechanics, and which we discuss below. 
 
To develop our analogy from solid mechanics, we first review the general relation of the 
stress tensor to the strain tensor for a Hookean solid.  Here, stresses are assumed to have 
a linear relationship of the form: 
 

 xy 1 xx 2 xy 3 xz 4 yy 5 yz 6 zzc c c c c c =  +  +  +  +  +   
  

In this most general relationship, each stress component is assumed to depend on all six 
rate-of-strain components, .  Clearly this is a mess, since similar equations for the other 
five stress components would require 30 additional independent coefficients in order to 
define completely the state of stress in a material.  However, for most solids the 
assumption is made of an isotropic medium (i.e. that the material stress vs. strain 
properties are independent of direction).  This assumption (and simplification) reduces 
the number of coefficients required to define the state of stress in a solid to two, since 
many of the original coefficients are either identically zero or related to each other.  
Recall that these proportionality coefficients for a Hookean solid are [for normal 
stresses]:  
 

E - the modulus of elasticity--a constant of proportionality of normal stress to normal 
strain; and 

  
n - Poisson’s ratio--which relates the lateral contraction of a material to the axial 

expansion (i.e. directly related to the volumetric change of a material under an 
applied stress).   

http://en.wikipedia.org/wiki/Philosophi%C3%A6_Naturalis_Principia_Mathematica
http://en.wikipedia.org/wiki/Sir_George_Stokes,_1st_Baronet#Fluid_dynamics
https://en.wikipedia.org/wiki/Hooke's_law
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Using these coefficients, the stress-strain relationships for a solid can be represented as: 
 

( ) zzyyxxxx n
E
1

+−=  

( ) zzxxyyyy n
E
1

+−=  (5.32a) 

( ) yyxxzzzz n
E
1

+−=  

( )
xyxyxy G

1
E

n12
=

+
=  

( )
yzyzyz G

1
E

n12
=

+
=  (5.32b) 

( )
zxzxzx G

1
E

n12
=

+
=  

 

In Eq. 5.32, G is termed the modulus of elasticity in shear, and is a constant of 
proportionality between shear stress and shear strain.  Note that if we invert the shear 
strain equations in Eqs. 5.32, and solve the three normal strain equations simultaneously 
to obtain explicit expressions for each normal stress, we obtain: 
 

( )( )( ) ( ) xxzzyyxxxxzzyyxxxx G2
n1

E
n21n1

nE
+++=

+
+++

−+
=  

( )( )( ) ( ) yyzzyyxxyyzzyyxxyy G2
n1

E
n21n1

nE
+++=

+
+++

−+
=  (5.33a) 

( )( )( ) ( ) zzzzyyxxzzzzyyxxzz G2
n1

E
n21n1

nE
+++=

+
+++

−+
=   

 

xyxy G=  

yzyz G=  (5.33b) 

zxzx G=  
 

In the three normal stress equations, Eqs. 5.33a, the first group of constants is given the 
designator , and is termed Lame’s constant. Since this constant modifies the collective 
strains, it is reflective of the volumetric expansion (or contraction) of the material.  The 
second constant, G, is of course the modulus of elasticity in shear.   
 
Similar arguments were made by Stokes in developing the stress-strain rate relationships 
for a fluid.  As pointed out in Chapter 1, a fluid cannot sustain a fixed strain, but will 
deform continuously under an applied force or stress.  This is what led Newton to the 
logical conclusion that any force applied to a fluid will cause it to continuously deform, 

Normal Stresses 

Shear Stresses 

http://www63.homepage.villanova.edu/michael.raulli/pdf/lame_handout.pdf
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and that the rate of this deformation, or strain rate, is the appropriate response of the 
fluid to the applied force, or stress.  What Stokes hypothesized was that a set of stress-
strain rate equations, analogous to the stress-strain equations for a Hookean solid, could 
be developed for a Newtonian fluid, under the following set of postulates: 

 

1. The fluid is continuous, and the components of the stress tensor vary linearly with 
the strain rate. 
 

2. The fluid is isotropic, such that its properties are independent of direction. 
 

3. When the fluid is at rest, with zero strain rates, the deformation equations must 
reduce to the hydrostatic pressure condition (i.e. pzzyyxx −===  ). 

 

Note that our assumptions to this point satisfy the first two postulates.  The third is 
achieved by including a pressure term in the equations for the normal stresses.   
 
Correspondingly, the stress equations that Stokes arrived at for a Newtonian fluid are 
given in the following Eq. 5.34.  
 

 
 
 

( )zzyyxxxxxx 2p ++++−=   xyxy 2 =   

( )zzyyxxyyyy 2p ++++−=   yzyz 2 =   (5.34) 

( )zzyyxxzzzz 2p ++++−=   zxzx 2 =   
 

In Eqs.5.34,  is termed the coefficient of viscosity,  is termed the coefficient of bulk 
viscosity (sometimes the second coefficient of viscosity), and the  terms indicate the 
rate of strain components.  Note that the coefficient of viscosity, , is analogous to G for 
a solid, accounting for viscous forces due to shear and incompressible deformation of a 
fluid.   models the ratio of the applied stress to the local strain rate, and for Newtonian 
fluids will remain essentially constant over a range of local strain rates (however, it can 
vary, often strongly, with temperature).  The coefficient of bulk viscosity, , performs the 
same function as  for a solid, and relates the proportionality of the applied stress to the 
volumetric expansion/contraction of the fluid.  This term, as we will see, only plays a 
significant role when variations in fluid density, or fluid compressibility, are relevant, 
such as for flows of high-speed gases. 
 

The inclusion of pressure in Eqs. 5.34 satisfies Stokes’ third postulate, such that if the 
rates of strain vanish, we still have a normal stress acting on the fluid, caused by the 
pressure acting inward on a fluid element.   Note that the pressure term is taken as 

linear strain 
rate 

volume rate of 
expansion 

shear strain 
rate 
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negative since it will always act opposite to the outward surface normal for our 
differential fluid element.  
 

 Recall that in Chapter 4, Eq. 4.9, we derived the rate-of-strain tensor (in Cartesian 
coordinates) in terms of spatial variations of the fluid velocity field as: 
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So, substituting these velocity-based expressions for the rate-of-strain components into 
the stress-rate of strain equations, Eq. 5.34, we obtain: 
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To further simplify these stress equations, we substitute V
z
w

y
v

x
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  [the 

divergence of V


] into Eqs. 5.35, and have: 
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To examine the impact of Stokes’ third postulate for these equations, we sum the three 
component normal stresses of Eqs. 5.36 and obtain: 
 

 ( ) ( ) ( ) V32p3V3V2p3zzyyxx


++−=++−=++  

 

However, if we assume a mechanical pressure (call it p ) that is the negative average of 
the normal stresses, we can write: 
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 V
3
2p

3
p zzyyxx 









+−=

++
−=  (5.37) 

 

Of course, if the fluid is at rest, and V

  is zero, then Eq. 5.37 yields pp = , which 

satisfies Stokes’ third postulate.   However, when there is fluid motion, Eq. 5.37 is 
problematic, since the mean pressure in a deforming viscous fluid may not be equivalent 
to the thermodynamic pressure.  This result presents a dilemma, although it is generally 
not a problem for incompressible flows (where 0V =


 always), and often has little 

impact for compressible flows.  Stokes, faced with this dilemma (which would greatly 
complicate the momentum equation derivation), took the easy way out.  He reasoned that 

pp =  for all flow situations (not just static conditions), and hypothesized that −
3
2 , 

which is known as Stokes’ hypothesis.   This hypothesis, although universally utilized, 
has been the subject of controversy [see White, 1991 and the commentary by Gad El-Hak 
(1995)].  However, as White notes, for most applications Stokes’ hypothesis has little 
impact—with the exceptions being for shock waves, and sound absorption and 
attenuation.  For the purposes of this text, we will accept Stokes’ hypothesis, since it is 
consistent with the types of incompressible flow problems we address here.  Accepting 
Stokes’ hypothesis further reduces Eqs. 5.36 stresses to: 
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5.6.4  Reducing the Momentum Equation to the Navier-Stokes Equation 
 

Now armed with the velocity-based models of Eqs. 5.38 for the fluid stresses, we return 
to the differential equation for Newton’s second law, and substitute our Stokes simplified 
stress models from Eqs. 5.38 for a Newtonian fluid into Eqs. 5.31. Considering the x-
direction equation first, Eq. 5.31a, we obtain: 
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 (5.39) 
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If we further restrict the fluid to one of constant viscosity,  = constant, this yields:  
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Rearranging Eq. 5.40, and numbering select terms for further simplification, we have: 
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By judicious rearrangement of the selected terms in Eq. 5.41, as indicated below, we can 
make the collective identification of more compact terms that utilize the Laplacian and 
divergence operators, as shown: 
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Thus, the x-direction component of the momentum equation simplifies to: 
 

 ( ) x
2

x aV
x3

1u
x
p

=



++




−


 (5.42a) 

 

Similarly, y- and z-direction components of the momentum equation are: 
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 (5.42b) 
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 (5.42c) 

So, expressing the momentum equation for a Newtonian fluid collectively as a single 
vector equation gives what is termed the Navier-Stokes equation—first derived 
generically by Navier, and particularized for a Newtonian fluid by Stokes: 
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Now, in section 5.4.3 we showed that 0V =


 for an incompressible fluid.  Employing 
this relationship in Eq. 5.43 eliminates the compressible stresses term, giving: 
 

 
Dt

VDVp  2




=+−   
 

Since density is constant for an incompressible flow, it is often convenient to divide 
through by , giving an equation of the form: 
 

2p DV  V
Dt


− +  =


   (5.44) 

Here, 



= , and is termed the “kinematic” viscosity.  Since  is the ratio of two fluid 

properties, it is of itself also a fluid property.  It is this form of the Navier-Stokes 
equation, Eq. 5.44, that we will make the most general use of in this text, since it provides 
a less cumbersome form for dealing with constant density flows. 
 
Note that the vector form of the Navier-Stokes equation applies generically for any 
coordinate system.  Although we developed the equation in Cartesian coordinates, the 
generic vector form of the equation is applicable for any coordinate system.  For 
example, the expanded x-direction equation in Cartesian coordinates is: 
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However, note that the directional components of the Navier-Stokes equation expressed 
in cylindrical or spherical coordinate systems will contain additional terms that result 
from the dependency of selected unit vectors employed in those systems upon changes in 
angular position.  For example the r-direction component equation in cylindrical 

coordinates, shown below, contains “extra” terms due to the dependence of the rî  and î  
unit vectors upon changes in the angle . 
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A listing of all the directional components of the incompressible Navier-Stokes equation 
in Cartesian and cylindrical coordinates are given in Section 5.8, at the end of this chapter 
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and the Appendix at the end of this book.  A listing of the Navier-Stokes equation, and its 
components, in spherical coordinates can be found here. 
 
5.7 Utilization of the Incompressible Continuity and Navier-Stokes Equations 
 
For constant density flows, the continuity and Navier-Stokes equations are sufficient to 
solve for the velocity and pressure fields within an isothermal fluid. As shown in figure 
5.9 below (for Cartesian coordinates), these equations provide four equations (one scalar 
plus three vector component equations) with four dependent unknowns (u, v, w, and p), 
rendering an exact solution possible.   
 

  Continuity   → Scalar equation (1 equation) 
 
  Navier-Stokes → Vector equation (3 equations) 
  (momentum) 
 
  
   u, v, w, p 
 
  
  4 unknowns 
 
 

 
 
 
While we now have the equations to implement exact solutions, the solution process can 
be quite complicated, particularly as the dimensional complexity of a flow increases.  
While closed-form solutions are possible for one- and some two-dimensional flows, 
three-dimensional flows generally necessitate the use of numerical solutions, employing 
sophisticated computational approaches.  The addition of time dependency to a flow 
further compounds solution procedures, with all but the simplest of such flows requiring 
both numerical solution approaches, as well as possible further modeling of the 
unsteadiness properties, like for turbulent flows (see Chapter 17).   
 

That being said, there is still much that can be learned about the behavior of fluid flows 
using closed-form solution techniques.  It will be the approach in this book to exploit 
flow problems that lend themselves to closed-form solutions, which can then be 
employed to examine the implications on the physics of fluid behavior.  While modern 
commercial computational programs can provide effective numerical solutions of many 
useful fluid flow geometries of significant complexity, it is important that the user of 

4 equations 

An exact solution 
is possible 

Figure 5.9 Schematic of the generic solution process for a constant density, 
isothermal fluid, in Cartesian coordinates. 

http://www.maths.bris.ac.uk/~maajh/afluids/coords.pdf
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such programs understand the interplay of the physics within a fluid that influences those 
solutions.  In addition, it is through the solution and examination of simpler physical 
situations that one learns the physical trade-offs inherent in the governing equations, and 
develops an intuitive feel for what behavior to anticipate for a specific application, which 
is the hallmark of a competent fluids engineer.  
 

Accordingly, in the following Chapter 6 we will begin to examine the application of the 
continuity and Navier-Stokes equations to selected physical situations, and illustrate how 
to utilize appropriate simplifications that allow the extraction of tractable, closed-form 
solutions of the velocity fields.  We will do this by first considering simple solutions, 
which involve one-dimensional dependence.  Later, in Chapter 12, we will consider more 
complicated solutions, which depend on two dimensions, or one dimension and time. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.8 The Governing Equations for Incompressible Flow 
 

5.8.1 Stresses on an Incompressible Fluid: Cartesian Cylindrical Coordinates 
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5.8.2 Stresses on an Incompressible Fluid: Cartesian Cylindrical Coordinates 
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5.8.3 Continuity and N-S Equations, Cartesian Coordinates (,  constant) 
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y-direction: 
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z-direction: 
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5.8.4 Continuity and N-S Equations, Cylindrical Coordinates (,  constant) 
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z-direction: 
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Study Problems 
 
1. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Ax.  If v = 0 along x-axis, determine v. 
 b) For a 3-D, incompressible flow, u = 2x and v = -y.  Determine w, if w = 0 in the x-y plane. 
 c) The velocity of a flow is given by: kxzjyixyV 2 ˆˆˆ ++=


 

  i)  Is this an incompressible flow?  Why? 
  ii) If not, determine the rate of change of density at (x, y, z) = (1, 2, 1), where  = 2. 
 
2. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Axy.  If v = 0 along x-axis, determine v. 
 b) For a 3-D, incompressible flow, u = 2y and v = -x.  Determine w, if w = 0 in the x-y plane. 
 c) The velocity of a flow is given by: kzxjyixyV 2 ˆˆˆ +−=


 

  i)  Is this an incompressible flow?  Why? 
  ii) If not, determine the rate of change of density at (x, y, z) = (2, 1, 1), where  = 2. 
 
3. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Ay.  If v = 2 along x-axis, determine v. 
 b) For a 3-D, incompressible flow, u = x and v = y.  Determine w, if w = 0 in the x-y plane. 
 c) The velocity of a flow is given by: 2ˆ ˆ ˆV x i zyj yzk= + +  
  i)  Is this an incompressible flow?  Why? 
  ii) If not, determine the rate of change of density at (x, y, z) = (1, 1, 1), where  = 2. 
 

4. Starting from the vector equation,
Dt

VDVp1  2



=+


−  (Eq. 5.44), derive the  

 The Navier-Stokes equation for cylindrical coordinates (Eqs. 5.47b-d). Remember you have 
to take the derivatives of the rî  and î  units vectors with respect to θ 

http://en.wikipedia.org/wiki/Leibniz_integral_rule
http://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign
http://en.wikipedia.org/wiki/Solenoidal_vector_field
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Chapter 6 
 

Simple Solutions to the Navier-Stokes Equations 
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In this chapter, we begin to examine solutions of the Navier-Stokes equation.  While the 
combination of the Navier-Stokes and continuity equations presents a particularly daunting set of 
equations, experience has shown that we can develop closed-form solutions for a number of 
simple flows by implementing several simplifying assumptions that reduce both the 
dimensionality and complexity of the governing equations.  The value of these simpler solutions 
is that they allow one to develop accurate solutions for highly simplified physical situations, 
which then provide insight into the dynamics of fluid interactions, and allow examination of the 
behavior of associated physical properties (e.g. shear stress and vorticity).  The subsequent 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 6 
 

 116 

examination of the predicted fluid motion, and the associated properties, allows us to understand 
the impact of a moving fluid, and develop a physical appreciation for the expected behavior in 
different types of flow situations. 
 
In its full-blown glory, the Navier-Stokes equation comprises a set of three coupled, partial 
differential equations of second order.  As pointed out in Chapter 5, the mathematical form of 
these equations depends upon the specific flow conditions and geometry, which may render the 
equations elliptic, parabolic, or hyperbolic in nature.  We will comment on the specific form and 
relevance of the simplified equations as we examine appropriate solution techniques, and 
illustrate the necessary conditions required to establish solutions.  In the present chapter, we 
address only steady, one-dimensional flows, which will render the equations as ordinary 
boundary-value problems. For such problems, we must be able to specify the conditions of the 
appropriate dependent variable (e.g. u, v, or w, and p in a Cartesian system) at the flow system 
boundary, as defined by the relevant independent coordinate (e.g. x, y, or z).   
 
In considering appropriate solutions of the governing equations, we first discuss the types of 
simplifications we can invoke, and then the types of boundary conditions that we may employ.  
We then examine a number of simple solutions that are subject to specific simplifications and 
boundary conditions. 
 
6.1 Simplifications of the Governing Equations 
 

6.1.1 Steady Flow 
 
Many flows of practical interest can be considered as steady (i.e. not changing with time).  
Examples of such flows are steady flow through a pipe, the airflow around an airplane in steady 
flight, or the lubricant moving between two surfaces of a continuously rotating sleeve bearing.  
In such cases, the time-dependent term in the Navier-Stokes equation will be negligible, leaving 
the advective acceleration terms as the only acceleration components in the Navier-Stokes 
equation.  Such a condition will arise, for example, when a fluid flows steadily through a 
contracting nozzle.  As pointed out earlier, a fluid particle will undergo advective acceleration 
within a contraction as the fluid particle passes through the increasing velocity field; however, 
when we view the flow at a fixed point, there will be no local change with time, thus the flow is 
steady.   
 

6.1.2   Dimensionality 
 

By the dimensionality of a fluid, we refer to the number of independent coordinate dimensions 
(e.g. x, y, z) required to specify the functional behavior of a dependent variable (e.g. u, v, w, p).  
Now, all real flows are three dimensional to a lesser or greater extent, depending on the initial 

https://en.wikipedia.org/wiki/Elliptic_partial_differential_equation
https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation
https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
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flow conditions and the geometry that the flow passes through or around.  However, certain flow 
geometries lend themselves to situations where we can make a reasonable assumption of either 
two- or one-dimensional flow, and thus greatly simplify the governing equations.  Additionally, 
appropriate dimensional constraints can render one or more of the dependent variables as null, 
thus eliminating one or more of the directional equations of motion.   
 
The flow between parallel flat plates of infinite extent is an example of a reduced dimensional 
and variable type of flow.  For such a flow, the sides constrain the flow to motion only in a 
direction parallel to the plates, which eliminates any flow normal to the plates, as we shall see in 
several examples we consider in this chapter.  Such parallel plate flows are driven either by a 
pressure change parallel to the plates, or by the plate motion itself.  If the driving forces are 
constrained to a one-dimensional direction, it is relatively easy to show that changes will only 
occur in the velocity component in the direction of application of the driving force(s). This will 
consequently reduce the Navier-Stokes equation to a one-component equation.  Thus, any 
changes to the dependent velocity component will be constrained to changes only in the 
coordinate direction of, or normal to, the relevant velocity.   
 
We will examine several of these constrained types of flows, where only one velocity component 
is relevant, and which undergo changes in only one coordinate direction.  While such flows are 
highly idealized, they present quite tractable problems that lend themselves to straightforward 
analytical solutions, since the governing equation reduces to an ordinary differential equation 
(ODE).  Moreover, the subsequent solutions allow for straightforward examination of the 
properties of the moving fluid, such as shear stress and vorticity, providing a basis to examine 
the behavioral tradeoffs that take place in a fluid flow.  Accordingly, as we relax the constraints 
on a system, such as the examination of flows between converging surfaces, our more 
constrained solutions will provide a base of understanding that will help us assess the generally 
more complicated and complex flows that develop for less constrained and more geometrically 
complicated flow systems. 
 

6.1.3  Fully-Developed Flow 
 

When a steady flow passes through a constant cross-section channel or pipe, we often constrain 
our solution to the fully-developed flow that will exist when the flow has reached equilibrium, 
such that the velocity profile no longer changes with downstream position.  Such conditions 
occur when a flow between parallel plates, or within a pipe or other constant cross-section duct, 
has passed far enough downstream such that the flow undergoes no further redistribution of fluid 
momentum.  Under such a condition, the velocity distribution of the flow will remain fixed with 
respect to all coordinate directions.  This characteristic greatly simplifies the governing 
equations, since all advective acceleration terms are null, which reduces the Navier-Stokes 
equation to a balance between viscous and pressure forces.  Since the basis of the Navier-Stokes 
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equation is Newton’s law, the presence of a fully-developed flow simply reduces the analysis of 
a flow field to a balance of forces, with no fluid acceleration. 

Such fully-developed flows generally yield simple governing equations and solutions.  These 
solutions are not only instructive of the flow behavior, but also form the fundamental basis for 
several instruments that are employed to measure fluid viscosity. 
 
6.2 Boundary Conditions 
 
From your calculus courses, you should recall that the complete solution of a differential 
equation requires that we be able to specify as many boundary conditions as the order of the 
derivative functions for each dependent variable relative to each independent variable.  For 
example, consider the x-direction Navier-Stokes equation, given by: 
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Equation 6.1 contains second-order derivatives of u relative to x, y, and z.  This requires two 
boundary conditions for each of these derivatives, providing two boundary conditions for either u 
or the first derivative of u at specified bounding values of x, y, and z.  Thus, we require six 
boundary conditions for u.  Note that we also require a seventh condition in x for the pressure, 
and an eighth for u at a specified time, t.  This latter time condition is usually termed an initial 
condition, although it is still a condition for a boundary value problem.  Thus, to solve the 
collective set of three scalar equations comprising the components of the Navier-Stokes equation 
would require an additional eight boundary conditions for each equation, for a total of 24 
bounding conditions.  Of course three of these 24 conditions will also provide the boundary 
conditions for the continuity equation, our fourth equation necessary for development of a 
complete solution. 
 
At this point, one can be staggered by the complexity of the solution process for a fully three-
dimensional, time-dependent flow, and can appreciate the need for some degree of 
simplification.  Generally, as the governing equations are simplified (or eliminated because of 
non-varying dependent variables), the number of bounding conditions is reduced accordingly.  In 
our most simplified situations, such as our first example below for a Couette flow (Section 
6.3.1), which reduces to a single second-order ODE, we only require two boundary conditions.  
As we address more complicated flows, with either multiple equations or additional order 
derivatives, we will require additional boundary conditions.  The most complex flow we address 
in this text is a boundary layer flow in two dimensions, which necessitates five boundary values:  
two for u with y, one for u with x, one for v with y, and one for p with x. 
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6.2.1 Solid Boundaries and the "No Slip" Condition 
 
The most common boundary condition is generally specified at a solid boundary.  Boundary 
conditions for a solid boundary will always be of the first kind, which indicates a specified value 
of a dependent variable (e.g. u = 4) that will exist at a specified spatial location (e.g. at y = 1).  
For example, the velocity of a viscous fluid adjacent to a solid boundary will always be identical 
to the velocity of the boundary, as a consequence of what is termed the “no slip” condition.   
 
The no slip condition is a result of fluid-surface behavior at a molecular level. The fluid 
molecules immediately adjacent to a solid surface fill the molecular voids in the solid surface 
and mechanically bond (by adhesion) to the molecules of the solid surface.  In contrast, fluid 
interaction away from a solid surface is due to molecular cohesion, caused by individual fluid 
molecules being mutually attracted to other fluid molecules; the subsequent effect of molecular 
cohesion is reflected by the property of fluid viscosity, which was discussed in Chapter 1.  Since 
mechanical adhesion is much stronger than molecular cohesion, a fluid adjacent to a solid 
surface will move at the velocity of the surface, creating the so-called no slip condition. For 
example, if a boundary is stationary, the bounding velocity is zero; if the boundary is moving in 
the x-direction at a velocity U, then the boundary condition is u = U.  Additionally, the velocity 
normal to a solid boundary is always zero, unless the boundary moves in a normal direction or 
has fluid injected through the surface. 

 
6.2.2 Porous Boundaries 

 

Porous boundaries are quite interesting.  Such boundaries in reality are such things as screens or 
(to a certain approximation) perforated plates.  These boundaries differ from a solid boundary in 
that fluid may penetrate perpendicular to the bounding surface.  For porous surfaces, we idealize 
that the flow parallel to the bounding surface is still subject to the no slip condition, and thus 
moves at the surface velocity in a direction parallel to the surface.  However, the permeability of 
the surface allows flows to move normal to and across the surface, which requires the normal 
velocity to be specified at the surface.  Again, these are boundary conditions of the first kind, 
with the velocity value specified at a particular spatial position or surface. An example of a 
porous surface (although the flow is not a Newtonian fluid) is a moving wire belt that is used in 
papermaking processes.  In papermaking, fluidized paper pulp (generally 1% wood fiber in water 
by volume) flows tangentially onto a moving belt, where the water is rapidly removed from the 
pulp by suction across the moving, porous wire surface.   Other quite interesting examples of 
porous boundaries will be addressed in this and other chapters to follow. 
 

6.2.3 Boundaries within a Homogeneous Fluid 
 

Boundary conditions within a homogeneous fluid may be either of the first kind or second kind 
(where the first derivative of an independent variable is specified at a fixed position).  An 

http://en.wikipedia.org/wiki/No-slip_condition
http://en.wikipedia.org/wiki/Adhesion
http://en.wikipedia.org/wiki/Cohesion_%28chemistry%29
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example of a boundary condition of the first kind would be if a fluid extends to infinity (or at 
least very far from another bounding surface), at which point the velocity asymptotes to a fixed 
value, such as a fluid which is at rest far from a moving surface.  Another example would be 
where a fluid is moving at a constant value outside a region of large viscous change, such as the 
flow outside of the boundary layer that forms when a viscous fluid flows over a solid boundary. 
 
Examples of a boundary condition of the second kind usually occur where the shear stress within 
the fluid can be considered either zero or a constant value.  Since shear stress is directly 
proportional (for a Newtonian fluid) to the first derivatives of velocity variables, such a bounding 
condition would indicate a null or constant value of the appropriate velocity derivative(s).  This 
type of boundary condition can occur where a fluid is again assumed to be either at rest or 
moving at a constant velocity, or where it can be surmised that the velocity has reached either a 
maximum or minimum (which by definition yields a null first derivative).  Such an example is 
the flow through a pipe or tube, where by symmetry it is inferred that the velocity achieves a 
maximum at the centerline. 
 

6.2.4 Boundaries between dissimilar fluids 
 

When two fluids move adjacent to one another, this presents an interesting set of boundary 
conditions, since both the velocity and the shear stress at the interface between the two fluids 
must be identical, since the velocity in a Newtonian fluid cannot be discontinuous (by 
definition).   This results in coupled boundary conditions of the first and second kind (via the 
first derivatives of velocity, related through the Stokes shear model of Chapter 5), applied at the 
fluid-fluid interface.  These types of conditions apply for the common movement of adjacent 
immiscible fluids, such as water and oil. 
 
An interesting two-fluid process is the coupled adjacent flow of water and air.  Due to the 
significant variance in densities (approximately 1000:1), it would seem that the degree of 
interaction would be insignificant.  And when the prime mover is water, such as a flowing river, 
this is to some degree true.  However, when the prime mover is a high-speed airflow, as 
experienced in storms over the ocean, the result can be the transference of significant motion and 
energy to the water mass, as evidenced by the generation of ocean waves, which are essentially 
caused by the solar induced movement of air (i.e. “winds”).  I cover an example of such an air-
water flow in Chapter 12, on more complicated Navier-Stokes solutions. 

 
6.2.5  Laminar vs. Turbulent flow 
 

The Navier-Stokes equations for incompressible flow, with the appropriate boundary conditions 
discussed above, apply to all fluids, regardless of their behavior.  However, to analyze a 
particular flow, one needs to determine the flow condition, which can either be a well-behaved 
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laminar flow or an unsteady, more chaotic type of flow, generally lumped under the term 
“turbulence.”  Laminar flows move smoothly in layers, with no particular mixing.  In contrast, 
turbulent flows, which we cover in Chapter 17, move in a more irregular manner, with 
significant mixing.  The controlling parameter, which is indicative of whether a flow will behave 
as a laminar or turbulent flow is termed the Reynolds number, which is a ratio of local inertia 
forces to viscous forces.  Originally conceived by Osborn Reynolds (who first characterized 
turbulent flow), the Reynolds number originates from dimensional analysis, and is given by the 
following equation: 
 

2 2UUL UL UL u inertia forces
uU viscous forces
yL

Re


 
     

    
      

  

Where 
 

L, is a characteristic dimension of the flow or flow geometry (e.g. a pipe diameter); 
U, is a characteristics velocity of the flow (e.g. the average velocity in a pipe); and 
, is the kinematic viscosity of the fluid (the ratio of absolute viscosity to density). 
 

Each type of flow can generally be characterized by an appropriate Reynolds number, with some 
empirically-determined limiting value, below which one should expect laminar flow and above 
which turbulent flow is probable.  These Reynolds number limits vary for different types of flow 
geometries (which also determine which characteristic length is used).  For example, for a flow 
due to a pressure gradient between parallel plates, the characteristic length would be the distance 

between the plates, with the limiting Reynolds number h
UhRe 1400 


, where h is the distance 

between the plates.  For flows in tubes and pipes, the limiting Reynolds number is 

D
UDRe 2300 


, where D is the tube/pipe inner diameter. Other geometries will have 

different limiting Reynolds numbers, and be based on different characteristic lengths and 
velocities (see a broader discussion of the Reynolds number here). 
 

The key point is that the Reynolds number is a parameter that helps establish whether a flow is 
expected to behave in a laminar or turbulent manner.  We will revisit the Reynolds number, and 
its implications, later in Chapters 13, 15, and 17.  However, for the examples that we consider in 
this chapter we assume that the Reynolds number is below the critical limit, and that all the flows 
behave as laminar flows. 

 
6.3 Simple One-Dimensional Solutions with Parallel Boundaries 
 

The simplest types of flows are those between closely-spaced parallel plates.  Here we assume 
that the plates have some finite spacing, and extend to infinity in both the flow and in the cross-
flow directions.  In the following, we examine several classic parallel plate flows. 

http://en.wikipedia.org/wiki/Reynolds_number
http://en.wikipedia.org/wiki/Osborne_Reynolds
https://en.wikipedia.org/wiki/Reynolds_number
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6.3.1 Couette Flow 
 

The Couette flow is the simplest possible viscous flow.  However, this type of flow has a variety 
of applications, from the development of viscometers for the measurement of fluid viscosity, to 
the assessment of energy dissipation in fluid bearings used in rotating machinery.  The concept, 
as shown in figure 6.1, is quite simple.  A viscous fluid is bounded between two parallel plates of 
infinite extent.  One plate moves at a constant velocity U, while the other plate remains fixed.  
Here we make several simplifying assumptions, as indicated below.  Key among these is that the 
flow is both steady and fully developed, which negates any fluid acceleration effects.  Thus, we 
only need to consider a balance of forces—and only shear forces, since (as we will show) 
pressure forces are not relevant.  

 
 
  
 

 

Figure 6.1 Couette flow between a lower stationary surface and an upper moving surface. 
 

Since this configuration is rectangular (we will examine the axisymmetric version of this 
problem later), we utilize the Navier-Stokes equation in Cartesian coordinates to develop a 
solution.  If we assume that the plates are infinite in extent in the z-direction, then we can further 
assume that there will be no flow changes in the z-direction (i.e. into the page, as drawn above).  
This assumption allows us to neglect the z-direction equation, and any terms in the x- and y-
direction equations that contain w, the z-direction velocity. 
 

So, writing the x and y Navier-Stokes equations in two-dimensions, we have: 
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 Initial Assumptions 
1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 

  

We now delete non-relevant terms from the Eqs. 6.2 as a consequence of our simplifying 
assumptions.  Note that the red arrows indicate the terms that we neglect in the equations, with 
the associated number indicating the assumption that allows us to neglect the term. 

y 

x 
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U 

1 2 3 2 

1 2, 3 3 3 3 

http://en.wikipedia.org/wiki/Couette_flow
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It may be initially unclear why assumption 3 results in the elimination of velocity terms in the 
equations.  This is a consequence of the continuity equation for an incompressible flow.  Recall 
for a constant density flow that the continuity equation reduces to 0V 


, which in two 

dimensions is:  
 

 0
y
v

x
u










     

 

However, because of the fully-developed flow assumption, which negates any changes in the x 
direction, the continuity equation reduces to: 
 

 0
y
v





      v = f(x) + constant      v = constant    

 

Note that v will be a constant, since the fully-developed flow assumption means that the velocity 
characteristics will not change with x-position.  To determine the constant in the equation, we 
note that the boundary condition for v at either solid surface is zero.  So, taking v = 0 @ y = 0, 
then v = 0 everywhere (which also means that higher derivatives of v will also be null as well).  
Thus, continuity considerations lead to the five cancellations, noted by 3, of v-associated 
acceleration terms in Eqs. 6.2. Thus, by utilization of the first three assumptions, Eqs. 6.2 are 
reduced to: 
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     (6.3b) 

 

Now, our fourth assumption above allows us to drop the body force terms represented by x and 
y.  However, let’s consider why this is a reasonable assumption. 
 
If we assume that gravity acts in the y-direction (vertically, as we look at this page), then we can 
write: 
 

 jgji yx
ˆˆˆ 


 

This renders Eqs. 6.3 as: 
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Integrating the y-equation, Eq. 6.4b, yields: 
 

Cxfgyp  )(   (6.5a) 
 

Now, if we let the flow be quiescent, then we would have a hydrostatic condition, where u  = 0, 

and Eg. 6.4a reduces to 0
x
p




 .   Integrating the simplified Eq. 6.4a yields: 
 

 C)y(fp      (6.5b) 
 

Comparing Eqs. 6.5a and 6.5b, we note that since Eq. 6.5b contains no function of x, then f(x) in 
Eq. 6.5a must be zero.  Thus, Eq. 6.5a can be reduced to Cgyp  , or   0H pgyyp  , 

where 0C p  is the pressure at y = 0.   Hp y  is the pressure due to hydrostatic effects, which will 

exist whether or not motion is imparted to the fluid.  Now, when we allow the fluid to move, 
equation Eq. 6.5a becomes: 
 

    0 Hp gy p f x p y P x( )        (6.6) 
 

where  Hp y  reflects the hydrostatic pressure due to gravity, and P(x) reflects the dynamic 

pressure due to the movement of the fluid.  Now, substituting Eq. 6.6 back into the original  
Eqs. 6.4 gives: 
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Rearranging (noting =µ/) yields: 
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Thus, the dynamic pressure, P, can only be a function of x, the direction of fluid motion.   
 

Now consider the assumption that the plates are infinite in the x-direction.  The only way that 
such an assumption is realistic is if the plates were to actually circumvent the earth, and join 
again, making this a set of continuous parallel surfaces, one moving relative to the other.  Such a 
situation renders the fluid region between the plates connected, and as such we could draw 
streamlines through the fluid, parallel to the plates.  However, this also implies that when these 
streamlines meet after circumventing the earth, the pressure at that juncture point must be 
continuous, and thus identical.  Moreover, since any point along a continuous streamline could 
be the juncture point, then the pressure at all points along the streamline must be identical.  Thus, 
the pressure must be a constant, and the derivative of pressure with respect to x must be zero. 
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Thus, recognizing that 0
x
P




 , the Navier-Stokes equations for a Couette flow reduce to: 

0
y
u
2

2





  or  0

dy
ud
2

2

 , since u is only a function of y (6.7) 

   

Since Eq. 6.7 is a second order equation for u with respect to y, we require two boundary 
conditions.  Clearly the appropriate boundary conditions are: 
 

 1)  0u   @ 0y   2)  Uu   @ .hy    
 

Integrating Eq.6.7 twice yields: 
 

 1C
dy
du

  Applying the B.C.s 1)  0CC)0(C0 221   

 21 CyCu      2)  h
UChCU 11   

 

Therefore, the general equation for flow between two parallel plates, with the lower one fixed 
and the upper one translating at velocity U is: 
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The shear stress for this flow field is given by: 
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Equation 6.9 indicates that the shear is constant across the entire flow field.  Additionally, the 
vorticity is given by: 
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Equation 6.10 indicates that the angular velocity is also constant, with the fluid rotating in a 
clockwise direction. 
An additional property of interest is the total flow rate for the fluid passing across a vertical 
plane.  If we assume the depth of the flow (into the page) to be W, we can calculate the volume 
flow rate, Q, crossing the region 0  y  h by noting that: 
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Equation 6.11 is the flow rate induced by the movement of the upper plate due to viscous 
interaction between the fluid and the plate surface. 
 

Although this solution is for a set of parallel plates, to a reasonable approximation the results are 
representative of the behavior of a flow between two closely spaced circular surfaces with a low 
degree of curvature, such as in large journal bearings or any situation where two closely-spaced 
plates of limited curvature move relative to one another.  We will assess the flow within closely 
adjacent surfaces with a high degree of curvature (like journal bearings) in section 6.4.2, when 
we examine simple Navier-Stokes solutions with circular symmetry. 
 

Before we leave this Couette problem, note that the same type of solution will apply to the same 
geometry with different first order boundary conditions.  For example, if we held the top plate 
fixed, and translated the lower plate, the boundary conditions would be: 
 

1)  Uu   @ 0y   and  2)  0u   @ .hy    
 

The subsequent solution would then be: 
 

y yu U U U 1
h h

 
    

 
 (6.12) 

 

Likewise, if we translated both of the plates at different velocities, we would obtain another 
variation on the linear Couette flow solution. 
 
 
  
 
 

Figure 6.2 Couette flow with an alternative coordinate system. 
 
Another consideration is the impact of the orientation of the coordinate system.  Suppose we 
orient the coordinate system such that the origin is at the upper surface, pointing downward, as 
shown in figure 6.2.  Here Eq. 6.7 is still valid. However, the boundary conditions are now: 
 

     1)  Uu   @  0y   2)  0u   @  .hy    
The subsequent solution for the velocity profile will be: 
 











h
y1Uu  (6.13) 

 

Equation 6.13 describes the same flow as Eq. 6.8, but is functionally different due to the use of a 
different coordinate system.  Note that while Eq. 6.13 and Eq. 6.12 are functionally identical, 
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they represent two physically different flows.  This example thus illustrates the importance of 
understanding the particular coordinate system to which a particular solution applies. 
 

6.3.2 Poiseuille Flow in a Channel 
 

Whereas a Couette flow is driven by the motion of the bounding surfaces, a Poiseuille channel 
flow is driven by a pressure difference applied to the fluid flowing between two parallel plates.   
For the purposes of this problem, we assume that the pressure decreases is in the x-direction, 

represented by the pressure gradient term,
x
p


 , shown in figure 6.3. 
 

 
  
 
 
 

Figure 6.3 Poiseuille flow between parallel plates; fully-developed flow with a constant 
pressure gradient. 

 

Again, because of the rectangular symmetry of this flow, we utilize the Navier-Stokes equation 
in Cartesian coordinates, and again assume that the plates are infinite in extent in the z-direction 
(normal to the page), such that the flow is uniform and unchanging in the z-direction.  Thus, we 
can again neglect the z-direction equation, and terms containing w. 
 

For the x and y Navier-Stokes equations in two-dimensions, we have: 
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Initial Assumptions 
1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces  

We again employ the same simplifying assumptions employed for the Couette flow example.  
Note that here our assumption of fully-developed flow assumes that the flow is well downstream 
from any entrance effects (we will discuss entrance changes later in Chapter 12) such that we 
again have a flow which has no acceleration effects, and is a simple balance of shear and 
pressure forces. 
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http://en.wikipedia.org/wiki/Jean_L%C3%A9onard_Marie_Poiseuille
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As indicated by the red arrows, we delete the non-relevant terms from Eqs. 6.14, again noting 
that the incompressible continuity equation in two dimensions yields: 
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       v = f(x) + constant      v = constant    

 

Again, at the plate boundaries, v = 0 @ y = 0 (or y = h), thus v = 0 everywhere.  Based on this 
result, Eqs. 6.14 reduce to: 
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Note that the rationale for dropping the body force is the same as addressed for the Couette flow, 
and thus the introduction of  P to represent the dynamic component of pressure.  Simplifying the 
equations gives: 
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Integration of Eq. 6.15b indicates that )x(fP  .  However, we don’t know the functionality of 

x
PorP


 , which is needed if we are to solve the x-direction differential equation.  We establish 

this functionality by taking the derivative of the x-direction differential equation, Eq. 6.15a, with 
respect to x, which yields: 
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Equation 6.16 is equal to zero, since we assumed that u is fully developed, and as such its 
derivatives must only be a function of y. 

Equation 6.16 indicates that 
x
P


  must be a constant, since 0
x
P
2

2




 . This is reasonable since the 

shear stress will be a function of the derivative of the velocity profile, which will also be 
invariant with streamwise position.  So, noting that u = f (y) only, Eq. 6.15a, with appropriate 
boundary conditions simplifies to: 
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constant
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B.C. 1)  0u   @ 0y    
 2)  0u   @ .hy    
 

Integrating Eq. 6.17 twice yields: 
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This yields a general equation for a pressure driven flow between two stationary parallel plates 
as: 
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The velocity profile reflected by Eq. 6.18 is parabolic (as shown in figure 6.3 above), achieving a 

maximum midway between the plates, at hy
2

 , or y 1
h 2
 .  If we term the maximum velocity 

Umax, then: 
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Note the negative sign in Eq. 6.19.  What this negative sign indicates is that in order for Umax > 0 
(i.e. flow in a positive x-direction) then dP/dx < 0.  Since a Poiseuille flow is a pressure driven 
flow, Eq. 6.19 indicates that the pressure must be decreasing in the direction of flow (x, in this 
case), which is entirely logical and intuitive. 
 
Substituting Eq. 6.19 into Eq. 6.18 gives: 
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The shear stress for this flow field is then given by: 
 














h
y21

h
U4

dy
du

yx
max  (6.21) 

 

Equation 6.21 indicates that the shear varies linearly across the flow channel, varying uniformly 
from a maximum positive value at y = 0 to a maximum negative value at y = h, while passing 
through zero at y = h/2.   
 
This shear stress result can be used to illustrate how the process used to define the positive 
orientation for a surface force, as discussed in Chapter 1, applies here.  Recall that the absolute 
direction a stress acts, relative to the coordinate system employed, depends on: (a) the surface of 
application, and (b) the sign of the calculated stress.  Recall also that the product of the signs of 
the surface normal direction and the stress direction yield the directional sign of a positive stress.  
Thus, if a calculated stress is positive, it will act in the direction of a positive stress; if a 
calculated stress is negative, it will act in opposition to the direction of a positive stress.   
 
So, for the shear stress acting on the lower channel surface of the Poiseuille flow, from Eq. 6.21 
we calculate: 
 

h
U4

yx
max

   at y = 0 

 
 

The outward normal for the lower surface is oriented in the positive y-direction.  Thus, to have a 
positive absolute orientation, the product of the surface normal and the shear direction must both 
be positive. Since the calculated shear stress value is positive, the actual shear stress will act in a 
positive x-direction, as shown. 
 
However, if we consider the upper channel surface, Eq. 6.21 gives the shear stress acting on that 
surface as: 
 

h
U4

yx
max

   at y = h 
 

Here, the outward normal for the upper surface is oriented in a negative y-direction.  Thus, to 
have a positive absolute orientation, the product of the surface normal and the shear direction 
must both be negative. Since the calculated shear stress value is negative, this means that the 
actual shear stress acts in a positive x-direction, in opposition to the absolute orientation for that 
surface, as shown.  
 
Thus, the shear stresses acting on both the upper and lower surfaces are in the same absolute 
direction (which we would anticipate by symmetry), even though the calculated shear stress 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 6 
 

 131 

values are of different signs.  As pointed out in Chapter 1, the process of assigning a “positive” 
orientation for forces based on the sign product of the surface normal/stress directions assures 
that the orientation of the force will be consistent, and independent of the particular coordinate 
system employed. 
 

The vorticity for this flow is given by: 
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Equation 6.22 indicates that the vorticity varies linearly from a positive maximum at the upper 
surface to a negative maximum at the lower surface.  As will be shown in Chapter 11, vorticity is 
generated at both channel surfaces due to the pressure gradient —positive at the upper surface 
and negative at the lower surface.  These generated vorticities then diffuse toward the symmetry 
plane due to viscous effects, where they cancel each other out, thus maintaining a vorticity 
balance (we will demonstrate this more thoroughly in Chapter 11). 
 

The flow rate for this channel flow (assuming again a depth into the page of W) is given by: 
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 (6.23) 

 

Equation 6.23 indicates that the flow rate for this viscous flow will be 2/3 of the flow rate of a 
uniform, inviscid flow moving at Umax.  Thus, the area-averaged mean velocity for a Poiseuille 
flow will also be 2/3 Umax. 
 

6.3.3 Fully-Developed Flow Between Porous Plates 
 

Shown in figure 6.4 below is an interesting extension of the basic Poiseuille-type flow of Section 
6.3.2, consisting of a pressure gradient driven, steady flow between two parallel porous plates 
with constant transverse flow across and through the plates.  Since the plates are porous, flow 
can move both parallel to the plates, like a conventional Poiseuille flow, and transverse to the 
main flow, as illustrated in figure 6.4.  This transverse flow results in a loss of symmetry for the 
x-direction velocity profile, with the cross flow skewing the u velocity profile towards the 
suction plate (the lower plate in figure 6.4 below). 
 
 

 
  

 
 
 
 

Figure 6.4 Fully-developed laminar flow between parallel plates with injection/suction. 
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This type of flow can be complicated if the transverse flow is allowed to vary in the x-direction, 
or where the flow injected through the upper surface does not equal that removed by suction 
from the lower surface (which would require the mass flow in the main flow to change to 
conserve mass).  However, for the present case, we will assume that the transverse velocity is 
constant through both bounding surfaces, which renders this problem quite tractable. 
 

For the coordinate system shown, we note that the boundary conditions are given by:  
 

hyand 0y  @  V  vand  0u   
 

Here V is a constant. 
 

The governing two-dimensional equations (x and y directions, for constant density and no body 
forces) are given by: 
 








































2

2

2

2

y
u

x
u

x
P1

y
uv

x
uu

t
u  x-direction N-S (6.24a) 

 








































2

2

2

2

y
v

x
v

y
P1

y
vv

x
vu

t
v  y-direction N-S (6.24b) 

 

0
y
v

x
u









  continuity  (6.24c) 

To simplify the equations, as shown by the red arrows, we assume:  
   

(1) steady flow 

(2) fully-developed flow    











 0
x

 

 

To simplify the equations further, we note that we can solve the simplified continuity equation 
as:    

0
y
v




      v = f(x) + constant 

 

Here we note that v must be a constant since we have specified that the flow is fully developed, 
which means that v  f(x).  Thus, from our v boundary conditions (at either boundary):   
 

Vv     
 

Since v is a constant, Vv   will apply everywhere within the flow field. Thus, as indicated, for 
Eq. 6.24b all v derivative terms drop out, leaving: 
  

1 2 2 

1 2 v = const. 2 v = const. 
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only)x(fP0
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Using an argument similar to that employed for the non-porous Poiseuille flow of Section 6.3.2, 

we can show that 
x
P


 = constant.  Thus, since u = u(y) only, we can rewrite Eq. 6.24a as: 
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Equation 6.25 is a second-order, linear, inhomogeneous ordinary differential equation.  To solve 

Eq. 6.25 we first substitute 
dy
du , and rewrite the equation as:    
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This reduces the equation to a first-order, linear, inhomogeneous equation, which we solve for 
both the homogeneous and the particular solution, where: 
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Now, applying the u-velocity boundary conditions at the plate surfaces, hyand0y @ 0u  , 
yields the following solution for the x-direction velocity: 
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To simplify Eq. 6.26, we let 
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 (a form of Reynolds number) and 
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y*y  ,  and note that 




 .  The resulting expression for the velocity profile can be expressed as: 
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 (6.27b) 

 

Figure 6.5 illustrates the effect that the transverse velocity, in terms of the parameter , has on 
the velocity profile.  In figure 6.5, we non-dimensionalize the stream-wise velocity on the 

maximum velocity for a non-porous channel flow (Eq. 6.19), 
dx
dP

8
hU

2


max , to give us Eq. 

6.27b, which allows us to factor out the pressure gradient term.  Note that this assumes that we 
maintain identical pressure gradients for both the suction and non-suction channel flows, which 
allows us to compare the effect of the transverse velocity on the fully-developed streamwise 
velocity profile under the same driving condition (i.e. the pressure gradient). 
As figure 6.5 clearly shows, the impact of the transverse flow is not only to skew the velocity 
profile toward the suction wall (y* = 0), but also to retard the streamwise flow. 
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Figure 6.5 Non-dimensional channel flow velocity distributions as a function of suction 

parameter,  = Vh/, with dP/dx = constant for all  values  
 (Eq. 6.27b). 

 

To illustrate the magnitude of this retarding effect, we determine the volume flow rate as a 
function of , as follows: 
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 (6.28a) 

To provide an appropriate reference, we non-dimensionalize the flow rate for the porous channel, 
Eq. 6.28a, on the flow rate for a non-porous channel, given in section 6.3.2 by Eq. 6.23 as:  
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Here we again we let the driving force, 
dx
dP , be identical for both the non-porous and porous 

channels.  The result for Eq. 6.28b, shown in figure 6.6 as 
0

Q
vs

Q




 , reveals a significant 

reduction of the flow rate with increasing transverse flow (note that to obtain the asymptotic 

value of 
0

Q
1

Q




  at  = 0, requires application of L’hospital’s rule --- 4 times!) . 

 
 

Figure 6.6 The retardation of the volume flow rate through a porous channel with 
increasing transverse velocity ( = Vh/), Eq.6.28a. 

 
The retardation of the main flow by transverse fluid injection/suction is clear, but it is unclear what 
the magnitude of the corresponding injection velocity is to a main flow velocity. To assess this, we 
compare the transverse velocity, V, as a function of β, again non-dimensionalized on the maximum 
velocity for the non-porous case, i.e. max, 0U  . To do this, we rewrite the beta parameter as:  
 

 max, 0 max, 0
0

max, 0 max, 0 max, 0

U U hVh Vh V V Re
U U U

 



  

      
                       

  

  

We identify max, 0
0

U h
Re 

 


 as the Reynolds number of the flow for the non-porous  

channel, based on the flow centerline velocity.  Solving for 
max, 0

V
U 

, we have: 

max, 0 0

V
U Re 


  (6.28c) 
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For most laminar channel flows 0Re   would be on the order of 1000 to 4000.  So, taking 

0Re 1000   as an example value, Eq. 6.28c indicates that: 
 

3

max, 0

V 10
U 1000






    

 

Examining Figure 6.6 indicates that for  = 4, which reflects a transverse ratio of 

max, 0

V 0.004
U 

 , the volume flowrate will be reduced by 20%.  Likewise, a transverse ratio of 

just 0.01 ( = 10), or 1%  of max, 0U  , will reduce the volume flowrate by more than 50%.  These 

numbers indicate that a relatively small transverse velocity can have a remarkable effect on the 
volume flowrate of the main flow.  However, transverse injection/suction at the porous 
boundaries may also have a destabilizing effect on the flow, and will probably cause a transition 
to turbulence (which we consider in Chapter 17).  However, while the transition to a turbulent 
flow will modify the physics of the flow, transverse fluid injection/suction will still have the 
same retarding effect on the mainstream flow.  
 

Since this is a fully-developed flow, we reason that the increased flow retardation may be due to 
a cumulative increase in the surface shear stresses.  To examine this, we calculate the shear stress 
for this velocity profile as: 
 

V y
2

V h

V edu h dP 1
dy V dx h 1 e







 
 

     
  

  

         or        




















e1
e1

dx
dPh y*

  

 

Figure 6.7, is a plot of non-dimensionalized shear stress for the porous channel relative to the 
maximum wall shear stress for a non-porous Poiseuille flow determined in Section 6.2.2: 
 

dx
dP

2
h

h
U4

Max0 


 
max

,  
 

This gives the non-dimensional shear stress as: 
 

y*

0,Max

2 e 1
1 e







  
  

   
 (6.29) 
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Figure 6.7 Non-dimensional channel flow shear stress distributions as a function of suction 

parameter,  = Vh/, with dP/dx = constant for all  values  
 (Eq. 6.29). 

 

Figure 6.7 plots 
max, 0








 as a function of the suction parameter, , and illustrates the marked 

variations in shear stress that take place across the porous channel with increasing .   
Note that the shear stress adjacent to the suction surface (y* =  0) increases significantly with 
transverse flow, whereas the shear stress is substantially reduced near the injection surface (y* = 
1).  For higher  values the shear stress becomes almost constant over a broad region of the flow.  

Examining Eq. 6.29 for the shear stress limits as 1  shows that 
max, 0

2







 at the suction 

surface and 
max, 0

0







 at the injection surface, which one might surmise from the behavior of 

figure 6.7.   
 

Since there is no acceleration of the fluid for a fully-developed flow, we can perform a two-
dimensional, integral force balance on the fluid between the plates, for a distance L in length, 
obtaining: 
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or, 

 
 

L
PP

dx
dP

dx
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L
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e1

e1V
dx
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V
hLhPP 2121

hV

hV

21






































 (6.30) 

 

Equation 6.30 is the same result that we would obtain for a non-porous channel Poiseuille flow.  
What this implies is that the sum of the shear stresses on the channel surfaces exactly balances 
the streamwise pressure gradient.  One can see in figure 6.7 that the sum of the shear stresses on 
the top and bottom surfaces [note that one has to account for the “absolute” direction of the 
magnitude of the stresses---both will act in the same direction] will be the same, regardless of the 
transverse velocity (i.e.  0yhy   **  = constant for all , including  = 0. 

So if the cumulative shear stresses on the plate surfaces don’t change, and the pressure gradient 
is held constant, why is the flowrate reduced with increasing ?  The answer lies in the x-
direction momentum change that the transverse fluid must undergo in crossing the channel.   
 
When a fluid particle is injected at y* = y/h =1 it has zero streamwise velocity.  As it enters the 
channel, the collective action of the pressure gradient and viscous interaction with the faster 
moving streamwise fluid causes the fluid particle to accelerate in the x-direction as it initially 
proceeds across the channel.  However, after the fluid particle passes the point of maximum 
streamwise velocity, the fluid particle encounters a negative velocity gradient, such that the fluid 
particle is now retarded in the x-direction by viscous interaction with the slower moving 
streamwise fluid.  This retarding effect due to viscous interaction overwhelms the opposing 
effect of the pressure gradient, causing the particle to decelerate as it approaches the suction 
surface at y* = 0, until it exits the suction surface with zero streamwise velocity.  Thus, what 
happens physically is that the fluid particle must be accelerated by the pressure gradient, and 
then decelerated by viscosity as it traverses the channel.  The net change in x-direction 
momentum is zero, since the fluid particle enters and exits with zero streamwise velocity.  
However, viscous effects subsequently dissipate all the x-direction momentum imparted to the 
fluid particle by the pressure gradient.  
 
Thus, although there is no net increase in shear at the bounding surfaces, there is an internal 

dissipation of momentum that mediates the effectiveness of the driving force, 
dx
dP .  

Consequently, the pressure gradient must not only balance the wall shear stresses, but must also 
provide the impetus to accelerate all of the injected fluid to steady state conditions, prior to the 
injected fluid being removed and that momentum “lost.”  The result is a diminished flow rate, 
and a retarded velocity field, while experiencing the same flow resistance as a non-suction 
channel.  
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Note that for higher  values, the velocity profile adjacent to the injection surface behaves almost 
like a Couette flow [e.g. the  = 20 profile in figure 6.5].  If we examine the governing equation, 
Eq. 6.25, 
 

dx
dP1

dy
duV

dy
ud
2

2





 , 

 

what we realize is that the change in the shear stress in this Couette-type region, reflected by the  

2

2

dy
ud term in Eq.6.25, is essentially negligible.  Consequently, the constant pressure gradient  

causes the injected particle to undergo essentially a constant streamwise acceleration as it moves 
across the channel, until it approaches the suction wall and experiences the significant viscous x-
direction deceleration necessary to allow it to exit at zero streamwise velocity. 
 
One of the study problems given at the end of this Chapter concerns a Couette flow with uniform 
transverse suction.  In a boundary-driven Couette-type flow, a similar type of retardation of the 
induced streamwise flow rate with increasing transverse flow is also observed, reinforcing that 
the necessity to continually accelerate newly injected fluid particles will always reduce the 
effectiveness of the driving force in moving the main flow.  However, for the case of a Couette 
flow with transverse flow, the impact of the x-direction momentum changes is experienced 
directly as an increase in the force required to translate the surface due to the x-direction 
momentum lost through the suction surface, and a consequent increase in the shear stress on the 
moving surface. 
 

As a final consideration of this channel flow with transverse suction, note that if you let V = 0, 
the result should reduce to the solution for a Poiseuille flow between two non-porous parallel 
plates, as was derived in section 6.3.2 above.  However, in order to obtain these limiting 
conditions from the porous plate solution you will need to apply L’Hospital’s rule for   0 (i.e. 
V  0)----often multiple times to determine the limiting values.  The reader should do this as an 
exercise. 
 

6.3.4 Two-Fluid Couette Flow 
 
Consider a Couette-type flow, with two immiscible fluids (here we choose water and oil) 
contained within two parallel constraining plates, and driven by the steady motion of the top 
plate at a constant velocity U, as modeled in figure 6.8 below.  For simplicity, we will assume 
that the two fluids are of equal thickness, h, as shown. We also assume that the upper fluid is the 
oil, since oils are always less dense than water (see this link).  We wish to determine the velocity 
behavior within the two fluids, and the resulting shear stress on the moving plate.  While a bit 

http://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
http://simetric.co.uk/si_liquids.htm


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 6 
 

 141 

artificial, this flow will illustrate the use of common boundary conditions when considering two 
mutually adjacent fluids. 
 
  
 
 
 
 
 

Figure 6.8 The two-fluid, Couette flow 
 
We again utilize the two-dimensional Navier-Stokes equations, but we must apply a separate set 
of equations for each of the fluids.  The assumptions and simplifications that apply for a single 
fluid Couette flow also apply here, and are: 
 

1. Steady flow 
2. Fully developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 
 

Employing these assumptions, and noting that again that the continuity equation yields  
v = 0 throughout both fluids, we reduce the governing equations to a pair of simple second order, 
ordinary differential equations: 
 

0
dy

ud
2
o

2

    (6.31a) 

and   

0
dy

ud
2
w

2

  (6.31b) 

 

In Eqs. 6.31, uo is the x-direction velocity within the oil, and uw is the x-direction velocity within 
the water.  Note that Eq. 6.31a and 6.31b each apply only within the region occupied by the 
respective fluid, and the boundary conditions at the interface between the two fluids (y = h) must 
match.  
  
Here, the appropriate set of boundary conditions is: 
 

1)  0uw   @ 0y   2) Uuo   @ h2y   
 

3)  0w uu   @ hy   4)  0w   @ hy     (i.e. 
dy

du
dy
du w

w
o

o  )  

 

y 

x 
h 

U 

h 

Water w , w 

Oil o , o 
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Note that we require four boundary conditions since we have two second-order differential 
equations, each of which will yield two constants of integration. In addition, the fourth boundary 
condition requires that the shear stress between the two fluids must match.  Since the shear stress 
(for this parallel flow) is proportional to the y-derivative of the u velocities, this represents a 
boundary condition of the second kind. 
 
Integrating Eqs. 6.31 twice yields two simple linear solutions: 
 

21o CyCu   
and    

43w CyCu    
Applying boundary conditions 1) and 2) yields: 
 

21 C)h2(CU        12 hC2UC         and  4C0    
Such that: 
  

 h2yCUu 1o     and   yCu 3w      
 

Applying boundary conditions 3) and 4) at the common boundary, y = h, yields:  
 

hCUhC 13     and    1o3w CC   
 

Solving for C1 and C3 simultaneously yields velocity distributions: 
 

 
 ow

w
o h

h2yUUu



  (for 2h  y  h) (6.32a)  

and 

 ow

o
w h

Uyu



  (for h  y  0) (6.32b)  

  

The corresponding shear stresses within each fluid are: 
 

   
o o ww

o
w o w o

U U
h h

  
  

   
 (6.33a)  

and   

   
w o wo

w
w o w o

U U
h h

  
  

   
 (6.33b) 

 

Note that Eqs. 6.33 indicates that wo  = constant across both fluids.  This is a reasonable 
result, since a force balance applied to the boundaries of the fluid indicates that the shear at both 
the top and bottom boundaries must be equal, and thus the shear stress must be in balance 
throughout the fluids.   
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Using these results, consider a two-fluid flow of SAE 10 oil and water.  At 20C, the absolute 
viscosity of SAE 10 oil is about 100 times that of water, so the shear stress within the oil (and at 
the top surface) and the water would be: 

 
h

U990
h
U

101
100 w

w

2
w

o






 .  

 

By comparison, if the region between the plates contained all water or all oil, the respective shear 
stresses would be: 
 

h2
Uw

w


     (for all water)     or    
h

U50
h2
U wo

o





      (for all SAE 10 oil) 

 

So the addition of the much more viscous oil layer will only increase the shear stress of the 
combined fluid layers by roughly a factor of two over what would exist with only water—and 
much less than the 100-fold increase in shear stress that would occur from an all water flow to an 
all oil flow.  Clearly, the layer of a much less viscous fluid in proximity to a much more viscous 
fluid strongly biases the wall shear stress toward the shear stress of the less viscous fluid.  In fact, 
our analysis indicates that the shear can never reach more than twice the shear that would exist 
for the less viscous of the two fluids.  In situations where the two fluids can be easily separated, 
one can conceive of using a less viscous fluid to facilitate the transport of a more viscous 
material at reduced power costs.  However, in practice, it would be hard to maintain a laminar 
environment, and in a pipe flow one would have to be able to concentrate the more viscous fluid 
at the center, with the less viscous fluid at the boundary; not an easy thing to do. 
  

6.3.5 Two-Fluid Poiseuille Flow in a Channel 
 

Now, consider a pressure gradient driven Poiseuille-type flow of two immiscible fluids (fluid a 
and fluid b) flowing adjacent to each other, constrained by stationary flat plates.  Here, we 
assume a channel width of h, and that fluid a is of thickness t within the channel, and fluid b fills 
the remainder of the channel t < y < h, as shown in figure 6.9. 
 

  
 
 
 
 
 

Figure 6.9 A two-fluid, Poiseuille flow 
 

We wish to determine the velocity behavior within the two fluids, and the resulting volume flow 
rate.  This type of flow is a bit more practical, since it can illustrate, for example, the flow 
interaction between two separate, but adjacent, fluids, such as air and water, or oil and water.  
This flow again illustrates the use of common boundary conditions when considering two 
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mutually adjacent fluids.  However, it is a bit more complicated than the Couette flow examined 
in section 6.3.4. 
Utilizing the two-dimensional Navier-Stokes equations, we again must apply a separate set of 
equations for each of the fluids.  And again, the assumptions and simplifications that apply for a 
single fluid Poiseuille flow also apply here, and are: 
 

1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 
 

Employing these assumptions, and noting that again that the continuity equation yields  
v = 0 throughout both fluids, we reduce the governing equations to a pair of second-order 
ordinary differential equations similar to Eq. 6.15a: 
 

dx
dP1

dy
ud

a
2
a

2


    (6.34a) 

and    

dx
dP1

dy
ud

b
2
b

2


  (6.34b) 

 

In Eqs. 6.34, ua is the x-direction velocity within fluid a, and ub is the x-direction velocity within 
fluid b.  Note that Eqs. 6.34a and 6.34b each apply only within the region occupied by the 
respective fluid, and the boundary conditions at the interface between the two fluids (y = t) must 
match. 
  
Here, the appropriate set of boundary conditions is: 
 

1)  0ua   @ 0y   2) 0ub   @ hy   

3)  ba uu   @ ty   4)  ba   @ ty   (i.e. 
dy
du

dy
du b

b
a

a  ) 

 

We again require four boundary conditions, since we again have two second-order differential 
equations, each of which will yield two constants of integration. 
 

Integrating Eqs. 6.34 twice yields two simple linear solutions: 
 

a1
a

a Cy
dx
dP1

dy
du




   

a2a1

2

a
a CyC

2
y

dx
dP1u 


  (6.35) 
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and 

b1
b

b Cy
dx
dP1

dy
du




   

b2b1

2

b
b CyC

2
y

dx
dP1u 


  (6.36) 

 

Applying boundary condition 1) @ y = 0 yields: 
 

 
  a2a1

2

a
a C0C

2
0

dx
dP10u 


      0C a2   (6.37) 

 

From boundary condition 2) @ y = h we have: 
 

b2b1

2

b
b ChC

2
h

dx
dP10u 


  (6.38) 

 

From boundary condition 3) @ y = t we get: 
 

b2b1

2

b
ba1

2

a
a CtC

2
t

dx
dP1utC

2
t

dx
dP1u 





  (6.39) 

 

Finally, applying boundary condition 4) @ y = t, yields:  
 

b1b
b

ba1a
a

a Ct
dx
dP

dy
duCt

dx
dP

dy
du

   

a1
b

a
b1b1ba1a CCCC




  (6.40) 

 

Now, combining Eq. 6.38 and 6.40: 
 

2 2
a

2b 1b 1a
b b b

1 dP h 1 dP hC C h C h
dx 2 dx 2


     

  
 (6.41) 

 

Substituting Eqns. 6.40 and 6.41 into 6.39 gives: 
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Solving for C1a gives: 
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b
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  (6.42) 

 

Substituting Eq. 6.42 back into Eqs. 6.40 and 6.41, we have: 
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  (6.43) 

and 
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Finally, substituting Eqs. 6.37, 6.42, 6.43 and 6.44 into Eqs. 6.35 and 6.36, and simplifying, we 
have: 
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2
a a
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b b

b
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 (6.46) 

 

To make the results non-dimensional, and a bit more appropriate for plotting, we divide Eqs. 

6.45 and 6.46 through by 
dx
dP

2
h

b
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, to give: 
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and 
2

a a
2

b bb
b 2

a a

b b b

t1
hu y yu 1 1

h dP h h t12 dx h

     
                                               

 (6.48) 

 

Finally, to make Eqs. 6.47 and 6.48 less cumbersome, we define: 
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Allowing us to write: 
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Note that if  1
b

a 


 , then 1Kab  , and Eqs. 6.49 and 6.50 reduce to the same equation, i.e.:   
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This is of the same form as Eq. 6.17, for a single fluid Poiseuille flow, as it should be. 
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(c) 

 
Figure 6.10  Non-dimensional velocity and shear stress for a two-fluid Poiseuille flow 

between parallel plates.  ua on the right, and ub on the left. 
(a) velocity: t/h = 0.5, viscosity ratios  a b  =1, 2, 5, 10, 50.   

(b) velocity: 50ba  , thickness ratios (t/h) = 0, 0.2, 0.4, 0.6, 0.8. 

 (c) shear stress: 50ba  , thickness ratios (t/h) = 0, 0.2, 0.4, 0.6, 0.8. 
 
Figure 6.10 shows selected profiles of velocity and shear stress.  Figure 6.10a (velocity) is for 

equal thickness fluid layers (t = 0.5h), for varying ratios of 
b

a



 .  Figures 6.10b 
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(velocity) and 6.10c (shear stress) are for 50
b

a 


 (the ratio of the viscosities of water to air), for 

varying ratios of 
h
t .  

 
Figure 6.10a shows that the effect of an increasing viscosity ratio is not only to retard the more 
viscous layer (fluid a), but also to reduce the overall flow rate of the less viscous fluid (fluid b).  
This retardation is reflected by the area of the cumulative velocity profiles.  Note that a ratio of 

50ba   is roughly that of water to air, which is probably the most common situation for a 
two-fluid process.  Using this typical water-air viscosity ratio, figure 6.10b illustrates the effect 
of increasing the thickness of the more viscous fluid (fluid  a), which again reduces the flow rate 
of the less viscous fluid, through reduction of the flow cross-section.  Reduction of the flow 
cross-section for fluid b reduces the motive force acting on the fluid (since the pressure gradient 
acts over a reduced area), which means fluid b must sustain reduced fluid deformation, resulting 
in lower shear with the bounding surfaces, and consequently a reduced flow rate.  
 

Figure 6.10c shows the shear stress distributions for the velocity profiles shown in figure 6.10b.  
While not intuitive, the shear within both fluids again varies linearly, but is biased by the ratio of 
the fluid thicknesses. 

 
6.3.6 Falling Liquid Film on a Wall 
 

Consider the motion of a viscous liquid flowing down a sloped surface due to gravitational 
effects, as shown in figure 6.11.  
 
 
 
 
 
 
 
 
 

Figure 6.11 Schematic of a falling liquid film 
 

For this problem, we align the coordinate system with the sloping surface, which is at a fixed 
angle to the horizontal of  .  We also assume that gravity acts vertically as shown, and that the 
thickness of the liquid layer is h, which remains constant as the liquid flows down the sloped 
surface.  Here we assume governing two-dimensional N-S equations (x and y directions, constant 
density) given by: 
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We again simplify Eqs. 6.51, as shown by the red arrows, assuming:    
  

(1) steady flow 
(2) fully-developed flow     
 

Using the reduced continuity equation, Eq. 6.51c, we can again show that v = 0 within the liquid 
layer, which reduces the N-S equations to: 
  















 x
2

2

x
p1

y
u  (6.52a) 

and   

yy
p




  (6.52b) 

 

Note that we have retained the total pressure in the N-S equations, since this is a gravity driven 
flow.  For this flow, the body force vector,


, is given by:  

 

x yi j g i g jˆ ˆ ˆ ˆsin cos         
 

So the y-direction equation, Eq. 6.52b, can be solved for the pressure as: 
 

p g
y

cos
  


          atmp P g y h f xcos      (6.53) 

 

However, since the entire liquid layer is in contact with the atmosphere, this means that the 
pressure at the surface of the liquid must be atmospheric (i.e. p = Patm = constant @ y = h).  Thus, 

p cannot be a function of x, which means that in Eq. 6.53 f(x) =0, and consequently 0
x
p




 .  

Correspondingly, Eq. 6.52a reduces to: 
 

2
x

2

d u g
dy

sin 
   

 
 (6.54) 
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The boundary conditions for this flow are interesting.  Clearly, at the plate surface (y = 0) the no 
slip condition requires that u = 0.  However, at the interface between the liquid and the 
atmosphere (y = h), we do not know the boundary velocity.  However, we know that the velocity 
and the shear stress for the liquid at the y = h interface must be equivalent to that of the bounding 
atmosphere.  However, since we assume the atmosphere to generally be at rest, this could give us 
some irksome boundary conditions, and require that we solve equations for the flow in the 
atmosphere as well.  However, since we assume that the liquid moves slowly, and that both the 
density and the viscosity of the air are much, much less than the liquid, we ignore the boundary 
velocity of the atmosphere, and assume that to a good approximation there is essentially no shear 
stress between the liquid and the atmosphere (we will reexamine this assumption for an air-water 

flow in Chapter 12).  Thus, we assume that at the interface 0yx   such that 0
dy
du

  at y = h, 

providing our second boundary condition (and of the second kind). 
 

Integrating Eq. 6.54 once, and applying the boundary condition 0
dy
du

  at y = h gives: 

 

1
du g y C
dy

sin
  


      1

gC hsin



   

 

Substituting for C1, integrating again, and applying the boundary condition u 0  at y = 0 gives: 
 

2

2
g y gu hy C

2
sin sin 

   
 

      0C2     for u = 0 at y = 0 
 

Thus, the velocity profile for the liquid film is: 
 

22 2

2

2 Ug y y y yu hy hy U 2
2 h 2 h h

max
max

sin         
             

          

 (6.55)  

 

where  
2ghU
2max
sin




 at y = h. 
 

The corresponding shear stress within the liquid is: 
 

 yx
du g h y
dy

sin        (6.56) 

 

The volume flow rate (assuming again a depth into the page of W) is: 
 

 
y h y h 2 3

y 0 y 0

g y g h 2Q u Wdy hy Wdy W U Wh
2 3 3 max

sin sin 

 

  
     

  
   (6.57) 
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Dividing the volume flow rate by the cross-sectional area yields an average velocity of 
 

maxU
3
2

Wh
QU  . 

 

Note that the velocity, shear stress and flow rate are all a linear function of the slope angle, as we 
might expect.  Also notice that this is the same shape velocity profile as we derived for the 
Poiseuille channel flow (i.e. only ½ of the Poiseuille flow, from surface to centerline), only here 
the driving force is gravity, as opposed to a pressure gradient.  This similar profile shape is also 
reflected by the average velocity, which has the same proportionality to the maximum velocity as 
we found for the Poiseuille channel flow of example 6.3.2. 
 
6.4 Simple One-Dimensional Solutions with Radial Symmetry 
 

Many practical flows have geometries with radial symmetry.  Pipes, tubes, disks, annular regions 
are just some of these.  Most of our water and air distribution systems use circular cross section 
pipes or ducts, and most bearing surfaces of rotating and reciprocating machinery depend on 
fluid lubrication via small annular regions.  The following examples illustrate some of the simple 
fully-developed laminar flows that occur in geometries with radial symmetry. 
 

6.4.1 Poiseuille Flow in a Pipe or Tube 
 
In section 6.3.2 we examined a Poiseuille flow between parallel plates.  In the present example, 
we examine the same type of pressure gradient driven flow in a pipe or tube of constant cross-
section.  Here we choose to use the Navier-Stokes equation in cylindrical or radial coordinates, 
with the z-axis aligned with the centerline of the pipe, as shown in  figure 6.12.  
 
 
    
 
  
 

Figure 6.12 Geometry for a Poiseuille flow in a circular cross section pipe. 
 

We begin our analysis by assuming that there is no swirl, or flow changes in the  or azimuthal 
direction, which eliminates all terms depending on  and the velocity component, v .  
Consequently, the appropriate equations are the z-direction and r-direction components of the 
Navier-Stokes equations, and the continuity equation in cylindrical coordinates, as follows: 
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We again eliminate terms in the equations, based on the following set of assumptions: 
 

1. steady flow 
2. no v motion 
3. no changes in the -direction 
4. constant density  reduced continuity equation 
5. fully-developed flow no z-direction changes 
 

From the reduced continuity equation, we can write: 
 

0)rv(
r r 


       rrv = constant = C      
r
Cvr   

 

However, since  0v r  at r = R, this implies that C = 0 and vr = 0 throughout the pipe.  Thus, the 
r-direction equation reduces to: 
 

only zPP0
r
P1 )(





  

 

Therefore, the above z-direction equation is simplified according to the above assumptions, and 
becomes the only relevant equation, as: 
 

zdv1 dP d r 0      where,   
dz r dr dr

  
     
  

 

or     

 
dz
dPr

dr
dvr

dr
d z










       (6.58) 

 

Note:  if we take z-derivative of Eq. 6.58, we obtain: 
  

0
dr

dvr
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d

rdz
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dz
dP

dz
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This term is not a function of z, 
therefore, the derivative is zero. 

thus, dP/dz  must 
be a constant 
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The appropriate boundary conditions for this flow are: 
 

(1)    Rr  @  0vz   

(2)   0r  @  0
dr

dv z   
 

The first of these boundary conditions is obvious, since we require no slip at the pipe boundary.  
The second boundary condition is of the second kind, and reflects the expectation of symmetry 
for this flow about the centerline, which requires that the velocity be either a maximum or 
minimum at the centerline.  In either case, this is expressed by a requirement that the first 
derivative of the streamwise velocity with respect to the radius be zero at r = 0.   
 

Integrating Eq. 6.58 gives: 
 

2
z z 1

1
dv dv Cr dP r dPr C
dr 2 dz dr 2 dz r

    
 

    

 

Applying boundary condition 2, 0r  @  0
dr

dv z  , gives: 

 

0CC00 11   
 

Integrating again yields: 
 

2

2

z C
dz
dP

4
rv 


  

 

Now, applying boundary condition 1, Rr  @  0vz  : 
 

2 2

2 2
R dP R dP0 C C
4 dz 4 dz

    
 

 

  

Thus, the velocity for Poiseuille flow in a tube or pipe is given by: 
 

 22
z rR

dz
dP

4
1v 


  (6.59)  

 

Since viscosity will cause the pressure to decrease in the direction of the flow, the negative sign 
in Eq. 6.59 indicates that the velocity will move in the positive z-direction when the pressure 

decreases in the positive z-direction (i.e. 0
dx
dP

 ).   

If 0
dx
dP

 , then the direction of flow will be reversed (i.e. moving in the negative z-direction). 
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Now note that the maximum velocity (as we surmised) occurs at the center of the pipe. 
 

 
dz
dP

4
R0R

dz
dP

4
1vU

2
2

0rz






max  (6.60) 

 

Thus, we can rewrite Eq. 6.59 in terms of Umax using Eq. 6.60 as: 
 









 2

2

maxz R
r1Uv  (6.61) 

 

This flow distribution describes a parabola, with the maximum velocity at the center of the pipe. 
We obtain the volume flow rate for this pipe flow by integrating across the cross section of the 
pipe.  This requires that we integrate both radially and azimuthally over the cross section using 
an appropriate differential element, dA, given by  rdrddA .  The geometric source of this 
differential element is shown in figure 6.13. 

 
Figure 6.13 Differential area element in cylindrical coordinates. 
 

Thus, the volume flow rate for the Poiseuille pipe flow is given by: 
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 max  (6.62) 

 

Note that the average or mean velocity for this flow (the volume flow rate divided by the cross 

sectional area) is maxU
2
1U  , as compared to the Poiseuille channel flow, where maxU

3
2U  .  

This difference is due to the radial symmetry of the pipe, which biases lower velocity fluid 
toward the region of the bounding walls, which comprises a larger component of the cross-
sectional area. 
 
The corresponding shear stress for this flow is: 
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which is linear with the radius, r.  Note however, that the shear stress at the pipe wall is: 
 

R
U2

dz
dP

2
R

Rrrz
max




 (6.64) 

 

An interesting observation from Eq. 6.64 is that for a fixed pressure gradient the shear stress at 
the wall will increase linearly with the pipe radius.  One might think that an increase in wall 
shear would reflect a corresponding decrease in the flow rate through the pipe.  However, as Eq. 
6.62 shows, the flow rate will increase as the fourth power of the radius.  Clearly, as the pipe 
radius increases the effect of the pressure gradient, which is applied over the cross sectional area 
of the pipe, will significantly outweigh the impact of the increased wall shear which acts on only 
the periphery of the pipe.  Eq. 6.60 further illustrates this impact of increased pipe radius, 
indicating that for the same applied pressure gradient the maximum velocity in the pipe will 
increase as the square of the radius.  Since the fluid nearer the center of a larger pipe will be 
farther removed from the retarding viscous effects of the pipe boundaries, it will be less 
restrained and will reach higher values under the same forcing condition (i.e. pressure gradient). 
 

6.4.2 Couette Flow between Concentric Rotating Cylinders 
 
In section 6.3.1 we examined a Couette flow between parallel plates.  In this example, we 
examine the same type of surface-driven flow in the annulus formed between the surfaces of 
concentric cylinders rotating at different angular velocities.  Here we use the cylindrical Navier-
Stokes equation with the z-axis aligned out of this page along the centerline of the two cylinders, 
as show in figure 6.14.  
 
 
    
 
  

 
Figure 6.14 Geometry for Couette flow between concentric cylinders 
 

We assume that there is no flow in the z-direction, which eliminates all terms depending on z and 
the velocity component zv .  Consequently, the appropriate set of equations is the -direction and 
r-direction components of the Navier-Stokes equations, and the continuity equation in cylindrical 
coordinates, as follows:  
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We again eliminate terms in the equations, based on the following set of assumptions: 
 

1. steady flow 
2. no vz motion 
3. no changes in the z-direction 
4. fully-developed flow no -direction changes 
5. No pressure changes in -direction 
 

Note that assumption 5 corresponds to the same argument we made previously in section 6.3.1 
for infinite parallel plates, and applies in general for all surface-driven, Couette-type flows. 
 

From the reduced continuity equation, we have: 
 

0rv
r r 


 )(       rrv = constant = C      
r
Cvr   

 

Since  0v r  at r = ro and ri, this implies that C = 0 and vr = 0 throughout the annulus.  Thus, the 
Navier-Stokes equations reduce to: 
 

  0rv
rr

1
r



















 (-direction) (6.65a) 
  

r
v

r
p 2






  (r-direction) (6.65b) 
 

We note that v = f(r) only, which also makes the pressure only a function of r.   
 

Integrating the simplified -direction equation twice, Eq. 6.65a, gives: 
 

  1
d rv C r
dr    

 

1 2C r Cv
2 r    

 

The appropriate boundary conditions for this flow are: 
(1)    iii rr  @  rv   

(2)   ooo rr  @  rv   
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This is the most general case, where we assume that each tube rotates at a different angular (and 
thus tangential) velocity.  Applying these boundary conditions gives us a cumbersome set of 
equations for C1 and C2, which when solved give a velocity relationship of: 
 

   2 2 2 2 2 2
o o i i i o

2 2
o i

r r r r r r
v

r r r( )

   



 (6.66) 

 

Using the appropriate equation for r  from Section 5.8.1, the shear stress within the fluid is 
given as: 
 

 2 2
i o o ir

r 2 2 2
o i

2 r rv v1r
r r r r r r( )




     
      

    
 (6.67) 

 

The resulting torque per unit depth is given by: 
 

Torque=    
2 2

i o
r o i2 2

o i

r r2 r r 4
r r( )

     


 (6.68) 

 

Therefore, the torque is constant, and equal for each cylinder, as it should be. 
 
Thus, for a set of cylinders of known geometry and rotation, one can calculate the viscosity of 
the fluid by measuring the torque exerted on either cylinder.  This process, first suggested by 
Couette (1890), is still a popular and practical method used in viscometry. 
 
Consider two special cases for this type of flow.  The first is for either a fixed inner cylinder (i 

= 0), or a fixed outer cylinder (o = 0).  Applying these constraints to Eq. 66, gives:   
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     (inner fixed, i = 0) (6.69a) 

or 

 2 2 2
i i o

2 2
o i

r r r
v

r r r( )

 



      (outer fixed, o = 0) (6.69b) 

 

Eq. 6.69a (i  = 0) is comparable to the initial parallel plate Couette solution we did in section 
6.3.1, where the outer plate moved while the inner plate was held fixed.  Note that if the 
cylinders are very close together, such that the annulus is small and the curvature large, such that 
we can approximate that r  ri  ro, then we can simplify Eq. 6.69a as:  
 

=0 
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If we let h = ro-ri, and designate a variable y = r-ri, then Eq.6.70 can be written as: 
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       where U = oor  (6.71) 

 

Thus, when the curvature is quite large, the solution for the concentric cylinder Couette flow 
asymptotes to the solution (Eq. 6.8) for a parallel plate Couette flow in Section 6.3.1, as it should 
(and Eq. 6.67 for shear stress, asymptotes to Eq. 6.9 for parallel flow). 
 
Two other variations on this type of flow are ones where we essentially remove one or the other 
of the cylinder surfaces.  We do this by either expanding the diameter of the outer cylinder to 
infinity (case 1) or shrinking the diameter of the inner cylinder to zero (case 2). 
 

6.4.2.1   A Cylinder Rotating in an Infinite Fluid 
 

Here we let ro   and o  0 in Eq. 6.52, and note that    2
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2
o

22
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 (6.72) 

 

In Chapter 8, we will show that Eq. 6.72 corresponds to the behavior of an irrotational vortex 
and discuss why this profile evolves.  It is of interest to note that this is the only example where a 
viscous flow with a bounding surface retains no vorticity within the flow field. 
 

6.4.2.2   Fluid Rotating within a Cylinder 
 
Alternatively, if we let ri  0 and i  0 in Eq. 6.66, this yields a flow with no inner cylinder: 
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 (6.73) 

 

Equation 6.73 is simply a solid body rotation within the outer cylinder, which is to be expected.  
Again, we will address this flow, and its temporal development, when we discuss vorticity and 
vorticity transport in Chapter 11.  Additionally, if the angular rotation of both cylinders is 
identical (e.g. o i  ),  Eq. 6.66 also reduces to ov r


  (or iv r


 ).  Prove this to yourself. 

 

1 1 

=1 = 0 

=0 =0 

=0 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 6 
 

 160 

Notice that we have not addressed the application of the simplified r-direction Navier-Stokes 
equation, which we derived above as Eq. 6.65b: 
 

r
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r
p 2






  

 

Equation 6.65b prescribes the behavior of the pressure within to the fluid due to v.  This 
relationship indicates, as we will discuss in the following Chapter 7, that for steady circular 
flows pressure will only change in the radial direction.  Additionally, pressure will always 
increase outward from the center of rotation, regardless of the velocity profile (since 

2vp 0
r r




 


 for all possible circular velocity fields).  For example, for Case 1 above, for a 

cylinder rotating in an infinite fluid (ro   and o  0), we have: 
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Integrating from r = ri outward gives: 
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 (6.74)  

 

where pi is the pressure at the surface of the inner cylinder. 
 
As Eq. 6.74 shows, pressure continually increases outward from the cylinder, reaching a 

maximum of 
2

rpp
2

i
2

i
i


 as r  .  A similar result of an outward pressure increase occurs 

for all other rotational variations as well. 
 

6.4.3 Poiseuille Flow in a Duct of Annular Cross Section  
 
This is a pressure driven flow in the annular cross section formed between two concentric 
cylinders.  The pressure gradient acts along the axis of the cylinders, driving the flow as shown 
in figure 6.15 below.  Such a flow is characteristic of the flow in many heat exchangers, where 
one fluid flows through a contained cylindrical annulus directly adjacent to a second fluid 
flowing in a central tube or cylinder.  This is again a pressure gradient driven Poiseuille-type 
flow, and we again apply the Navier-Stokes equation in cylindrical coordinates, with the z-axis 
aligned with the centerline of the concentric cylinders, as show in figure 6.15.  
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Figure 6.15 Geometry for a pressure-driven Poiseuille flow in an annular cross section  

 
We again assume that there is no swirl, or flow changes in the  or azimuthal direction, which 
eliminates all terms depending on  and the velocity component v .   The appropriate set of 
equations is the z-direction Navier-Stokes equation, and the continuity equation in cylindrical 
coordinates: 
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We eliminate terms in the equations based on the assumptions: 
 

1. steady flow 
2. no v motion 
3. no changes in the -direction 
4. fully-developed flow no z-direction changes 

 

The reduced continuity equation gives vr = 0 throughout the pipe.  Thus, the r-direction equation 
reduces to: 
 

only zPP0
r
P1 )(





  

 

Therefore, the above z-direction equation reduces to the same equation, Eq. 6.58, as Poiseuille 
flow in a pipe, as shown in section 6.4.1: 
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Just as with the Poiseuille flow, we can again show that dP/dz = constant within the annulus. 
The appropriate boundary conditions for this annular flow are no slip at the two annular 
boundaries: 
 

(1)    oz rr  @  0v   

(2)    iz rr  @  0v   
 

Integrating Eq. 6.75 once gives: 
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Integrating again yields: 
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Applying boundary conditions 1 and 2 to Eq. 6.76: 
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Solving these simultaneously for C1 and C2 gives: 
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Substituting C1 and C2 into Eq. 6.76, the velocity for Poiseuille flow in an annulus is: 
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Non-dimensional velocity profiles for four radius ratios from o

i

r
r
  1.25 to 2.00 are shown in 

figure 6.16. 
 

 
Figure 6.16 Non-dimensionalized velocity vs. r/ri for ro/ri values from 1.25 to 2.  Here 
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For this flow, the maximum velocity does not occur at the center of the annulus, but is a function 
of the radius ratio, ro/ri, given by: 
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The expression for the maximum velocity is found by substituting the expression for Ur
max@  into 

Eq.  6.77, and is quite messy and not shown here.  However, for values of ro/ri less than 3 the 
maximum velocity occurs very near to the annulus midpoint [i.e. (ro+ri)/2], so radial skewing of 
the profiles is minimal, as one can observe in figure 6.16.  Additionally, as shown in figure 6.16, 
for a fixed pressure gradient, the maximum velocity and the flowrate (another messy integration) 
will both increase with and increase in ro/ri. 
 

The corresponding shear stress for this flow is: 
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Non-dimensional shear stress profiles for four radius ratios from 1.25 to 2.00 are shown in figure 
6.17. 

 
 
 
 
 
 
As figure 6.17 shows, the shear stress varies almost linearly from ri to ro, quite similar to the 
behavior for Poiseuille flow in a parallel channel, that we examined in section 6.3.2.  In fact, one 
can show that both the velocity and shear stress equations asymptote to the parallel plate solution 
when ro/ri  1.  However, notice that as the radius ratio increases, the shear stress at ro will be 
correspondingly lower than the shear stress at ri   i or r r r o ii.e. for r r     .  Similar to Poiseuille 

flow in a pipe, the wall shear stress will increase with increasing annulus gap width.  However, as 
can be seen in figure 6.16, the maximum velocity and flow rate will also increase with an increasing 
annulus gap, since the driving force of the pressure gradient (applied over a larger cross section 
area) greatly outstrips the increase in shear stress. 
 

6.4.4 Two-Fluid Couette Flow between Concentric Rotating Cylinders 
 

In section 6.3.4 we examined a Couette flow of two immiscible fluids between parallel plates.  In 
the present example, we examine the same type of surface-driven flow for two immiscible fluids 
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Figure 6.17 Non-dimensionalized shear stress vs. r/ri for ro/ri values from 1.25 to 2.  
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in the annulus formed between the surfaces of concentric cylinders.  To simplify the derivation, 
we hold the outer cylinder fixed, and rotate the inner cylinder at a constant velocity. In reality, to 
accomplish this would be a bit tricky keeping the two fluids separated, due to gravitational 
effects.  However, if we imagine that gravity acts along the axis of the cylinders, this becomes a 
bit more feasible configuration.   We assume we have two immiscible fluids (like oil and water), 
we will call them fluid a and fluid b, with respective viscosities a and b.  Additionally, we 
assume that fluid b is denser than fluid a, such that b  > a.  Recall that in section 6.4.2.2 we 
discussed the radial pressure generated by a rotating flow, and showed that for any type of 
rotation the pressure will always increase with radius.  Thus, the pressure gradient for our two 
fluid Couette flow will always concentrate the less dense fluid (e.g. water) adjacent to the inner 
cylinder wall, and force the denser fluid (e.g. oil) adjacent to the outer cylinder wall, as shown in 
figure 6.18.   
 
 
 
    
 
  
 

 
Figure 6.18 Geometry for Couette flow of two fluid layers between concentric cylinders 

 
As we did in section 6.4.2 for a single fluid Couette flow between concentric cylinders, we 
assume an inner cylinder of radius ri, and an outer cylinder of radius ro. Additionally, we also 
assume that the interface between the two fluids will be at some radius rm, where ri < rm < ro. 
Here we again use the cylindrical Navier-Stokes equation with the z-axis aligned out of this page 
along the centerline of the two cylinders, as show in figure 6.18.  

 
We assume that there is no flow in the z-direction, which eliminates all terms depending on z and 
the velocity component zv .  Consequently, the appropriate set of equations is the -direction and 
r-direction components of the Navier-Stokes equations, and the continuity equation in cylindrical 
coordinates, as follows:  
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Continuity:    0
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We again eliminate terms in the equations, based on the following set of assumptions: 
 

1. steady flow 
2. no vz motion 
3. no changes in the z-direction 
4. fully-developed flow no -direction changes 
5. No pressure changes in -direction 
 

Note that assumption 5 corresponds to the same argument we made previously in sections 6.3.1 
for infinite parallel plates, and applies in general for all surface-driven, Couette-type flows. 
 

From the reduced continuity equation, we have: 
 

0rv
r r 


 )(       rrv = constant = C      
r
Cvr   

 

Since  0v r  at r = ro and ri, this implies that C = 0 and vr = 0 throughout the annulus.  Thus, the 
Navier-Stokes equations again reduce to: 
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  (r-direction) (6.79b) 
 

We note that v = f(r) only, which also makes the pressure only a function of r.   
 

Integrating 6.79a twice, gives: 
 

  1
d rv C r
dr    

 

1 2C r Cv
2 r    

 

This equation applies within both fluid a and fluid b, so we have two equations, Eq.6.80a and 
6.80b: one for fluid a and one for fluid b, subject to different boundary conditions: 
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,a

C r C
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The four constants of integration are determined by applying the following four boundary 
conditions: 

4 3 
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(1)    a i iv r   @  r r,    (3)    a b mv v   @  r r, , 
   

(2)    b ov 0  @  r r,     (4)    r a r b m @  r r, , 
     

 

To apply the fourth boundary condition, we note that for this flow r is given by: 
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 (6.81) 

  

Applying the above boundary conditions to equations 6.80 gives us four equations to solve for 
the constants, as follows. 
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(4) Note that for both fluids: 
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 Thus, boundary condition (4) at r = rm becomes: 
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Solving Eqs. 6.82 simultaneously, which is a bit messy, yields: 
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Substituting Eqs. 6.83 Into Eqs.6.80, yields velocity profiles for this two-layer Couette flow as:  
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Eqs. 6.84 are a bit cumbersome, so to check their validity, we note that they should reduce to the 

equation for a single fluid with a stationary outer boundary, Eq. 6.69b, if we set b
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Substituting this relationship into Eqs. 6.84 and simplifying, gives: 
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These results show when both fluids have identical viscosities, both Eqs. 6.84 reduce to Eq.6.69b 
from section 6.4.2 for a single fluid with a fixed outer cylinder, as they should. 
 
To plot the velocity behavior, we non-dimensionalize the velocities within both fluids on the 

inner cylinder velocity, ri, and the r values on the inner radius, ri  (e.g. 
i

rr*
r

 ):  
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 (6.85b) 

 

22
o

2 22 2
2,b i i

,b
i

i

rr
r * r *v r r

v * rr r *
r





 
     

 


 (6.85c) 

 

 
Figure 6.19 Non-dimensional velocity behavior vs. r* (Eqs. 6.85) for five selected viscosity 

ratios, b
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); ri* = 1,  ro* = 2, and rm* =1.5. 

 
Figure 6.19 shows the non-dimensional velocity behavior within fluid a (to the left) and fluid b 

(to the right) for five selected viscosity ratios, b
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, and ri* = 1,  ro* = 2, and rm* =1.5. 

The behavior will be different, but similar, for different bounding r* values.  
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rate, and fluid b a lower deformation rate.  The higher viscosity fluid always deforms at a lower 
rate, which skews the resulting velocity profiles accordingly, as shown in figure 6.19. 

 

 
Figure 6.20 Non-dimensional velocity behavior vs. r* (Eqs. 6.85) for extreme viscosity 

ratios, b

a

0.01, 1, 100



; ri* = 1,  ro* = 2, and rm* =1.5. 

 
Figure 6.20 shows the extremes of the skewing of the velocity profiles that can take place when 
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 (green line), the fluid b deformation is minimal, 

such that fluid b behaves almost as a stationary solid, and fluid a behaves essentially like a single 

fluid with av 0,  at r = rm.  Conversely, when b
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 (red line), fluid a moves essentially in 

solid body rotation  ai e v r,. .


  for i mr r r  , and fluid b now behaves like a single fluid with 

b mv r,   at r = rm. 

 
Now consider the non-dimensional shear stresses, which are determined by substituting ir r r*  
into Eq. 6.81. 
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We now substitute Eqs. 6.85b and 6.85c into Eq. 6.86 to determine the shear stresses in fluids a 
and b.  For consistency in comparing the shear stresses, r a,  and r b,  are both non-

dimensionalized on a  : 
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 (6.87b) 

 
Eqs. 6.87 show that the shear stress has the same functional behavior within both fluids, 
regardless of the viscosities.  
 

 
Figure 6.21 Non-dimensional shear stress vs. r* for either fluid a or b (Eqs. 6.87). 
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Figure 6.21 is a plot of the non-dimensional shear stress, again for b
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, and ri* = 1,  ro* 

= 2, and rm* =1.5.  Since the shear stress is of the same function within either fluid, the rate of 
deformation of the fluid is controlled by the fluid viscosity, which is the source of the strong 
variations in velocity behavior shown in figures 6.19 and 6.20.  Additionally, figure 6.21 shows 
that increasing the viscosity ratio shifts the non-dimensional shear curve to stronger relative 
values; of course decreasing the viscosity ratio shifts the non-dimensional shear curve to lower 
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relative values.  What is happening, is that when b

a

1



, the viscosity of fluid b becomes 

dominant, and it deforms less than fluid a.  This is shown in figures 6.19 and 6.20 by the smaller 

velocity changes with radius for fluid b when b a  .  However, when b

a

1



, the viscosity of 

fluid a is dominant, deforming less than fluid b.  Again, figures 6.19 and 6.20 show these smaller 
velocity changes with radius for fluid a when a b  . 
 

Note that figure 6.21 shows that r  is negative for all b

a




and  r* values.  Recall that this means 

for a “positive” stress orientation on a surface (determined here in cylindrical coordinates), a 
calculated negative shear stress for that surface will act opposite to that positive orientation.   
 

For the rotating inner cylinder, a positive orientation would indeed be in the positive -direction 
(since the normal out of the cylinder surface would be in positive r-direction).  Therefore, our 
calculation of a negative shear stress means the shear stress on the inner cylinder will act in 
opposition the direction of rotation, which is logical. Conversely, for the fixed outer cylinder, the 
outward normal for the surface will be negative (in a negative r-direction), such that a “positive” 
orientation is in the negative -direction. Thus, our calculated negative shear stress will actually 
act in the positive -direction on the fixed cylinder, which again is logical.   
 

The resulting torque per unit depth is: 
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 (6.88) 

 

Since the shear stress variations are identical (Eqs. 6.87), the torque is a constant value across the 
gap, and on each cylinder.  This is consistent with the result for a single fluid. Note that Eq. 6.88 

reduces to Eq. 6.68 for b

a

1



, which the reader should prove as an exercise.   

Clearly, some unusual behavior takes place when there are two immiscible fluids in this rotating 
Couette flow.  Moreover, we have examined the behavior for only one set of cylinder radii, and 
only equal thicknesses of the two fluids. Varying either of these will have a significant impact on 
the predicted results, although they will behave similarly.  It would be a good exercise to replot 
the velocity and shear behavior for other sets of radial values.  Additionally, redoing the problem 
assuming a rotating outer cylinder, with a fixed inner cylinder, would also be an instructive 
exercise.  
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As pointed out above, the practicality of such an annular, two-fluid flow is limited, since 
maintaining a consistent thickness of the fluids would be challenging, since gravity would have a 
buoyancy effect, which would most likely skew the behavior, so that a two-dimensional 
assessment would not be appropriate (perhaps an experiment for the space station, where gravity 
could truly be neglected!).  Additionally, immiscible fluids such as oil and water generally have 
viscosity ratios of more than 100 (oil to water), so these would more likely reflect the extremes 
shown in figure 6.20.  However, like the example we did in section 6.4.2, the addition of a 
limited amount of water to the annulus, would result in a multifold decrease in the shear and the 
torque required to rotate the inner cylinder (and that acts on the outer cylinder).  This will is an 
exercise in the end of chapter problems. 
 

6.4.5 Couette Flow between Porous Rotating Concentric Cylinders 
 

In section 6.4.2 we examined a Couette flow between rotating cylinders with solid surfaces.  
Here, we examine the impact of having a cross-stream flow between the cylinders by having a 
constant fluid injection/suction across the bounding surfaces.  For the purposes of this example, 
we assume a constant injection at the inner cylinder (vr = V @ r = ri), which is rotating at a 
constant angular velocity , as shown. We again use the Navier-Stokes equation in cylindrical 
coordinates with the z-axis aligned out of this page on the centerline of the two cylinders, as 
show in figure 6.22.    
 
 
  
 
 
 

Figure 6.22 Geometry for Couette flow between concentric, porous cylinders with 
transverse flow in the radial direction (vr = V @ r = ri). 

 

Also, we again assume no changes in the z-direction, which eliminates all terms depending on z 
and the velocity component zv , leaving the continuity equation, and the -direction and r-
direction component of the Navier-Stokes equations in cylindrical coordinates, as the governing 
equations: 
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We eliminate terms in the equations, based on the following set of assumptions: 

 

1. steady flow 
2. no vz motion 
3. no changes in the z-direction 
4. fully-developed flow no -direction changes 
5. No pressure changes in -direction 
6. vr = V at r = ri 

 

Assumption 5 corresponds to the same argument we made previously in sections 6.3.1 and 6.4.2. 
 
From the reduced continuity equation, we can write: 

 

0rv
dr
d

r )(         rrv = constant = C      
r
Cvr   

However, since rv V  at r = ri, this implies that C = Vri and i
r

Vrv
r

  across the annulus.  Thus, 

the Navier-Stokes equations reduce to two ordinary differential equations for v
 and rv , varying 

only with radius, r: 
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 , and that    r i
d drv Vr 0
dr dr

  , so we can rewrite the equations as: 
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Note that v = f(r) only, which makes the pressure only a function of r as well.  Rearranging Eqs. 
6.89 gives: 
 

4 3 
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 2
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dv d 1 dr v r rv
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 (-direction) (6.90a) 
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i
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   (r-direction) (6.90b) 

 

Here the pressure is only a function of r, and depends on knowing v, but is decoupled from the 
differential equation for v, Eq. 6.90a.  So our first order of business is to determine v, from 
which we can determine p(r) from Eq. 6.90b, if we so desire. 
 
Eq. 6.90a for v looks a bit daunting and non-linear, but a solution can be found by some 
judicious substitution.  To begin, we note that we can write: 
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Now, we let  = rv, and define an injection parameter iVrk 


,  so the equation becomes: 
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Dividing through by r gives: 
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 , which gives us a final equation form of: 
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Separating variables gives: 
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which integrates to give: 
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Separating variables again, and integrating for  yields: 
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drrCd 1k
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Which from our previous substitution equates to: 
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(note: k = -2 is a special case, for which the solution is: 21 CrCrv  )ln( ) 
The boundary conditions for the present flow are: 
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Applying these boundary conditions gives us a set of equations for C1 and C2, which when 
solved give a velocity relationship of: 
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Letting 
ir
rr  , we can write Eq. 6.91 in non-dimensional form as: 
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Note that determining the shear stress within the fluid is a bit cumbersome, and is given by:  
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Or non-dimensionally (using 
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A comparison of the  velocity and the shear stress for injection values of iVrk 


= 0, 2, 4, and - 4 

(the last value is a suction through the inner surface) is shown in figure 6.22. 
 

  
 (a) Velocity (b) Shear stress 
 

Figure 6.22   Non-dimensional velocity and shear stress vs. non-dimensional radius for a 
concentric annulus with cross-stream injection (V) through the inner porous 
boundary. The outer cylinder is fixed and inner cylinder rotates at , with ro/ri 

= 2.  Behavior is shown for injection parameters k = Vri/ = 0, 2, 4, and -4 (this 
latter value is a suction at the inner surface).  

 
Figure 6.22a shows that injection through the inner cylinder increases the velocity values at non-
bounding radii within the annulus, whereas suction through the inner cylinder decreases the 
respective velocity values. This change in the velocity profile will affect the volume flow rate 
within the annulus accordingly. 
 
The volume flow rate (per unit depth) within the annulus is calculated as: 
 

 
     

o o

i i

k 2 k 2r r k 2
o2 2 o o

k i ik 2 k 2 k 2 k 2
ir r o i o i

r r r r 1Q v dr r dr r ln
r k 2r r r r r

  

    

   
      

    
   

 

or non-dimensionally as: 
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Figure 6.23   k

k 0

Q
Flow Rate Ratio

Q


  vs. radius ratios for a concentric annulus with cross-

stream injection (V) through the inner porous cylinder, and a mass balanced 
suction through the outer porous cylinder. The outer cylinder is fixed and the 
inner cylinder rotates at .  Behavior is shown for radii ratios 1 < ro/ri < 2, and 
injection parameters k = Vri/ = 0, 2, 4, and -4 (this latter value is a suction at 
the inner surface).   

 
Figure 6.23 illustrates the impact of both injection/suction and the radii ratio ro* = ro/ri on the 
induced flow rate within the annulus.  To better illustrate changes, the flow rates with 
suction/injection are non-dimensionalized on the flow rate for radius ratios with a non-porous 
surface (k = 0), Qk/Qk=0.   
 
Figure 6.23 shows that fluid injection through the inner cylinder increases the induced flow rate, 
up to 27% for k = 4, ro/ri = 2.  However, surface suction through the rotating inner cylinder has a 
more pronounced effect, decreasing the induced flow rate by up to 37% for k = - 4, ro/ri = 2.  
Injection/suction will have differing effects, depending on which surface is rotated, the radii 
ratio, and the magnitude of the suction/injection, but clearly the impact of such suction, even 
relatively small values, can have a substantial effect.  For example, if we base the Reynolds 
number for the fluid within the annulus on the inner cylinder surface velocity (vi = ri), the 

cylinder radius (ri), and the kinematic viscosity (), the Reynolds number for this flow would be 
ri

2/, and we can show that V/vi = k/(ri
2/).  Thus, for a small Reynolds number of 100, an 
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injection parameter of k = 4 would give V/vi = 0.04.  So, a 4% injection rate results in a 27% 
increase in induced flow rate (and a 4% suction rate results in a 37% reduction in induced flow 
rate).  As we showed previously in Section 6.3.3, small cross-stream flows through porous 
surfaces can have very significant effects on overall flow behavior. 
 
To further illustrate the global impact of a small amount of surface injection/suction, note the 
effect of the injection/suction parameter k on the shear stress values shown in figure 6.22b.  
Figure 6.22b shows that the corresponding shear values become more uniform with injection  
(k > 0), and display larger variations with suction (k < 0), which suggests that suction through 
the inner cylinder should result in increased torque on the inner cylinder.  
 
To examine this, we calculate the general torque (per unit depth) at a radius r, as: 
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Particularizing the torque to the respective cylinder surfaces, the resulting torque on the inner 
and outer cylinders per unit depth is given by: 
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and    
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Comparing the ratio of the torques in Eqs. 6.96, we have: 
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 (6.97) 

 

Equation 6.97 indicates that the torque varies significantly with the injection/suction parameter k.  
If k = 0, the torques are equivalent, as we demonstrated for non-porous concentric cylinders in 
section 6.4.2.  However, if k > 0 [injection from of the inner cylinder], the torque will be lower 
on the inner cylinder, whereas if k < 0 [suction into the inner cylinder], the torque will be higher 
on the inner cylinder.  This result is again a consequence of the momentum change that the 
injected fluid must undergo as it passes across the gap between the cylinders, as we discussed in 
section 6.3.3.   
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Figure 6.24  
o

i

rr

rr

Torque
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RatioTorque




  vs. radii ratios for a concentric annulus with cross-stream 

injection (V) from the inner porous cylinder, and a mass-balanced suction through the 
outer porous cylinder. The outer cylinder is fixed and the inner cylinder rotates at 
angular velocity, .  Behavior is shown for radii ratios 1 < ro/ri < 2, and injection 
parameters k = Vri/ = 0, 2, 4, and - 4 (this latter value is a suction at inner surface).   

 
Figure 6.24 shows the variation in the torque ratio of the inner to the outer cylinder (Eq. 6.97) as 
a function of both the ratio of the cylinder radii and the injection/suction parameter. Note that 
injection reduces the torque ratio, due to a lower shear on the inner cylinder, and higher shear on 
the outer (figure 6.22b indicates that the shear stress, and thus the actual torque on the inner 
cylinder, is lower with injection). However, figure 6.24 also shows that suction significantly 
increases the torque ratio (seven fold for ro/ri = 2 and k = - 4).  The absolute torque on the inner 
cylinder also increases by 75% over that for a solid cylinder.  These variations are independent 
of how fast the cylinder is rotated (as long as the flow in the annulus is laminar).  This is a 
striking result, and quite illustrative of the impact of the transfer of fluid momentum across the 
annulus.   

 
Now, consider the pressure behavior between the cylinders.  The r-direction differential equation 
derived above, Eq. 6.90b, gives: 
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Substituting for v from Eq. 6.92, we have: 
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We separate variables and integrate from ri outward, where p = pi at r = ri: 
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And after some messy integration, we get: 
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 (6.98) 

Defining a non-dimensional pressure coefficient as i
p 2 21

i2

p pC
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, and letting 

ir
rr   again, we 

can rewrite Eq. 6.98 as:  
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 (6.99) 

 

In most cases, we would expect 
i

V
r

 to be very small, and thus contribute little to the pressure 

change.  The bulk of the change is a result of the large, bracketed terms on the right of Eq. 6.99, 
which reflects pressure due to variations in the angular momentum of the fluid.  The behavior of 
the pressure coefficient from Eq. 6.99 is shown in figure 6.25. 
 
Note that for all k values shown (and in general), the pressure increases outward, as it should, 
since dp/dr > 0 for all k values. However, as the figure shows, for k > 0 [injection from the inner 
cylinder] the pressure increases more rapidly outward; conversely, for k < 0 [suction into the 
inner cylinder] the pressure increases less rapidly, reaching a lower value at r = ro.  
 
One can understand this behavior from the velocity profiles of figure 6.22a.  As the fluid 
particles injected through the inner surface move toward the outer surface, they retain more of 
their initial -direction momentum at the same radial location than would occur through just 
viscous diffusion.  Since the angular velocity remains higher as it nears the outer fixed cylinder 
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(where the fluid must exit with zero velocity), the angular momentum of the fluid is larger, 
which is reflected as an increased radial pressure difference.   

 

Figure 6.25   Non-dimensional pressure coefficient i
p 2 21

i2

p pC
r





vs. non-dimensional radius 

for a concentric annulus of ro/ri=2, with cross-stream injection (V) from the 
inner porous cylinder, and a mass balanced suction out of the outer porous 
cylinder. The outer cylinder is fixed and the inner cylinder rotates at , with 
Re =  ri

2/ = 100.  Behavior is shown for injection parameters k = Vri/ = 0, 
2, 4, and - 4 (this latter value is a suction at the inner surface). 

 
The opposite occurs if there is suction at the inner surface.  In that case, the acceleration of the 
fluid to the inner rotation velocity as it approaches the inner cylinder occurs more slowly, thus 
retarding the angular momentum, which in turn reduces the radial pressure changes. 
 
6.5 Summary 
 
Sections 6.3 and 6.4 have presented several simple analytic, closed-form solutions to the Navier-
Stokes equations.  These are all one-dimensional, since they depend on only one space variable. 
Most of these examples reduce the Navier-Stokes to a force balance between shear stress and 
pressure.  However, as illustrated by the examples in Sections 6.3.3 and 6.4.5, the introduction of 
a simple advection term due to a steady cross-stream velocity by balanced injection/suction can 
have a significant impact on the flow behavior, and the subsequent forces, such as wall shear and 
flow rates.  
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The inclusion of advection and time dependent acceleration term in the Navier-Stokes equation 
makes the solution of the resulting equations much more complicated, requiring more advanced 
mathematics and/or numerical solutions. In Chapter 12, we will examine more complicated, two-
dimensional solutions of the Navier-Stokes equations, for which the flow is dependent on either 
one spatial dimension and time, or on two spatial dimensions.  In either case, the number of 
possible closed-form solutions is limited, and the mathematics is often quite complicated.   
 
 

Study Problems 
 

1. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction.  
 The upper plate moves with a speed U and the lower plate is fixed.   
    
 
 

A pressure gradient, 
dx
dp , is imposed on the flow.  Define 

2dp hP
dx 2 U




, and: 

 
(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.   
(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
(c)  Calculate the volume flow rate, and determine the value of P which causes the  
 volume flow rate to be zero.  

(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of  

 the shear stress on the lower plate. 
(e)  If the shear stress for this flow is 0why  

 at y = h, does this mean τw acts in the  negative x-

direction on the upper plate? Explain your answer. 
(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 
 

2. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction. The 
upper plate moves with a speed -U and the lower plate is fixed.   

       

A pressure gradient, 
dx
dp , is imposed on the flow.  Define 

2dp hP
dx 2 U




, and: 

 

(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.   

U 

h 
y 
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(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
(c)  Calculate the volume flow rate, and Determine the value of P which causes the  
 volume flow rate to be zero.  

(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of  

 the shear stress on the lower plate. 
(e)  If the shear stress for this flow is 0why  

 at y = h, does this mean τw acts in the  negative x-

direction on the upper plate? Explain your answer. 
(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 

 
3. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction.  

    

Both the upper and lower plate move with a speed U and a pressure gradient, 
dx
dp , is imposed on the flow. 

Define 
2dp hP

dx 2 U



, and: 

 

(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.   
(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
(c)  Calculate the volume flow rate, and Determine the value of P which causes the  
 volume flow rate to be zero.  

(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of  

 the shear stress on the lower plate. 
(e)  If the shear stress for this flow is 0why  

 at y = h, does this mean τw acts in the  negative x-
direction on the upper plate? Explain your answer. 
(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 
 

4. A vertical plate of infinite extent has a film of water flowing downward on the outside due to gravity.   
 

a) Determine the velocity profile in terms of gravity (g), the kinematic 
viscosity (), the volume flow rate per unit width (Q), and the distance 
from the surface (y). 

b) If  = 10-2 cm2/sec. for water at room temperature, determine 
the thickness of the water layer and the maximum velocity within 
the water layer if the flow rate per unit width is Q = 0.62 cm2/sec. 
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5. An intravenous feeding tube 3 mm diameter runs from a water bag h=0.7 M above the floor and is L=2 
m long.  Assume the water level in the bag is 10 cm above entrance to the tube, and that the flow is 
assumed laminar, and essentially fully developed over the length of the tube (not probable, but a 
reasonable estimate).  If there is not restriction on the tube, and no needle at the exit, what is the 
maximum flowrate, in milliliters per minute (1 ml = 1000 mm3) that could flow through the tube?  
Assume atmospheric pressure at the surface of the water in the bag, and at the exit of the tube.  Note: the 

pressure gradient for this flow can be approximated as 
dP h g
dx L

 
  

 
 and the temperature as 20C.  

Check to see if this flow would indeed be laminar (i.e. D
UD 2300Re  


). 

 
6. A hypodermic syringe with a plunger 0.2 cm2 in area injects 500 mm3 of water through a 24-gauge 

hypodermic needle, 5 cm long and 0.311 mm diameter. Neglect the flow in the syringe, and assume that 
the flow is laminar and essentially fully developed within the needle during this process. I reality, there 
are entrance region effects for the needle. However, a fully developed assumption will give an upper 
limit of the flowrate that can be expected. The force exerted by the injector on the syringe is 1 N.  Note 
that atmospheric pressure acts on all surfaces of the syringe and needle, so the pressure within the 
syringe will be gauge pressure (the pressure above atmospheric).  How long (in seconds) will it take to 
inject the 500 mm3 of water (assume temperature of 30C) if (1) the needle exit gage pressure is zero; 
(2) the needle is inserted in a portion of the body with an exit gage pressure of 16.3 kPa.?  Check to see 

if this latter flow would be laminar (i.e. D
UD 2300Re  


). 

 
7. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, infinitely 

long, stationary rod.  Assume that the flow is steady, the surface tension is zero, and the ambient air is 
stationary.  If gravity is g = constant, the z-coordinate is along the rod axis in opposition to gravity, the 
rod diameter is R, and kinematic viscosity is : 

 
(a)  Calculate the velocity within the film, vz(r),  

in terms of r, g, R, , and . 
(b) Determine the shear stress on the cylinder surface, rz,  

in terms of , g, R, and . 
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8. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, infinitely 
long, stationary rod.  Assume that the flow is steady, the surface tension is zero, and the ambient air is 
stationary.  If gravity is g = constant, the z-coordinate is along the rod axis in opposition to gravity, the 
rod diameter is R, and kinematic viscosity is : 

 
(a)  Calculate the velocity within the film, vz(r),  

in terms of r, g, R, , and . 
(b) Determine the volume flowrate for the fluid layer, Q,  

in terms of g, υ, R, and  (warning: apply the integration limits 
but don’t attempt to simplify—it is an ugly result). 
 

9. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, infinitely-
long rod. The rod moves upward (against gravity) at a velocity V.   Assume that the flow is steady, the 
surface tension is zero, and the ambient air is stationary.  If gravity is g = constant, the z-coordinate is 
along the rod axis (in opposition to gravity), the rod diameter is 2R, and kinematic viscosity is : 

(a)  Calculate the velocity within the film, vz(r),  
in terms of V, r, g, R, , and . 

(b)  Determine the shear stress on the cylinder surface, rz,  
in terms of , g, R, and . 

(c)  If  R>>,  determine what value of rod velocity V will  
make vz = 0 at r = R+ in terms of g, R, , and   
(i.e. the outer fluid surface will be stationary relative to the z-
coordinate). 

 
10.   Consider the vertically oriented moving belt shown below.  The belt moves upward at velocity V out of 

a vat of liquid of density  and viscosity , as shown in the figure.  Above a certain belt velocity, the 
shear stress acting on the fluid will cause the liquid to rise up the belt due to viscous effects, and to be 
deposited in the upper reservoir of fluid, as shown.  It is 
assumed that the moving belt is sealed at the bottom of the 
two reservoirs, such that fluid will not leak out.  You are to 
perform an analysis of the flow to determine the velocity 
profile and flow rate of liquid moving up the surface of the 
belt. 

 

 Assume that the flow is steady, the thickness of the liquid is 
T, atmospheric pressure acts on all surfaces of the liquid, and 
g acts as shown.  Consider only the portion of the belt where 
the flow might be considered fully developed.  List the 
remainder of your assumptions very carefully, and think hard 

 

r 

z 

g 

 
2R 

V 

 

r 

z 

g 

 
2R 

    
      
    
 
    
 g 

T 

fluid 
layer 

moving 
belt 

V 

upper reservoir 

lower reservoir 
,  

y 

x 

Patm 

Patm 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 6 
 

 187 

about the physics of the flow behavior since this will impact the conditions you must place on the 
solution.   

 
Specifically: 
  

a. Starting with basic equation(s), develop a simplified differential equation to allow  
 the determination of v(x);  clearly state simplifying assumptions and the boundary conditions for the 

problem. 
b. Using the result of part a, establish a general solution for the velocity profile, v(x), in terms of x and 

constants shown in the figure.    
c. Determine the flowrate per unit depth, Q, of the liquid from the lower reservoir to the upper 

reservoir. 
d. Determine (in terms of g, T,  and ) the minimum velocity necessary to assure that liquid will flow 

upward. 
e. Is there a limiting height to which the fluid can be pumped, and is this a function of the velocity of the 

belt?  If so, determine the maximum pumping height as a function of velocity, V.  
 

11.  Consider the flow of a fluid of viscosity, , and density, , in the long, rectangular cavity shown below, 
where L >> h.  The lower surface and the ends of the cavity are flat, solid surfaces.  The upper surface 
is a flat belt that moves over the cavity from left-to-right at a constant speed U.  Using the coordinates 
shown, determine the steady state velocity profile in the central region of the cavity, where the flow can 
be considered to be parallel and fully developed such that the velocity depends on y alone.  Note that a 
constant pressure gradient, dP/dx, exists in the central region of the cavity. 

 

 Assume that the seal between the belt and the cavity corners is perfect, such that no fluid leaks from or 
into the cavity.  List the remainder of your assumptions very carefully, and think hard about the physics 
of the flow behavior, since this will affect the conditions you must place on the solution.   

 
 
 

 
 
 
 
 
Specifically: 

a. Starting with the 2-D continuity and x-direction Navier-Stokes equations, develop a simplified 
differential equation which will allow the determination of u(y);  clearly state the boundary 
conditions for the problem. 

b. Using the result of part a, establish a general solution for the velocity profile, u(y), in terms of 
defined and undefined constants and y.   

cavity flow 

moving belt 
U (velocity of belt) 

h y 
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c. Determine the value(s) of the undefined constant(s) through the application of the boundary 
conditions to yield a specific solution in terms of U, h, , dP/dx and y. 

d. Since dP/dx is an unknown constant, determine a way to establish the value of the pressure 
gradient in this central region of the cavity in terms of µ, U, and h only. 
[Hint: consider the net flowrate, Q, at the center of the cavity]   

e. Using the result of part d, eliminate dp/dx from your solution for u(y) such that u(y) is expressed 
as a function of U, h, and y only.  Plot the shape of the resulting velocity profile, y/h vs.  u/U.    

f. Establish the y-location and the magnitude of the maximum and minimum velocity within the 
cavity. 

 
12. Consider an infinite circular pipe of radius R, which is translating vertically upward at velocity V out of 

a vat of liquid of density  and viscosity , as shown in the figure.  Above a certain pipe translation 
velocity, the shear stress acting on the fluid at the pipe inner wall will cause the liquid to rise up inside 
the pipe, much like a “viscous” pump (note that the liquid will also rise up on the outside of the pipe, 
but you are to neglect those effects).  You are to perform an analysis of the flow to determine the 
velocity profile and flow rate of liquid inside the pipe, from 0 < r < R.  

 
 Using the coordinates shown, assume that the pipe 

is of infinite extent, the flow is steady, 
atmospheric pressure acts on all surfaces of the 
liquid, and g acts as shown.  List the remainder of 
your assumptions very carefully, and think hard 
about the physics of the flow behavior since this 
will impact the conditions you must place on the 
solution.   

 

 Specifically: 
  

a. Starting with basic equations, develop a simplified differential equation which will allow the 
determination of vz(r); clearly state the boundary conditions for the problem. 

b. Using the result of part a, establish a general solution for the velocity profile, vz(r), in terms of r and 
constants shown in the figure.   

c. Determine the volume flowrate of the liquid up the pipe, Q.    
d. Determine [in terms of g, R and  (=/) ] the minimum pipe translation velocity necessary to assure 

that liquid will flow upward. 
e. Is there a limiting height to which the fluid can rise in the pipe, and is this a function of the velocity 

of the pipe?  If so, determine the height as a function of velocity, V. 
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13. Consider the viscous pumping of a fluid of viscosity  due to the axial motion of a circular tube 
encompassing an annulus formed between a stationary inner rod of radius ri and a surrounding tube of ro  
(assume the rod and tube are of infinite length).   

    
 Determine the velocity profile, vz vs r/ro, within the annulus where the outer tube is translated in the axial 

direction at a velocity Vo.  On one graph, plot curves of vz/Vo vs. r/ro for ri/ro = 0.9, 0.7, 0.5, 0.3, and 0.1.  

Also, determine the non-dimensional flow rate within the tube, 
o

2
o Vr
Q


, as a function of 

o

i

r
rr ' , and on a 

second graph plot '. rvs
Vr

Q

o
2
o

 for 1r0  ' .  What will be the force per unit length (F/L) required to 

keep the rod stationary? 
 

14. Consider the viscous pumping of a fluid of viscosity  due to the axial motion of a rod within an annulus 
formed between the rod of radius ri and a surrounding tube of ro  (assume the rod and tube are of infinite 
length).   

    
  
 Determine the velocity profile, vz vs r, within the annulus where the inner rod is translated in the axial 

direction at a velocity Vi.  On one graph, plot curves of vz/Vi vs. r/ro for ri/ro = 0.9, 0.7, 0.5, 0.3, and 0.1.  

Also, determine the non-dimensional flow rate within the tube, 
i

2
o Vr
Q


, as a function of 

o

i
i r

rr ' , and one 

a second graph plot i
i

2
o

rvs
Vr

Q



.  for 1r0 i  .  Determine (mathematically, not graphically) the value 

of ir for which this viscous pump will yield the highest flow rate for a fixed value of Vi.  What will be 
the force per unit length (F/L) required to keep the rod moving at a constant speed? 
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15. An upper flat plate is translated at a velocity U parallel to a lower fixed flat plate, with a spacing of h 
between the plates, creating a Couette flow.   

    
 Originally the fluid between the plates is oil, which results in a shear stress within the oil, and on the 

bounding  plates, of  = oU/h.  Now, a layer of water of thickness t is introduced at the lower surface 
(w > o), as shown below.  The viscosity of the water is much less than the oil, such that o = 51w.  
Again assuming a steady Couette type flow between the plates, what thickness of water, t, in terms of  h, 
will reduce the shear stress on the translating flat plate to ½  of the original shear stress with oil alone? 
 

16. Consider the flow of a viscous fluid (viscosity = µ, density = ) similar to a Couette flow between two 
infinite, parallel, porous plates; fluid of the same properties is uniformly injected through the fixed, 
lower plate, and fluid is uniformly suctioned out through an upper plate, which moves at a velocity U.  If 
u = 0, v = Vo = const. at y = 0, and u = U = const., and v = Vo at y = h, with no flow in the z-direction, 

derive the velocity profile, u(y), of the fully-developed flow between the plates, and plot 
h
yvs

U
u .  for 

3and10
hV

0V
0 ,,Re 


, all on one graph.  Using your velocity expression, determine the shear stress 

() as a function of y, and on a second graph, plot 
h
yvs

U
h .



 , again for 3and10
0V ,,Re  .    Using your 

general expressions for velocity and shear stress, determine the limiting values as Vo  0, and explain 
the subsequent results. 

 
 
 

 
 
 

 
 

17. Using the results of section 6.4.4, assume b a0.01   and ri* = 1,  ro* = 2, and rm* =1.9.  Determine the 

torque on the inner cylinder in terms of a and, ,  when: (1) fluid a fills the entire annulus (there is no 
fluid b), and (2) when the thin layer of fluid b is adjacent to the outer cylinder wall.  By what % does 
adding the thin layer of much less viscous fluid b reduce the torque?  What is the reduction if the fluid 
layers are equal thickness (rm* =1.5)? 

h 
µo   o 

µw   w 

t 

x 

y 

U 

y 

x 

h 

U 

Vo 

Vo 
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18. Derive the equations for velocity for the two-fluid Couette flow in section 
6.4.4, with the inner cylinder fixed and the outer cylinder rotating at an 
angular velocity .  Use the radii shown in the figure at the right.  Non-

dimensionalize the velocities on ro, and the radii on ri  (e.g. 
i

rr
r

*  ) a  .  

Plot the non-dimensional velocity from o1 r r* *   for b

a

0.1, 1, 10



; ri* = 

1,  ro* = 2, and rm* =1.5.  Comment on the behavior. 
 
19. Consider the flow of a viscous fluid (viscosity = µ, density = ) similar to a Couette-type flow between 

two infinite, parallel, porous tubes of radii ri and ro, where ri <  ro.   
 

     
 The inner tube of radius ri translates along the z-axis at a velocity U, and the outer tube of radius ro is 

stationary.  Fluid of the same properties is uniformly injected radially at velocity V through the inner 
tube of radius ri, and fluid is uniformly suctioned out through the outer tube of radius ro, satisfying 
continuity.  Determine the radial velocity behavior, vr(r), and the axial velocity profile, vz(r), in the 
annulus between the tubes, for this fully-developed flow. 

Show that the non-dimensional velocity,
 

U
rvv z

z * , can be determined as:   
k

i

k
z

r1
r1

U
rv

*
*




 , and the non-

dimensional flow rate, 
Ur2

Q
2
o

, through the annulus can be determined as:  

 

 
   

k
i

2k
i

k
i

2
o r1

r1
2k

1r1
2
1

Ur2
QQ

*

**
*























 

 

where 


 iVrk ,  and 
o

i
i r

rr *  (note: o
o

o

rr 1
r

*   .) 

  Plot two separate graphs of the results.  On the first graph plot *.* rvsvz for 0.5 <  r* < 1.0, and k = 2, 
4, and - 4 (i.e. suction through the inner tube).  This graph will show three separate lines—one for each k 
value.  On the second graph plot Q* vs. ri* for 0.1 < ri* < 0.9, and k = 2, 4, and - 4 (i.e. suction through 
the inner tube).  This graph will again show three separate lines---one for each k value. What do these 
graphs reveal about the effect of fluid injection/suction on the velocity and flow rate? 
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Chapter 7 
 

Equations of Motion for Inviscid Flow 

Contents 
 
7.1  The Euler Equation  ...................................................................................................... 193 
  
7.2  Special Cases of the Euler Equation .............................................................................. 196 
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 7.2.2  Irrotational Flow  ................................................................................................ 196 
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7.4  Applications of the Bernoulli Equation  ........................................................................ 198 
 7.4.1  Two-Dimensional Inviscid Duct Flow: Nozzles and Diffusers  ................................ 198 
 7.4.2  Starting Flow from a Tank  .................................................................................. 201 
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7.5  Flow Curvature Effects: Euler s and n Equations  ........................................................... 206 
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  7.6.3.1  Vortex-Induced Motion of Particles or Gas in a Liquid .............................. 215 
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7.7  Summary of Inviscid Flow Equations ............................................................................ 218 
 7.7.1  Euler Equation Along a Streamline or in Irrotational Flow  ................................... 218 
 7.7.2  Bernoulli Equation (along streamline or irrotational flow)  ................................... 218 
 7.7.3  Euler s and n Equations (streamline coordinates, unsteady)   ............................... 218 
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While all real flows have at least some degree of viscosity, there are many cases for which an 
assumption of inviscid flow ( = 0) is a reasonable approximation.  The assumption of inviscid 
flow can greatly simplify the governing equations such that they are generally much easier to 
solve than the fully viscous Navier-Stokes equations, and may often yield good approximations 
to the true fluid behavior.  These inviscid solutions can also indicate the limiting condition that is 
possible for a flow configuration (i.e. the “best” condition that might exist for a flow geometry).  
It is also often the case that an inviscid solution for one region of a flow may be selectively 
combined with a viscous solution within an adjacent region of the flow, in order to provide a 
broader global solution.  Flows around airfoils are an example of this latter approach, where the 
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region near the surface requires use of the fully, viscous equations, but the region somewhat 
removed from the surface can be reasonably modeled as an inviscid flow.  
 
7.1  The Euler Equation 
 
In this chapter, we begin to address inviscid flows by deriving and examining the governing 
basic equations, which are generally known as the Euler equations.  To begin, consider a flow 
with  = 0, which we term as inviscid (i.e. lacking viscosity).  However, since a real fluid can 
never be truly inviscid, what are situations for which the assumption of “inviscid” behavior is a 
close (or at least a reasonable) approximation?  There are basically two situations: 
  

1.  Where shear gradients are small (i.e. the flow is relatively uniform), and 
 

2.  For high Reynolds number, where the flow is well removed from solid surfaces. 
 

The Reynolds number, which we discussed in Section 6.2.5, is defined generically as the local 
ratio of momentum to viscous forces.  A generic momentum for a flow is characterized by:  
momentum = (mass flowrate)(velocity)   222 LVVVL  .  Here,  is the fluid density, V is a 
characteristic velocity, and L is a characteristic length (note that L2 reflects a characteristic area).  
A generic viscous force for a flow can be characterized as: (shear stress)(area) =

  VLL
L
V 2 







 , where µ is fluid viscosity, and V and L are again a characteristic velocity and 

length.  Defining the Reynolds number as the ratio of the generic momentum to viscous forces 
gives: 
 

 
















 whereVLVL

VL
LV 22

Re  

 

When the Reynolds number for a flow, Re, is very large, this implies that momentum effects 
dominate viscous effects, particularly if the flow is well away from a bounding surface (more on 
this in Chapter 13). 
 
Given that one or both of the above situations (essentially uniform flow, or large Reynolds 
number) exists, we will take the liberty to assume that the viscous terms in the Navier-Stokes 
equation can be neglected.  Thus, dropping the viscous terms from the Navier-Stokes equation 
(in vector form, Eq. 5.43), gives us: 
 
 

   VV
t
VPVV

3
1 2










  (7.1) 

 

Neglect Neglect 

http://en.wikipedia.org/wiki/Euler_equations_%28fluid_dynamics%29
http://en.wikipedia.org/wiki/Reynolds_number
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Equation 7.1 is termed the Euler equation, and applies for both compressible and incompressible 
flows.  Note that removal of the viscous terms reduces the equation to a balance between 
pressure, body forces, and momentum changes. 
 
While somewhat simplified, the remaining equation is still quite complicated.   To assess 
possible further simplifications, we expand the velocity terms as follows, using some vector 
identities (determined from Eq. 2.16g — prove that for yourself) to illustrate the inherent 
motions involved in the equation:  
 

 























 VV

2
V

t
VP

2 



 (7.2) 

  
 
 

Now, consider the Euler equation for any arbitrary direction in space.  We will develop Eq. 7.2 
in a Cartesian coordinate system by taking the dot product of the Euler equation with a 

differential displacement vector, given by kdzjdyidxsd ˆˆˆ 
 : 

 

sdVV
2

V
t
VP
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Expanding gives: 
 

i.e. 
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And collecting terms: 
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http://en.wikipedia.org/wiki/Euler_equations_%28fluid_dynamics%29
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where V  vorticitykji zyx


 ˆˆˆ  

 
In Eq. 7.3 we identify the gradients of pressure and V2  (which is a scalar), as well as the 
components of vorticity, . 
 
If we assume that gravity is the only relevant body force, and that g (as shown below) acts 
parallel to and always opposite to a directional displacement h, where ),,( zyxhh  , then we can 
express the body force vector in components as: 
 

hgk
z
hj

y
hi

x
hgk

z
hgj

y
hgi

x
hgkji zyx 





































 ˆˆˆˆˆˆˆˆˆ

 (7.4) 

 

To understand how we establish Eq. 7.4, the geometric origin of the terms in the body force 
vector 


 is shown in figure 7.1, for the x-direction component. 

 
 
 
 
 
 
 
 

 

Figure 7.1   Geometric illustration of the body force component in x-direction 
 
Using the components from Eq. 7.4, we can write the body force term in Eq. 7.3, due to a 
gravitational field only, as: 
  

gdhdz
z
hdy

y
hdx

x
hg

dz
z
hgdy

y
hgdx

x
hgdzdydx zyx








































 (7.5) 

  

Substituting Eq. 7.5 into Eq. 7.3 and rearranging gives: 
 

        0udyvdxwdxudzvdzwdysd
t
V

2
VddP1dhg zyx

2






















 (7.6) 

 

Equation 7.6 is a general equation that applies throughout the Cartesian flow field; we could of 
course derive a similar expression for any other coordinate system of choice, as we will show 
when we employ streamline coordinates in Section 7.5. 
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7.2  Special Cases for the Euler Equation 
 
Clearly, the general Euler equation, Eq. 7.6, is simplified, but is still quite complicated for 
practical applications.  However, by utilizing some further flow constraints we can simplify Eq. 
7.6 even further, such that tractable solutions are possible.  As we will show, these constraints 
require that either: (1) we are able to follow the flow along a prescribed streamline, or (2) the 
entire flow field is devoid of vorticity, and thus irrotational.   
 

7.2.1 Flow along a streamline 
 

In section 3.2 we showed that the generic equation for a streamline is given by Vxds 0 , which 
mathematically represents a set of differential equations for a line that is 
always tangent to the velocity vectors for all particles comprising that 
line.  Expanding this equation in Cartesian coordinates, where 

kwjviuV ˆˆˆ 


, and ˆ ˆ ˆds dxi dyj dzk   , gives a streamline vector equation, which can be 
written as: 
 

     ˆ ˆ ˆVxds wdy vdz i udz wdx j vdx udy k 0        
 

Or as component equations 
 

vdx udy 0, wdy vdz 0, udz wdx 0       
 

Substitution of these component equations for a streamline into the Euler equation, Eq. 7.6, 
results in null coefficients for the components of vorticity in the equation, negating any influence 
of vorticity along a prescribed streamline, yielding: 
 

0sd
t
V

2
VddP1gdh

2






















 (7.7) 

 

Equation 7.7 is Euler’s streamline equation for inviscid, compressible, unsteady flow along a 
streamline, with conservative body forces (i.e. gravity only). 
 

7.2.2 Irrotational Flow 
 
Alternatively, we can consider Euler’s equation within an irrotational flow field.  An irrotational 
flow is a flow that is devoid of vorticity (more on this in Chapter 8), for which we can write: 
 

00kjiV curlV zyxzyx  ˆˆˆ
 

Thus, all the vorticity components in the Euler equation, Eq.7.6, are zero for irrotational flows, 
giving: 
 

V


sd

http://en.wikipedia.org/wiki/Euler_equations_%28fluid_dynamics%29#Steady_flow_in_streamline_coordinates
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0sd
t
V

2
VddP1gdh

2






















 (7.8) 

 

Note that Eq. 7.8 is the same as the streamline form of the equation, Eq. 7.7.  However, Eq. 7.8 
may apply across streamlines (not just along them) for a flow that is inviscid, compressible, 
unsteady, and irrotational with conservative body forces.  Both Eq.7.7 and 7.8 apply throughout 
the flow field (assuming the respective constraints are satisfied).  We will now consider the 
application of both equations. 
 
7.3. The Bernoulli Equation 
 
Consider an inviscid flow either: (1) along a streamline, or (2) within an irrotational flow field.  
In both cases, we can integrate Eq. 7.7 or 7.8 from a point 1 to a point 2 within the flow field, 
giving: 
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 (7.9) 

 

Equation 7.9 applies for an unsteady flow of variable density, i.e.  Pf .  
 
However, if the density is constant (incompressible), the equation simplifies further to: 
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 (7.10a)  

 

or more generically, 
 







  sd
t
VV

2
1ghP 2 



 constant (7.10b) 

  

Equation 7.10 is termed the “unsteady” Bernoulli equation, since it takes into account locally 
unsteady or time-varying behavior, but we clearly have to know the path we follow from point 1 

to 2 to evaluate the time-dependent term, sd
t
V 


 


 , in Eq. 7.10.  If we further require that the 

flow remain steady (no velocity changes with time, only spatial changes), then we obtain: 
 

http://en.wikipedia.org/wiki/Bernoulli%27s_principle#Unsteady_potential_flow
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      0VV
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  (7.11) 

 

Equation 7.11 is the classic steady Bernoulli equation, which applies only to steady flows of 
constant density.  This is one of the most celebrated, most useful, and most misused equations of 
fluid mechanics.  While providing a simple relationship relating changes in pressure, 
gravitational effects, and velocity, the equation (as we noted) is subject to numerous restrictions.  
And while many flows approximately satisfy most of these restrictions, and their behavior can be 
assessed to a good approximation using the Bernoulli equation, many flows do not satisfy one or 
more of the restrictions and cannot be properly assessed using the Bernoulli equation.  An 
example of where the Bernoulli equation cannot be used is in the analysis of real fluid flows near 
a solid boundary, where viscous effects are always important.  Thus, while a useful tool, one 
must be careful to assure that the results obtained using the Bernoulli equation are appropriate to 
the particular type of flow situation. 
 
7.4   Applications of the Bernoulli Equations 
 
The following section demonstrates the application of the Bernoulli equation for several inviscid 
flows.  Note that for all the cases discussed, viscosity will have some effect, which will influence 
the actual expected behavior.  However, as pointed out in Section 7.3, Bernoulli solutions in 
many cases can provide a good approximation of the type of behavior that can be expected for a 
real flow, and provide a limiting “best case” scenario for such flows.  As we illustrate, these best-
case flow situations can often be used as guidelines for the real flow behavior through the use of 
some empirical coefficients to account for the impact of viscosity.  
 

7.4.1  Two-Dimensional Inviscid Duct Flows: Nozzles and Diffusers  
 
Flows through channels or pipes are frequently subject to contractions or expansions in the flow 
passage cross-sectional area.  Here, we examine the effect of a simple contraction in area (i.e. a 
nozzle) and an expansion in area (i.e. a diffuser) on the fluid dynamic pressure, as predicted by 
the Bernoulli streamline equation, Eq. 7.10a. 
 
For a generic, two-dimensional duct with a steady inflow, we can assess the pressure change,  
P2 - P1, along the duct as a function of the inlet velocity, V1, the inlet and outlet areas, A1 and A2, 
and the density, .  Depending on the area change within the duct, the duct can act as either a 
nozzle (a flow accelerator) or diffuser (a flow decelerator).   Here, we assume that the inlet and 
outlet velocities are uniform.  We also establish the non-dimensional pressure rise across the duct 

http://en.wikipedia.org/wiki/Bernoulli%27s_principle#Incompressible_flow_equation
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based on the inlet dynamic pressure  2
12

1 Vei .. or hydraulic head 
2

1Vi.e.
2g

 
 
 

, as it is frequently 

termed in pipe flows. 
 

 
 
 
 
  
 (a) (b) 

 

Figure 7.2  Schematic of parameters for a two-dimensional duct flow: 
 (a) a nozzle (flow accelerator) and (b) a diffuser (flow decelerator)  

 
Figure 7.2 shows the generic shape and parameters characterizing two-dimensional nozzles and 
diffusers.  We employ the Bernoulli equation to understand the tradeoffs between velocity and 
pressure changes in such varying area ducts for an incompressible flow.   Applying Eq. 7.10a 
from points 1 to 2 (we assume along any streamline), we can eliminate the terms indicated based 
on the listed assumptions (assumptions 1, 2, and 3 allow the use of the Bernoulli equation): 
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For constant density and uniform flow, the continuity equation gives: 
2

1
12 A

AVV  . 

Substituting for V2 in the Bernoulli equation gives: 
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Now, note the effect of an area change on the pressure change: 
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 (7.12) 

 

Assume 
1) inviscid 
2)  const.   
3) along S.L. 
4) steady 
5) neglect height changes              
6) uniform flow 

5 5 4 

A2 A1 
V1 

1 
2 

V2 A1 
V1 

1 

2 
A2 

V2 

http://en.wikipedia.org/wiki/Dynamic_pressure
https://en.wikipedia.org/wiki/Hydraulic_head
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We apply the term “nozzle” to duct geometries that cause an acceleration of the flow (V  ), 
and a consequent decrease in pressure from the inlet to the exit.  Conversely, we apply the term 
“diffuser” to a duct geometry that causes a deceleration of the flow (V ), with a consequent 
increase in pressure from inlet to exit. 
 

Note that the term 2
12

1 V in Eq. 7.12 above has the dimensions of pressure (Force/Area), and 
represents the change in pressure that would be experienced if all the entering momentum of the 
inlet flow were converted to pressure by bringing the flow inviscidly to rest.  We term this 
potential pressure change the “dynamic pressure,” and utilize it to form a non-dimensional 
parameter, Cp, by dividing the pressure change by the dynamic pressure available at the inlet: 
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2

2

1
2

12
1

12
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11
A
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V
PPC `     (7.13) 

 

where  
1

2

A
AAR   (termed the area ratio), and Cp is termed the pressure coefficient.  The pressure 

coefficient, which is also often termed the Euler number, is a convenient engineering relationship 
that removes the dimensional dependence on the actual flow velocity, and indicates the 
capability of a: (1) nozzle to “convert” pressure to additional momentum exiting the nozzle, or 
(2) diffuser to “recover” pressure from the fluid momentum entering a diffuser.  
 
Note that for a nozzle, AR < 1, which means that Cp < 0, or that P1 > P2.  A falling pressure in a 
duct flow creates a very stable type of flow, which assures that a nozzle flow will create  
an acceleration of the flow pretty much in proportion to the pressure drop from nozzle inlet to 
exit.  However, because of viscous effects in real ducts, Eq. 7.13 will slightly under-predict Cp  

(i.e. a slightly higher inlet pressure will be required to achieve a desired exit velocity).  Usually, 
this variation, known as a nozzle discharge coefficient, CD, is taken into account by the use of an 
empirical correction factor. In general, because of the stability of a falling pressure, there is no 
limit on how small the area ratio (AR) of a nozzle may be.  
 
Whereas, a nozzle behaves pretty much according to Eqs. 7.12 and 7.13, the flow process in a 
diffuser is more complicated, and subject to strong variations from Eqs. 7.12 and 7.13. For 
example, if 2AR   for a diffuser, Eq. 7.13 indicates that 4

3
pC  .  This means that, ideally, 4

3 of 

the dynamic pressure  2
12

1 V  entering the diffuser could be converted or “recovered” by the 
diffuser as a pressure increase.  This increase in pressure could be employed productively in a 
fluid machine (e.g. a gas turbine) to produce more power (in the form of thermodynamic work,

PdV ).  However, like a nozzle, viscous effects for a real fluid flow will reduce the amount of 

pressure actually recovered relative to this ideal amount.  What is worse, if the area increase 
across the diffuser is too large (roughly AR > 2.75 to 3), the actual pressure recovery capabilities 

https://www.lmnoeng.com/nozzles.php#discharge
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of the diffuser will be much less than that predicted by the inviscid solution, Eq. 7.13.  This 
under prediction is a result of a reduction in the effective exit area for the flow due a process of 
pressure-gradient induced flow separation (a process we will discuss in detail in Chapter 14).   

 
Figure 7.3  Non-dimensional pressure recovery (Cp) vs. diffuser area ratio (AR=A2/A1) for: 

(a) an inviscid flow, and (b) an actual viscous flow.  
 
When flow separation develops within a diffuser, a region of stagnant or recirculating flow 
develops adjacent to one wall of the diffuser, which diverts the flow through the diffuser away 
from that wall (i.e. causing it to “separate” from the solid boundary).  This process, termed 
diffuser separation or stall, results in a fluid blockage of a portion of the diffuser exit. This 
blockage thus reduces the effective exit area, A2, which results in a sharp reduction of the actual 
pressure recovery by the diffuser from the ideal recovery predicted by Eq. 7.13.  Figure 7.3 is an 
illustration of the degree of variation the pressure coefficient can experience with increasing area 
ratios.  Thus, when it comes to diffusers, a larger exit area is not necessarily better.  More 
information on diffuser behavior can be found here. 
 
This example shows clearly that one must carefully assess the conditions for which the 
assumption of inviscid (or at least nearly inviscid) flow is an appropriate assumption. 
 

7.4.2 Starting Flow from a Tank  
 

Flow through channels and piping also can undergo unsteady effects due to sudden changes in 
the flow velocity or the driving pressure.  Examples of such a situation are the sudden opening or 
closing of a valve or faucet in a piping system, or when a floodgate on a dam is suddenly opened 
or closed.   To address such time-dependent behavior, we make use of the unsteady Bernoulli 
equation, along a streamline, Eq. 7.10a, retaining the time dependent term. 
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Consider a large tank, as shown in figure 7.4, filled with water to a depth D.  A pipe of length L 
allows water to flow out of the tank. If the pipe leading from the tank is initially plugged, how 
will the velocity of the water leaving the tank, V2(t), behave after the tube is unplugged at t = 0?  
 
To simplify this problem, we make the assumption that A1>>A2 such that the tank water depth, 
D, can be considered essentially constant.  We could do the problem with h varying with time, 
but it makes the final differential equation non-linear, and more complicated to solve.  We will 
also assume that we can follow a streamline from the free surface of the water in the tank (1) to 
the exit of the pipe at (2).   Of course, we also assume an inviscid flow, which is not true if the 
pipe is of any modest length.  However, the solution we obtain will indicate the maximum 
velocity behavior that could be expected for such a flow, and thus provides an upper bound on 
the velocity behavior for any real flow. 
 

 
 
 
 
 
 
 
 
 
 

 Figure 7.4   Schematic for the starting flow from a tank through a long pipe. 
 
Applying the unsteady Bernoulli equation, Eq. 7.10, along a streamline between points 1 and 2 
as shown, we have: 
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1
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2
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112 0ds
t
VhhgVVPP  
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1 0ds
t
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VgDV   

 
 

Note that since the pressures at the beginning and end of the streamline are both atmospheric, the 
pressure terms cancel (we assume height effects on the surrounding atmosphere to be negligible).  
Also, since A1>>A2, the velocity V1 will be negligible relative to V2.  Finally, we break the 
integral of the flow acceleration into two parts:  (a) from the tank water surface to the entrance to 
the pipe, and (b) from the pipe entrance [s = 0] to the pipe exit [s = L].  Since the velocity within 

Assume 
1)  constant 
2) flow along streamline 
3) inviscid flow 
4) uniform velocity @ 1 & 2 
5) V10 since A1>>A2 
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t
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the tank will be quite slow, we assume that the time change within the tank will be negligible, 

and that within the pipe 
t

V
t
V 2








 , such that :  

0ds
t

VgDV
Ls

0s

22
22
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 )0L(
dt

dV2   since )s(f
dt

dV2   

Rearranging terms gives: 
 

L2
VgD2

dt
dV 2

22 
  (7.14) 

 

Separating variables and integrating Eq. 7.14: 
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L2
dt
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gD2

V2 tanh  (7.15)  

 

 
 

Figure 7.5   Velocity behavior of the starting flow from a tank through a pipe of length L and 
free surface height of D. 

 
Equation 7.15 indicates that as t increases the pipe exit velocity will increase asymptotically 
toward a steady state value of gD2V2  .  As shown in figure 7.5, increasing the pipe length 
increases the time required for the velocity to reach steady state.  This delay is due to the 
increased inertia of the water within the tube with increases in L.  Clearly, as the tube length is 
increased, the gravitational driving force must accelerate a larger mass of water within the tube --
- and since the driving force is fixed, the flow will accelerate more slowly. 
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Obviously, most real pipe flows will also experience viscous effects, which will both increase the 
time to reach steady state, and reduce the maximum flow rate that can be achieved.  Therefore, 
Eq.7.15 represents the upper limit of how rapidly the water flow from the tank can accelerate, 
and the maximum average velocity that can be achieved at steady state. 
 

7.4.3 Inviscid Stagnation Flow 
 
Consider an incompressible, inviscid, two-
dimensional flow toward a solid boundary as 
shown below.  The Cartesian velocity field for this 
flow is given by: 
 

ĵByîAx)y,x(V 


 
 

Where A and B are constants, and the velocity 
components are: 
 

Byv  and   Axu   
 

We want to establish the pressure behavior along a typical streamline for this type of flow. 
 
As we discussed in Chapter 5, an incompressible two-dimensional flow must satisfy the reduced 
two-dimensional continuity equation of the form: 
 

BABA0
y
v

x
u









  

 

So, to have a valid incompressible flow we must have ĵAyîAxV 


, where Ayv,Axu  .  
To establish a streamline, we recall from section 3.2 that for a two-dimensional flow the equation 
for a streamline is: 
 

V ds udy vdx 0         along a streamline. 
 

So for the present case, we have: 
 

x
y

Ax
Ay

u
v

dx
dy




  

 

Separating variables and integrating gives: 
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dx
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Cxy lnlnln  , so that  
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Cxy  , where C  is a constant (7.16) 
 

Now, applying the steady flow Bernoulli equation, Eq. 7.11, along an inviscid streamline gives: 
 

ghV
2
1P 2 


=constant 

 

or substituting the velocity components: 
 

 2222 yAxA
2
1P




 = constant (7.17) 

  

To specify a particular streamline, we select a particular point that we want the streamline to pass 
through.  For example, if we specify that the streamline pass through the origin, (x,y) = (0,0), Eq. 
7.16 reduces to: 
 

xy = C = 0  
 

If we specify the pressure at (x,y) = (0,0) to be Po, we can solve for the constant in Eq. 7.17 as: 
 

0
Po 


 = constant = 


oP
 

 

Thus, at any other point along this streamline, xy = 0, we have: 
 

 22
2

o yx
2
APP 


  (7.18a) 

 

Thus, the highest pressure along this streamline occurs at the point (x,y) = (0,0), which happens 
to be the stagnation point for the flow (where V


= 0), and thus Po is termed the stagnation 

pressure. 
 

Note that there is no vorticity for this flow, 0k
y
u

x
vkz 

















 ˆˆ

, which means that this 

particular flow is also irrotational.  Thus, the pressure equation derived above will also apply at 
all points within the flow, as well as along the designated streamline.  Rewriting  Eq. 7.18a, as: 
 

  PP
A
2yx o2

22 


  (7.18b) 

 

Eq. 718b indicates that the pressure field for this flow is represented by isobaric (constant 
pressure) curves that are circles centered on the origin (i.e. if constantPPo  , Eq.7.18b is the 
equation for a circle). 
 
  

neglect 
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7.5   Flow Curvature Effects:  Euler s and n Equations 
 

While the Bernoulli equation derived in section 7.3 provides a useful relationship between the 
velocity and the corresponding pressure and height changes along a streamline (or within an 
irrotational flow), it is often useful to understand how pressure varies across streamlines due to 
curvature within a flow.  Many flows in nature and technical applications undergo significant 
curvature, which can give rise to significant pressure variations in a direction normal to the 
curved streamlines.  For viscous fluids, the resultant cross-stream pressure variations caused by 
flow curvature can play a significant role in creating secondary flows of fluid near solid 
boundaries (note: secondary flows are localized flows, generally near a bounding surface, created 
by the effects of the pressure field due to the primary flow).  In fact, as we discuss in Section 
7.6.3, curvature-induced pressure changes are a key factor in causing the meandering of rivers 
and in the development of other three-dimensional flows.   
 
To address the effects of flow curvature, and assess the impact it can have on inviscid (and 
viscous) flows, we will reconsider the Euler equation along a streamline, Eq. 7.7, by employing a 
streamline coordinate system. 
 

Recall that along a streamline, the general Euler equation (Eq. 7.1, where hg


) is given by: 
 

VV
t
V

Dt
VDP1hg




)( 






  (7.19) 

  

Now consider a two-dimensional flow along a streamline.  Here we employ coordinates s and n, 
where s is tangent to the streamline and n is normal to the streamline, as 
shown in the sketch.  R is the instantaneous radius of curvature of the 
streamline at the coordinate origin. Consequently, we write the velocity 
magnitude as a function of s and n, such that V = f(s, n).  Thus, the vector 
expression for the velocity is given by  snsVV ˆ,


.  Here V is the 

magnitude of the velocity, ŝ  is a unit vector oriented tangent to the 
streamline (along s), and n̂  is a unit vector oriented normal to the 
streamline (along n), as shown.  
 

Note that we would typically write the velocity vector for such a coordinate system as 
nVsVV ns ˆˆ 


.  However, since the coordinates are fixed on a streamline we have sVV ˆ


 

(since there is no flow across a streamline), such that ,0Vn   and VVs  .   
 

So, in streamline coordinates, the acceleration, given by applying the substantial derivative to 
sVV ˆ


, becomes: 
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 (7.20)  
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To make proper sense of Eq. 7.20 requires that we evaluate the derivatives of the unit vectors, 

t
sand

s
s







 ˆˆ
, which is shown graphically below. 

 
  

 
 
 
 
  
Thus, 
 

R
n

R
n

s
s

s
s

0s0s

ˆˆ
lim

ˆ
lim

ˆ

















       and (7.21a) 
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 (7.21b) 
 

Substituting Eqs. 7.21 into Eq. 7.20 we have: 
 


































R
V

t
Vn
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VV

t
Vs

Dt
VD 2
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 (7.22a) 

It is not exactly obvious how the n direction time derivative term 
t




 can be handled.   However, 

note in the above figure that s R   , or s
R


  .  Thus, we can write that 

t 0 t 0

1 s 1 slim lim
t t R t R t   

   
  

   
.  However, a streamline is defined by its coordinate system, 

which is fixed on the streamline. So, s, and the unit vectors are not functions of time, such that 
s
t



,  and the unit vector derivative with respect to time, ŝ

t



, are zero. Thus, Eq. 7.22a becomes: 

 
2DV V V Vˆ ˆs V n

Dt t s R
   

     
    

 (7.22b) 

 

Thus, the time derivative has no impact on the n-direction velocity changes, since there is no n-
direction velocity across a streamline. 
 

Using Eq. 7.22b, we rewrite Eq. 7.19 in nands ˆˆ  coordinates, where the del operator in 

streamline coordinates is given by 
n

n
s

s








 ˆˆ . This gives us the Euler streamline equation: 
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2h h 1 P P V V Vˆ ˆ ˆ ˆ ˆ ˆg s n s n V s n
s n s n t s R

           
            

             
 (7.23) 

  

Separating Eq. 7.23 into its vector components, and rearranging, gives: 
  

0
t
V

s
VV

s
P1

s
hg 




















  s-direction component (7.24a) 
 

2dh 1 P Vg
n n R


 

  
 n-direction component  (7.24b) 

  

Equations 7.24a and 7.24b are known respectively as the Euler s-equation and Euler n-equation. 
 
To integrate the Euler streamline equation along a streamline, we take the dot product of Eq. 
7.23 with a differential element oriented along the streamline, dsssd ˆ

 , and integrate the 
resultant equation from a point 1 to a point 2 on a streamline:  
 

h 1 P V Vg ds ds V ds ds 0
s s s t
   

   
    

  

 
 

1 Vgdh dP VdV ds 0
t


   
 

 (7.25a) 

 
2 2 2 2

1 1 1 1

1 Vgdh dP VdV ds 0
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      (7.25b) 

 

Note that we can associate, for example, ds
s
hdn

n
hds

s
hdh














 , since we are constraining 

changes to occur only along the streamline, for which dn = 0.  
 
Integrating Eq. 7.25b gives: 
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VVVdPhhg )(  for unsteady, )(Pf  (7.26) 

or 
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VVVPP1hhg )(  for unsteady, .const  (7.27) 

 

Equations 7.26 and 7.27 are the same unsteady Bernoulli equations as Eqs. 7.9 and 7.10 that we 
obtained in section 7.3.1 above, when we invoked the conditions of flow along a streamline for 

dh dP dV 

=0 

http://en.wikipedia.org/wiki/Euler_equations_%28fluid_dynamics%29
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the general Euler equation.  This is of course as it should be, and illustrates that the Bernoulli 
equation is independent of a specific coordinate system. 
 
To assess the effect of flow curvature, we can use the component of the Euler equation for the n-
direction (Eq. 7.24b).  Starting with the n-equation, we demonstrate how pressure and height 
vary normal to the direction of a streamline. 
 
Let nd  represent a differential element that is perpendicular to a streamline, where n dnnd ˆ

 .  
We now take the dot product of nd  with Eq. 7.23, giving:  
 

2h 1 P Vg dn dn dn
n n R
 

 
  

  (7.28) 

 
 
Since we will only be integrating in the normal direction, n,  

we can associate  
 dn
n

d



 , since we are constraining  

the changes to only occur normal to the streamline, such that ds = 0. For an arbitrarily curved 
streamline, the integration of the velocity terms could be complicated.  So, to simplify our 
considerations of curvature, we constrain our assessment to a set of streamlines, each of which 
has a circular radius of curvature R. We also let drdn  , where r is a variable originating at the 
origin and oriented along the radii of curvature of the streamlines, so Eg.7.28 becomes: 
 

   
21 Vgdh dP dr

R
 


 (7.29) 

 

Integrating Eq. 7.29 between two points along the radius, and letting  = constant, gives: 
 

2 2 2 2

1 1 1
2 2
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        (7.30)       

 

Note that: (1) the velocity, V, in Eqs. 7.29 and 7.30 is the magnitude of the velocity along the 
streamlines, V=Vs=V(r,s), and (2) these equations only apply normal to streamlines when r is 
parallel to n,   constant.  Additionally, the centers of curvature must remain fixed or the 
equation does not apply (basically, all flow streamlines must describe a circle, or a circular arc).  
As we will see, generally we set R = r when integrating the right hand side of Eqs. 7.29 and 7.30, 
since the origin of the radius of curvature, and the coordinate r will be the same for a set of 
circular arc streamlines. 
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V(r) = Cr 

R 
Po 

r 

7.6   Applications of the Euler s and n Equations 
 

The following section demonstrates the application of the Euler s and n equations for several 
inviscid flows.  Most real flows have some degree of curvature, which can affect the cross-
stream pressure distribution.  Recall that we showed this pressure variation with curvature for 
several of the examples we did in section 6.4. These cross-stream pressure differences can have a 
significant effect on what are termed secondary flows, which are local flows that are not 
coincident with the main or primary flow.  Secondary flows generally occur where viscosity 
retards the primary flow to such an extent that a cross-stream pressure field can cause movement 
of fluid normal to the primary flow direction.  These secondary flows commonly develop near 
solid surfaces, where viscous effects are the strongest.  The consequences of such secondary 
flows are the development of cross-stream variations in the overall velocity field, leading to 
significant three-dimensionality of the flow field, and often increased energy losses and flow 
separation.  We'll discuss such losses in more detail in Chapter 15. 
 

Euler’s n-equation, which is used to establish pressure changes across streamlines for inviscid 
flows, can also be used to approximate how cross-stream pressure changes result from curvature 
in real fluid flows.   
 

7.6.1 Pressure Field Inside an Inviscid Vortex 
 
One of the simplest, and most instructive, examples of curvature-induced pressure changes is a 
circular vortex rotating in an inviscid environment.  Consider a radially symmetric vortex of 
radius R rotating in solid body rotation, with a velocity distribution given by V(r) = Cr, where C 
is a constant.  Assuming that the flow is steady, and gravitational effects are not relevant, Euler’s 
n-equation, Eq. 7.29, for a fixed center of curvature, simplifies to: 
 

r
V

dr
dP1 2




 

 

Substituting the solid body velocity  
distribution gives: 
 

2dP (Cr)
dr r

   
 

Separating variables, and integrating outward from the center of  
the vortex, r = 0, where we assume a pressure of  
P = Po, we obtain: 
 

0

P r
2

P r 0

dP C rdr


    

Assume 
 
1. Euler n-eqn. applies 
2. )(rPP   
3.  P=Po at r=0 
4. circular center of 
 curvature such that  
    R = r 
5. neglect h changes 
6. steady 

http://en.wikipedia.org/wiki/Secondary_flow
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r2 2
2 2

o
r 0

r rP P C C
2 2



      

  

So, the pressure distribution within the vortex is given by  
 

2
2

o
rP P C
2

   (7.31) 

and the pressure at the outside of the vortex, r = R, is given by 
2

2
R o

RP P C
2

  .    

Thus, for a vortex with solid body rotation, the pressure increases with increasing radius, with 
the lowest pressure occurring at the center of the vortex.  
 
Now, consider a vortex with a velocity profile that decreases inversely with radius, such that 

 
CV r
r

  (this is a potential vortex, which we revisit in Chapter 9).  Here, the same assumptions 

and form of Euler’s n-equation apply.  Substituting the velocity profile into the Euler n-equation 
gives:   
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22 2

3

C dr
rdP V C

dr r r r

 
 
       

 

Integrating from a point 1 to a point 2 along  
the radius, we have: 
  

22 2

1 1 1

rP r 2 22 2
2 2 2 1

2 2 3 2 2 2
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V Vdr 1 C CdP P P C C
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Where V1 and V2 are the velocities at the respective points, and 
  

2
V

2
VPP

2
2

2
1

12   (7.32) 
  

Note that Eq. 7.32 indicates that 
    0VV

2
1PP 2

1
2
2

12 


 , which is the same result we would 

obtain integrating Euler’s s-equation for an irrotational flow.  This is because this particular type 
of vortical velocity profile contains no vorticity, and is thus termed an irrotational vortex. 
 
However, note that there is a problem with this description of the pressure field, since if 0r1   

this would require that 1
1

C CV
r 0

   .  Actually, a better way to describe this pressure field is 

V(r) = C/r 

R 1 
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to let one limit of integration be the pressure at an infinite radius, such that P = P as r  , and 
integrate from infinity inward, which gives: 
 

 

P r 2 2 2 2
2

3 2 2
P r

dr C C C Vdp P P C
r 2r 2 2r 2







  
          

   

or 
2 2

2

C VP P P
2r 2 


     (7.33) 

Equation 7.33 indicates that the pressure will decrease from P toward the center.   
 
Again, as r  0, the velocity will increase infinitely, and Eq. 7.33 indicates that the pressure 
would decrease infinitely, which is not physically possible.  In a real flow of this type, viscosity 
would cause a “readjustment” of the velocity profile to a solid body rotation near the center of 
the vortex, which allows V  0 as r  0, such that the pressure at r = 0 will be a finite value.  
Such vortices, which combine an irrotational outer flow with a solid body inner rotation, are 
termed combined Rankine vortices.   These types of combined vortices provide reasonable 
models of the pressure behavior within actual viscous vortical flows, such as hurricanes and 
bathtub vortices.  The analysis of such combined vortex flows is given as study problems at the 
end of this chapter. 
  
Note that the two different vortical flows just examined illustrate a characteristic that is generic 

for all vortical flows, whether they are inviscid or viscous.  For all vortical flows, 0
dr
dP

 , which 

implies that the pressure within a vortex will always decrease toward the center of rotation.  As 

we discuss in the following example, cross-stream, radial pressure gradients, 
dr
dP , resulting from 

streamline curvature, can play a particularly important role in creating secondary flows near 
constraining solid boundaries, such as in the vicinity of bends in pipes or ducts, and even in 
rivers. 
 

7.6.2 Inviscid, Irrotational Flow Around a Bend in a Duct 
 

 
 
 
 
 
 
 

 
Figure 7.6 Two-dimensional flow around a circular arc bend or elbow. 

Assume 
1) inviscid 
2)  constant 
3) steady flow 
4) irrotational flow 
5) neglect height changes  

r1 

r2 

https://en.wikipedia.org/wiki/Rankine_vortex
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Consider inviscid, irrotational flow around a two-dimensional bend whose bounding surfaces are 
concentric, circular arcs, as shown in figure 7.6.  
 
From the Euler s-equation for irrotational, steady flow, Eq. 7.25a, we have: 
  

0
2

VddP1gdh
2












  (7.34) 

  

Integrating Equation 7.34 within the bend flow field, since the flow is assumed irrotational, 
gives: 
 




2V
2
1P constant over the flow field  (7.35) 

  

If we differentiate Eq. 7.35 with respect to the radius, r, we have: 
 

0
r
VV

r
P1












 (7.36)  

Equation 7.36 will be valid anywhere for irrotational flow within the bend.  
 
However, for any streamline passing around the bend, Euler’s n-equation, Eq. 7.29, will also 
apply in the form: 
 

R
V

n
P1 2







  

  

where n is coincident with the radius, r, of the streamline, and R = r is the radius of curvature of 
any streamline within the bend, such that: 
 

r
V

r
P1 2







 (7.37) 

 

Equating the radial pressure gradients in Eq. 7.36 and 7.37 we have: 
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dVV

r
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r
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r
P1 2












 

 

Separating variables and integrating from the inside of the bend (V = V1 at r = r1) to an arbitrary 
point within the bend, yields,  
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r
C

r
rVV 1

1   where 11rVC  = constant. (7.38) 
  

So, the velocity is highest on the inside of the bend, diminishing toward the outside of the bend.  
Substituting Eq. 7.38 into Eq. 7.37 for the radial pressure gradient, indicates that  
 

0
r
C

dr
dP

3

2

   
 

Integrating from r1 to r2 gives: 
 

22 2
2 11

2 1 122 2
1 2 2

rC CP P V 1 0
2r 2r r

  
         
   

     since r1< r2 (7.39) 

 

Equation 7.39 indicates that the pressure is always higher toward the outside of a bend or elbow, 
and the velocity is highest near the inside of the bend.  Note the similarity to the result for an 
irrotational vortex, Section 7.6.1. 
 
Recalling our results for inviscid vortices in section 7.6.1, we can generalize that for curved 
streamlines, 
  

0
r

V
dn
dP 2

   (7.40) 

 

Equation 7.40 implies that pressure 
always increases in the direction of 
curvature, as illustrated to the right. 
 
This characteristic of the radial pressure 
increasing in the direction of curvature 
holds true for all flows, inviscid or viscous, and for streamlines moving along non-circular paths.  
As discussed before, cross-stream pressure gradients that result from these curved streamline 
patterns are responsible for the development of secondary flows near bounding surfaces in real 
fluid flows. 
 

7.6.3 The Impact of Curvature on Particulate Motion 
 
In sections 7.6.1 and 7.6.2, we illustrated how cross-stream pressure will always increase in the 
direction of radial curvature.  The practical implications of this effect are manifold, from the 
creation of cross-stream secondary flows near boundaries, to the creation of swirling three-
dimensional flows.  Additionally, cross-stream pressure gradients due to flow curvature effects 
can provide a strong driving force for the motion of solid particulates or gas bubbles suspended 
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in a fluid.  The following two qualitative examples illustrate the impact of flow curvature on 
particulate motion. 
 

7.6.3.1   Vortex-Induced Motion of Particles or Gas in a Liquid.   
 
Since pressure always increases outward from the center of 
fluid rotation, this pressure difference (the local magnitude 
reflected by the radial pressure gradient) provides a driving 
force toward the center of rotation.  In essence, this is a 
driving force toward the center of curvature proportional to 
the local angular acceleration.  The effect of the pressure 
gradient is to generate a surface force acting inward, toward 
the center of curvature on any particle within the flow.  That 
surface force will be proportional to the fluid mass displaced 
by the particle.  However, a particle rotating in the flow will 
also be subject to a centrifugal force acting outward from the 
center of curvature, but proportional to the mass of the 
particle. Consequently, for a particle that is denser than the 
fluid, such as most dirt particles, the centrifugal force is 
dominant, and the particle will move outward.  This effect is 
the basis for the operation of cyclone separators, which are 
used to remove heavy particulate matter from fluid and air 
flows.  A schematic of a cyclone separator is shown at the 
right.  Conversely, a particle that is less dense than the fluid 
will move inward, since the pressure gradient force will dominate.  This effect can be observed, 
for example, by the bubbles in a carbonated beverage moving toward the center of a glass when 
the beverage is stirred.  Of course, if the particle density is equal to that of the fluid (i.e. neutrally 
buoyant), the particle will maintain its position and move with the fluid. 
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http://en.wikipedia.org/wiki/Centrifugal_force
https://en.wikipedia.org/wiki/Cyclonic_separation
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7.6.3.2   Erosive Effects and River Meandering 
 
When there are substantial variations in topographical elevation, rivers and streams tend to 
follow the contours of the lowest points of land, or valleys.  However, when a river or stream 
flows across a relative flat area, such as a prairie or open field, flow curvature can have a 
significant impact on the path of the river/stream due to the development of a secondary, cross-
stream flow that carries eroded soil particles from the outside to the inside bank of a river or 
stream.   
 

  
 

 (a) Plan view of a river (b) Cross-section view, looking downstream 
 

Figure 7.7 Illustration of the migration of eroded particulate material across a river or 
stream bed due to curvature-induced, cross-stream pressure gradients. 

 
Consider the plan-view schematic shown in figure 7.7a of a curved river channel.  The curved 
flow of the river causes a cross-stream pressure gradient, with pressure increasing outward from 
the center of curvature, such that the pressure within the main body of the flow will be higher at 
the outside bank of the river than the inside bank.  If the flow is fast enough, this increase in 
pressure will also be visually evidenced by an outward increase in the cross-stream height of the 
river surface.   
 
As the streamwise cross-section A-A of the river in figure 7.7b shows, the flowing water will 
erode the outside bank of the river, with the heavy soil particulates settling toward the riverbed.  
When the soil particles approach the riverbed, they will enter a viscous fluid boundary layer just 
above and adjacent to the riverbed (We will cover boundary layers in Chapter 13).  Within this 
boundary layer, the flow of the water in the streamwise direction will be strongly reduced (by the 
no slip effect at the riverbed), and so will the associated hydrodynamic forces which drag the 
eroded soil particles in the streamwise direction.  However, the cross-stream pressure gradient 
created by curvature of the main flow will be “impressed” on both the boundary layer, and the 
soil particles within this layer.  This radial pressure gradient creates a lateral force on the 
particles, which pushes the particles and the local flow adjacent to the riverbed toward the inside 
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riverbank, causing the particles to “migrate” across the river and be deposited on the inside bank 
of the river.  The dotted arrows in figure 7.7a roughly model the particle migration from the 
outer to the inner bank of the river. 
 

As this process of cross-stream transport continues, eroded soil particles from the outer riverbank 
will continue to migrate and deposit on the inner riverbank, forming a beach or sand bank.  This 
continuing erosion of the outer bank and deposition of material on the inner bank will create 
additional curvature of the river, which will increase the process of erosion/transport.  The long-
term result is the development of an increasingly curved, sinuous path for the river. This 
continued development of river curvature is generally termed “meandering.”   
 
 

 
 
 
 
 
 
  
 
  

Figure 7.8 An image of river meandering, clearly showing sand bars (appearing as light 
yellow) formed on the inside of bends (curves) in the river. 

 
The Mississippi River in the United States, and the Nile River in Egypt are excellent examples of 
meandering caused by this process of erosion and secondary flow transport, all of which can be 
explained by the presence of radial pressure gradients.  Clearly, if a river is initially straight, this 
process requires some initial perturbation to start the development of curvature, but existing 
irregularities in the land contours are generally sufficient to initiate this natural process.   
 
Figure 7.8 is an example of this meandering river effect, from a photograph I took from an 
airplane at 36,000 feet. Note how the sand bars (light yellow color) occur on the inside of the 
bends in the river, and in some cases form small islands at the inside of a bend in the river. Given 
enough time, and without interference by human engineering, these bends in the river will 
continue to accentuate, often causing the river to cut through these sand bars to meet upon itself 
and form a separate channel.  The Mississippi River over time has created many of these separate 
islands, often modifying adjacent state boundaries, and isolating riverside homes and towns. And 
this is all due to the processes inferred from the Euler n-equation.  For a simplistic video 
assessment of this process by a geologist, with some nice illustrations, go to this link. It doesn’t 
cite Euler’s n-equation, but it is that process that is at work. 
 

https://www.youtube.com/watch?v=8a3r-cG8Wic
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To illustrate the movement of heavier particulates by secondary flows due to a radial pressure 
gradient, try this simple experiment. Fill a circular container (any glass, coffee cup, or teacup 
will work) with water, and drop in some fine dirt particles (heavy enough that they settle to the 
bottom of the vessel—sand works well).  Now stir the water until it is moving in a relatively 
steady circular motion.  Remove your stirring implement, and watch what happens to the dirt on 
the bottom of the vessel.  What you will observe is that as the flow slows, due to viscous effects, 
all the dirt particles will concentrate in the center of the vessel—proof of the presence of a 
secondary flow along the bottom of the vessel toward the center of curvature due to the imposed 
radial pressure gradient by the main flow.  This is often called the "tea leaf phenomena or 
paradox", since it has long been observed that tea leaves within a cup of stirred tea display this 
central concentration behavior. Click on the above link to see a demonstration of this tea leaf 
concentration, which was explained originally by no other than Albert Einstein. 
 
7.7  Summary of Inviscid flow Equations 
 

7.7.1 Euler Equation (along a streamline or in irrotational flow) 
 

 0sd
t
V

2
VddP1gdh

2






















  

 

7.7.2  Bernoulli Equation (along streamline, or irrotational flow) 
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7.7.3 Euler s and n Equations (streamline coordinates, unsteady) 
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7.7.4 Euler s and n Equations (integrated, steady) 
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Study Problems 
 

1. An inviscid, two-dimensional flow field is given by jxy2ixV 2 ˆˆ 


.  Assuming that all values are 
dimensionless, determine: 

 

 a) If this an incompressible flow; if so, let  = 1(dimensionless) 
 b) The vorticity for the flow field; 
 c) The equation for a streamline passing through a point 1 at x,y = 1,1; 
 d) The value of y at a point 2 lying on the streamline of part c at x = 2; 

From our streamline, the value of y for x = 2 is given by: 
 e) If the pressure at point 1, P1, is zero, determine the value of pressure at point 2, P2; 
 f) Using point 1 in part e), could you determine the value of pressure at a point x,y = 2,2?  If  
  you can, determine the pressure; if you can't, explain why you can't 

 
 

2. Consider a liquid jet that flows vertically upward in a gravitational field, as shown below.  Assume the 
flow is uniform and inviscid.  Determine an expression for the change in the jet cross-section with 
distance y from the jet orifice.  What is the limiting height for this jet?  Why? 

  
  
 
 
 
 
 
 
 
 
 
 
 
 

3. Consider a liquid jet that falls vertically downward  in a gravitational field, as shown below.  Assume the 
flow is uniform and inviscid.  Determine an expression for the change in the jet cross-section with 
distance y from the jet orifice.   

 

 
 

 
 

 
 
 
 

 
 
 

4. A home power washer generates water gage pressure of 3000 psi or 20.68 MPa.  If the nozzle of the 
power washer has an inlet diameter of 1 cm and an exit diameter of 1 mm, assume the flow through the 
nozzle is inviscid, and determine: (a) the water exit velocity, and (b) the flowrate in liters/minute. Note: 
Assume 20 C water; gage pressure is the pressure relative to atmospheric, and the exit pressure is 
atmospheric.  

Vo 

y 
Liquid Jet 

Ao 

g 

Ao 

y 

g 
Liquid Jet 

Vo 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter  7 
 
 

 220 

5. A the pump of a water jet cutter generates a gage pressure of 60,000 psi or 413.7 MPa.  If the nozzle of 
the water jet has an inlet diameter of 1 cm and an exit diameter of 1 mm, assume the flow through the 
nozzle is inviscid, and determine (a) the water exit velocity, and (b) the flowrate in liters/minute. Note: 
Assume 20 C water; gage pressure is the pressure relative to atmospheric, and the exit pressure is 
atmospheric.  

 
 

6. An inviscid flow of constant density, , passes through a straight pipe of length L.  The pressure at the 
outlet of the pipe remains constant at P2 = 0.  Determine [in terms of V0, , L,  and t ] how the inlet 
pressure to the pipe (P1) must vary if the velocity in the pipe is varies sinusoidally as V=Vo Sin(t). 
  
 
 
 
 
 
 
 
 

7. An inviscid flow of constant density, , passes through a straight pipe of length L.  The pressure at the 
outlet of the pipe remains constant at P2=0.  Determine [in terms of Po, , L,  and t ] how the pipe 
velocity, V, must vary if the inlet pressure to the pipe varies sinusoidally as P1=Po Sin(t). Assume V = 0 
at t = 0. 
  
 
 

 
 
 

 
 

8. An inviscid flow of constant density, , passes through a straight pipe of length L. The pressure at the 
outlet of the pipe (P2) remains constant at P2=0, while the inlet pressure to the pipe (P1) varies as 
P1=P0(t/to) for 0  t  to, after which P1 = 0 = constant for t > to.  Assume V = 0 at t = 0. 

 
a) Determine an expression for the velocity through the pipe as a function of P0, , L, to and t.   

b) What is the maximum velocity achieved, and when in time is it reached? 

c) Plot V/Vmax vs. t/to from 0 < t < 2to. 
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9. An inviscid flow passes through a 2-D 
constant area channel, followed by a 2-D 
channel, that undergoes an area change 
over the last half of the channel, as shown.  
Each half of the channel is L long, and the 
exit area ratio of the end of the channel is 
given by exit area (W2) divided by the 
inlet area of the beginning of the channel 
(W1), such that AR=W2/W1.  The channel 
inlet velocity increases as V1=Vo(t/to) for 0 < t  to, after which V1 = Vo = constant for t > to.   

Determine the pressure ratio, 
 

2V
2

1

PP

o

12
PC




 , as a function of time, t.  On a single graph, plot Cp for AR 

= 2, 1, and 0.75, over the time period 0 < t < 2to.  For purposes of dimensional correctness in plotting the 
behavior, assume that to = 2L/Vo 

 
Briefly, explain what phenomena causes this unusual behavior, and what its implications are for start-up 
flows. 
 
 

10.  Apply the unsteady Bernoulli equation to an inviscid fluid in a U-tube manometer of constant diameter as 
shown.  Assume that the manometer surface levels differ from the equilibrium level ho by an amount . 
The initial surface deflection at t = 0 is  = o, and the initial surface velocity is zero. Using the unsteady 
Bernoulli equation, obtain a differential equation for (t) and, solve for  in terms of the properties shown. 
Also, determine the interface velocity, V(t) in terms of parameters shown. 

 
 
 
 
 
 
 
 
 

 
 
Let the heights of the respective surfaces be  h1 = ho - , and h2 = ho + , and the total length of the fluid 
column in the manometer be  S = 2ho + L.   
 
 

11. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   
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The vortex consists of a core of radius R, which is in solid body rotation with velocity  









 R

rVV 01 , and a portion outside the core (r  R) that has a velocity 







 r

RVV 02 .  The density of 

the flow is , and the pressure far away from the vortex center is P.   
Determine the following: 

 
a) The vorticity for the entire flow field, as a function of r.  Plot  vs. r/R. 
b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  

Neglect any height changes. 
 
 
12. A circular vortex is present in an inviscid fluid, as shown.   

 
 
 
 
 
 
 
 
  
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  









 R

rVV 01 .  The portion outside the core (R  r  2R) has a velocity 







 R

r2VV 02 . The density 

of the flow is , and the pressure far away from the vortex center is P, including at r = 2R.   
 
Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  vs. 

r/R. 
b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  

Neglect any height changes. 
 
 

13. A circular vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
 
  
 

The vortex consists of a core of radius R, in solid body rotation with velocity 1 0
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The portion outside the core (R  r  2R) has a velocity 







 R

r
r
R4

3
VV 0

2 .  The density of the flow 

is , and the pressure far away from the vortex center is P, including at r = 2R.  Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot  vs. r/R. 
b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  

Neglect any height changes. 
 
 

14. A circular vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o for r  
Ro, and  = 0 for r  R. 
 

   
 
 
 
 
 
 
 
 

If the velocity distribution is  ivV ˆ
 only, determine the following: 

 
a) The velocity distribution, v(r), in terms of o and r, for r  R (assume that v(0) = 0).  
b) The velocity distribution, v(r), in terms of o, R, and r, for r  R. 
c) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , o, R and P, 

where P = P when r >> R.  Neglect any height changes. 
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Chapter 8 
 

The Stream Function, Vorticity, and Circulation 

Contents 
 
8.1  The Stream Function  ................................................................................................... 224 
 8.1.1  The Relation of Streamlines to Flow Rate  ........................................................... 226 
 8.1.2  The Concept of a Stream Tube  ............................................................................ 227 
 
8.2  Vorticity and Circulation  ............................................................................................. 227 
 8.2.1  Vorticity and Circulation for a Fluid in Solid-Body Rotation .................................. 229 
 8.2.2  Vorticity and Circulation for an Irrotational Vortex  ............................................. 230 
 8.2.3  Vorticity and Circulation for a Fully-Developed Channel Flow  .............................. 231 

 
8.3  Vortex Lines and Vortex Tubes  .................................................................................... 234 
 8.3.1  Vortex Lines  ....................................................................................................... 234 
 8.3.2  Vortex Tubes  ..................................................................................................... 235 
  8.3.2.1  Solid-Body Rotation Along a Vortex Tube ................................................ 237 
  8.3.2.2  The Tornado as a Vortex Tube  ................................................................ 238 
 
 

In previous chapters, we have developed methods to describe and visualize local fluid velocity 
and rotational behavior.  In Chapter 2, we introduced the streamline for describing the behavior 
within a velocity field. In Chapter 4, we introduced vorticity, as a property reflecting fluid 
rotation.  In this chapter, we extend those processes to assess more global behavior, in terms of 
both the flowrate behavior within a fluid, and a parallel method for assessment of the collective 
rotation within a fluid flow.  
 
8.1 The Stream Function 
 
In many situations, the incompressible differential continuity equation (Eq. 5.24) can be reduced 
to two dimensions in Cartesian coordinates (e.g. x and y) such that: 
 

0
y
v

x
u









  (two-dimensional,  = constant) (8.1) 

 

Equation 8.1 still leaves us with two independent velocity variables, u and v.  As with most 
differential equations, we look for solution techniques that take advantage of constraining 
conditions.  In the case of two-dimensional flow, we can reduce the number of dependent 
variables from two to one by defining a function ),( yx , such that this function will be a 
solution to the two-dimensional continuity equation if u and v can be expressed as:  
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y
u




  (8.2a) 

and 

x
v




  (8.2b) 

 

If such a function ),( yx exists, then when we substitute Eq. 8.2 for u and v into the continuity 
equation, Eq. 8.1, we obtain: 
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xyyxy
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 (8.3) 

 

Equation 8.3 implies that such a function, ),( yx , is an exact solution of the two-dimensional 
continuity equation. 
 
Now recall that the equation for a streamline is given by 0rdV 


, which for two-dimensional 

flow simplifies (in Cartesian coordinates) to: 
 

0vdxudy   (8.4) 
 

Substituting Eq. 8.2 into Eq. 8.4 gives: 
 

0dx
x
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  (8.5) 

 

Now if we also differentiate the function  , the chain rule gives us: 
 

dx
x

dy
y

d








  (8.6) 

 

Comparing Eq. 8.6 with Eq. 8.5, which we obtained from the streamline equation, this indicates 
that d = 0 along a streamline, or that   must be a constant along a streamline.   
 
We term   the stream function of the flow field, from which we can derive the velocity 
components, plus other useful relationships for the flow field.  In Chapter 9 we will show that we 
can use the stream function to assess the behavior of inviscid, irrotational flows.  Additionally, in 
Chapters 12 and 13 we will demonstrate how we can use the functionality of  the stream function 
to reduce the order of the Navier-Stokes equations to help us solve for the behavior of two-
dimensional, viscous flows (unfortunately, at the expense of generating higher-order terms). 
 
 
 

http://en.wikipedia.org/wiki/Stream_function
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8.1.1 The Relationship of Stream Lines to Flow Rate  
 
Note that since d  is an exact differential, the integral of d between any two points in a flow 
field will be independent of the path of integration (remember your calculus).  Now consider the 
flow between two streamlines, as shown in figure 8.1. 
 
 
 
 

 
 
 
 
 
Figure 8.1 Geometric schematic of flow between two streamlines. 
 

From control volume continuity, we know that the volume flow rate is the integral of the velocity 
field normal to the cross-sectional area spanning the streamlines, or:  
 

  

2

1

AdVflowrateQ


 

  

The component of the velocity crossing a surface is often termed the velocity “flux.”  Thus, the 
flow rate is the integral of the velocity flux over a prescribed area.  If we examine this flow rate 
integral for two-dimensional flow, using the general configuration shown in figure 8.1, we can 
generalize the velocity and the differential area (which in two-dimensions is really just a cross-
sectional distance) as:  
  

ĵvîuV 


   and  jdxidyjdAidAAd yx
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(note that dxdA y  , since the projection of Ad


is in the negative x-direction) 
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Substituting for u and v from Eq. 8.2, we get: 
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Since the integral of Eq. 8.7 is path independent, this means that the flowrate between any two 
stream functions (i.e. streamlines) is a constant. 
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8.1.2 The Concept of a Stream Tube  
 
Extrapolating the two-dimensional flow rate/streamline relationship to three-dimensions, we note 
that a collection of streamlines will form what we will term a stream tube, with the surface 
surrounding these streamlines being termed the stream surface.  This is like closely packed glass 
fibers in an optical transmission cable. 
 
 
  
 
 
 

Figure 8.2 Example of a stream tube 
 

For such a stream tube, as shown schematically in figure 8.2, we note that the velocity vector, V


, 
will always be tangential to the bounding surface of the stream tube, which means that no flow 
can cross the stream tube surface, except at a cross-section of the stream tube.  Thus, the volume 
flowrate throughout a stream tube must be a constant at any area cross section, 
 

i.e.    
in outA A A

Q V dA V dA V dA Constant          (8.8) 

 

Depending on the behavior of the streamlines comprising the stream tube, the geometry of the 
stream tube may change, resulting in variations of the streamwise cross-sectional area of the 
stream tube.   Additionally, the geometry of the stream tube may vary with time, as the initial 
streamlines vary with time.  However, regardless of how the stream tube varies geometrically 
with time, the instantaneous flow rate through the stream tube will always remain constant across 
any streamwise cross section. 
 
8.2 Vorticity and Circulation 
 
As discussed in Chapter 4, vorticity is the term given to the local rotational behavior of a fluid, 
which for simplicity is defined as twice the local angular velocity of the fluid.  Given the Greek 
designator , vorticity is defined mathematically as: 
 

VcurlVlocityangular ve 2


   
 

Note that vorticity is a vector property and is expressed as derivative components of the velocity 
field relative to the coordinate system employed. For example, in the Cartesian coordinate 
system (u, v, w), we write: 
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http://en.wikipedia.org/wiki/Vorticity
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Where, 
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In radial coordinates, the vorticity equations are a bit more complicated (due to non-zero 
derivatives of unit vectors).  In radial coordinates, the equations of vorticity are: 
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Whereas vorticity reflects the local rotation of a fluid at a point, we can also assess the 
cumulative rotation within a prescribed region, which we define as the circulation strength, .  
We define the circulation of the fluid as the summation of the vorticity that crosses, and is 
enclosed by, a prescribed surface area.  We first establish the flux of vorticity (i.e. the component 
of vorticity normal to, and thus crossing, the area in question) by taking the dot product of the 
vorticity with respect to the differential area vector.  We then integrate the resulting vorticity flux 
over the prescribed area, such that: 

 

   
A CA

dsVAdVAd
 )(  (8.9)

   
 
  
 
Note that by making use of Stokes’ theorem (Section 2.4.4) in Eq. 8.9, we can establish a very 
useful relationship that relates the circulation to the velocity tangent to the boundary of the area.   
This relationship, which employs a line integral of the tangential velocity around a circuit 
bounding the prescribed area, C,  bypasses the need to determine the local vorticity field, and in 
many cases makes the determination of the circulation mathematically much less involved. 
 
Because circulation is the summation of the vorticity flux across a designated area, it is 
analogous to volume flow rate, since it represents the summation of the flux of a vector property 
crossing a designated area or surface (defined by a bounding loop C).  As such, circulation is a 
measure of the “strength” of the rotational behavior over a specified surface area, just as flow 
rate is the measure of the “volume” of fluid crossing a specified surface area.  Thus, the 
circulation strength over a prescribed region may reflect either vorticity broadly distributed over 
a large region (such as a slowly rotating tropical depression over the ocean) or a strong 
concentration of vorticity within some portion of a larger region (e.g. a tornado).  As we will 
discuss in Chapters 11 and 12, the effects of regions of less concentrated or more concentrated 
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http://en.wikipedia.org/wiki/Circulation_%28fluid_dynamics%29


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 8 
 

 229 

vorticity can have comparable effects on the local velocity field, if the total circulation of both 
regions is also comparable. 
 

8.2.1  Vorticity and Circulation for a Fluid in Solid Body Rotation  
   
As we discussed in Section 7.6.1, flows with solid body 
rotation have a velocity field of the form: 
 

  iCrivV ˆˆ
   (where C is a constant). 

 

This type of flow is characteristic of the steady flow within a 
steadily rotating cylindrical vessel, and the flow near the core 
of many natural vortices (e.g. a hurricane).  Since this is a cylindrically symmetric flow, we 
apply the equation for vorticity in cylindrical coordinates:  
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Thus, the vorticity for this flow is a constant across the vortex, as it should be for a solid body 
rotation.  Now, consider the circulation strength for a vortex of radius R.  Here, we apply Eq. 8.9, 
using an area integral,  
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The integration limits for a circle of radius R are  20  and Rr0  , so we have: 
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Alternatively, we could have noted that at   iCRv  Rr ˆ, , and that a differential element at 

the boundary of the circle can be defined as    iRdsd ˆ .  Thus, using the line integral 
approach from Eq. 8.9, we would calculate the circulation as: 
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Equation 8.11 is, of course, the same result we obtained in Eq. 8.10 using an area integral of the 
vorticity, and proves the validity of Stokes’ theorem. 
 

8.2.2 Vorticity and Circulation for an Irrotational Vortex 
 
Again, as we discussed in Section 7.6.1, the velocity field for an irrotational vortex is given by 

  i
r
AivV ˆˆ

 (where A is a constant).   For this type of velocity profile, the vorticity, in 

cylindrical coordinates, is: 
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 (8.12a) 

 
 

Equation 8.12a indicates that this is a vorticity-free flow, which suggests that the flow should 
(logically) be irrotational, and thus have no circulation.  Clearly, if we consider an area integral 
of the vorticity, we would have: 
 

  
A A

dA 0 dA 0         (8.12b) 
 

However, if we consider the line integral around a circle of radius R, then at r = R the velocity is 

 i
R
AV  ˆ

, and the differential vector element along the circumference is  iRdsd ˆ .  Thus, the 

circulation can be calculated as: 
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Equation 8.13 clearly contradicts Eq. 8.12b.  Why the discrepancy?  The answer is that for this 
irrotational-type of vortex there exists one point of vorticity:  a singularity at the center of 
rotation, ,0r   where an infinite spike in vorticity 
exists.  This illustrates that the curve surrounding the 
vortex distribution contains all the vorticity, 
regardless of how small an area the vorticity is 
contained within, as illustrated by figure 8.3. 
 

Figure 8.3 Example of two bounded regions of different 
area, containing the same region of vorticity, 
and thus having identical circulation. 
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This suggests that we don’t have to be too exacting when choosing our boundaries from which to 
determine the circulation for a concentrated area of vorticity located within a region of otherwise 
irrotational fluid.  Accordingly, we can use a boundary that encompasses not only the area 
containing the vorticity, but also any additional adjacent area that is devoid of vorticity.  For 
example, if we assume that the velocity distribution within a hurricane is roughly symmetric, we 
could hypothetically determine the circulation strength of the hurricane by using the velocity at a 
boundary located well outside of the rotational core, if the additional area encompassed is 
reasonably irrotational. 
 

However, if there is a concentration of vorticity within the boundaries of r = R, why didn’t our 
integration of the vorticity over the area, Eq. 8.12b, give us the same answer as Eq. 8.13?  Let’s 
reexamine that integration, by using the expression for the vorticity as: 
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 (8.14) 

 

Now, we integrate for the circulation over the area of a circle of radius R. 
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Equation 8.15 gives the same result as Eq. 8.13 using the line integral. Since the vorticity was 
isolated at the origin as a discontinuity, we have to integrate the vorticity equation before taking 
the derivative of the velocity function. When one takes the derivative of a discontinuous 
function, you lose information on the discontinuity. Thus, the loss of information on circulation, 
as we had using our Eq. 8.12b calculation. 
 

This reinforces the point made above that the circulation is indicative of the cumulative vorticity 
within the specified boundary, regardless of how it is distributed.  The lesson from this?  Use the 
line integral calculation to determine the circulation whenever possible, since it will always 
reveal the true circulation. 
 

8.2.3  The Vorticity and Circulation for a Fully-Developed Channel Flow 
 
 
 
 
 
  

Figure 8.4 Velocity profile for a fully-developed channel flow 
 

In Section 6.3.2, we determined the velocity profile for a Poiseuille, pressure-driven flow 
between the parallel surfaces of a channel.  The relationship, based on the maximum centerline 
velocity is shown in figure 8.4.  Since this is a viscous flow, we expect that this flow will contain 
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significant vorticity distributed throughout the flow, with an accompanying amount of 
circulation. 
 
Here, the vorticity (in Cartesian coordinates) is given by: 
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Equation 8.16 indicates a linear distribution of vorticity across the width of the channel.  
Examining three values of vorticity, at the two boundaries and the centerline of the flow, we 
have: 
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Thus, the vorticity is positive in the upper half of the channel, and negative in the lower half of 
the channel, and linearly distributed between these extremes, being null at the center of the 
channel. 
 
To determine the circulation, we need to define a region or surface over which we want to 
establish the circulation strength.  Since the streamwise extent of a fully-developed channel flow 
is indeterminate, let’s examine two flow regions of an arbitrary length L: one region will lie 
below the centerline (region I), and the other region above the centerline (region II), as shown 
below.  Here, we again determine the circulation strength using both (a) an integral of vorticity 
over a defined area, and (b) a line integral of the velocity that follows the area boundary. 
 
For region I, using an area integral we have: 
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To determine the line integral, we employ an integration path around the region I, employing the 
junction points A, B, C, and D labeled above.  Note that for the x-y coordinate system shown in 
figure 8.4, the integration path will follow a counter-clockwise direction, according to the right 
hand rule (which has the z-coordinate pointing out of the page).  The direction is defined, of 
course, by the integration limits we impose on the sequenced integrals. 
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Thus, the area and line integral results are identical, as they should be. 
 
Likewise, for region II, using either an area or line integral, we obtain (prove this yourself). 
 

LUII max  
 

Now if we consider the entire region between the channel walls, the total circulation of the 
combined regions I and II will be simply the sum of the individual circulations for both regions.  
Thus, 
 

 0LULU maxmaxIIITOT      or no net circulation 
 

You should prove this result yourself by integrating over the collective regions I and II.  This 
result illustrates that despite containing a significant amount of vorticity, a region can have a null 
amount of circulation if the total amount of positive and negative vorticity offset each other.   
Note that the behavior of circulation is again similar to volume flow rate, where equal amounts 
of positive and negative velocity flux across a specified surface would yield a null net flow rate 
across the surface.  We will return to discuss the sources of the vorticity for this, and other 
viscous flows in Chapter 11. 
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8.3 Vortex Lines and Tubes 
 

8.3.1 Vortex Lines 
 

Vortex lines are lines in a flow field that are tangent to the vorticity vector,  ,  just like a 
streamline is tangent to the velocity vector, V


.  We define such lines in the same manner as a 

streamline, by setting the cross product of the vorticity with a differential element sd  equal to 
zero, i.e.: 
 

equation linevortex  0sd

equation streamline0sdV









 

 

For example, in Cartesian coordinates the vorticity is given by kji zyx
ˆˆˆ 

 , and we can 

write a expression for a generic differential element along a vortex line as k̂dzĵdyîdxsd 


.  
Thus, the expanded equation for a vortex line is: 
 

     kdxdyjdzdxidydzsd yxxzzy
ˆˆˆ 

  (8.17) 
 

If we constrain a flow to two dimensions (e.g. x and y), Eq. 8.17 reduces to: 
 

 kdxdysd yx
ˆ)

  (8.18) 
 

However, we note that for a two-dimensional flow in the a x-y plane  0and yx  , since there 

can be no rotation in the x or y directions.  Since such a flow can only have non-zero values of
z , our above result implies that vortex lines (actually points) could only run perpendicular to 

the x-y plane in the z-direction.  So for a two-dimensional flow in a plane (with no depth of 
flow), there can be no vortex lines, only point-wise vorticity values.  Thus, unlike streamlines, a 
flow must be three-dimensional for vortex lines to have any physical relevance. 
 

Now recall that in Chapter 2 we indicated in Eq. 2.16c that for a vector field, F


, the vector 
function 0)F( 


.  If we now apply that relationship to a velocity field, V


, we have 

0V  )(


.  Since V


 , this means that 0
 , which implies that the vorticity field 

is a solenoidal vector field --- a vector field for which the rate of expansion (i.e. divergence) of 
vorticity = 0.  Note the similarity to the solenoidal velocity field for an incompressible flow, 
where the continuity equation reduces to 0V 


.  This common solenoidal aspect of vorticity 

and an incompressible velocity field implies that vortex lines and streamlines (in incompressible 
flow) obey similar rules, as we will discuss in the following section. 
 
  

https://en.wikipedia.org/wiki/Solenoidal_vector_field
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8.3.2 Vortex Tubes 
 

A vortex tube is like a stream tube --- i.e. a collection of vortex lines bounded by a common 
surface.  As shown in figure 8.5, a vortex tube is similar to a stream tube, in that no vorticity will 
cross the surface of a vortex tube because of the requirement that the vorticity is always tangent 
to a vortex line. 
 
 
  
 
 
 

 

Figure 8.5 Schematic of a vortex tube 
 

We noted in section 8.3.1 that 0
  everywhere within a vorticity field.  Thus, if we 

integrate 
  over any volume of a vortex tube, , the result must also be zero.  To examine 

how this can give us an appreciation for the circulation within a vortex tube, consider the 
behavior of vorticity for the model vortex tube shown in figure 8.6. 
 

 
i.e   



 0d  

 
 
 
Figure 8.6 A portion of a vortex tube, with the corresponding areas bounding the tube 

indicated. 
 

For a typical vortex tube shown in figure 8.6, we can employ the Gauss Divergence Theorem, 
Eq. 2.17, to assess the relationship of the flux of vorticity in and out of the tube.   To do this, we 
write the volume integral of the divergence of the vorticity, 

 , and use the Gauss Theorem to 
express the vorticity flux equivalence in terms of surface integrals over the bounding surfaces of 
the vortex tube as: 
 
 

     
 outin sides AA AA
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 (8.19)
 
  

Recall that in the previous section, 8.3.1, we showed that vorticity is solenoidal, such that 
  

= 0 everywhere.  Thus, it follows that the volume integral of 
  must also be zero as well.  
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With regard to the surface integrals of vorticity flux ( Ad


 ) in Eq. 8.19, only the vorticity 
which enters and exits a vortex tube contributes non-zero values.   By our definition of a vortex 
tube, the side boundaries of a vortex tube are formed by vortex lines.  Since the vorticity is 
always tangent to a vortex line, it follows that the vorticity is always tangent to the sides of the 
vortex tube, and thus there can be no vorticity flux across the sides of a vortex tube.   
 
 
 
 

 
Figure 8.7 Illustration of the normal direction of the surfaces for a vortex tube relative to 

the vorticity entering and exiting the tube.  
 

Noting the directional normal vectors for Ad


are oriented outward from the entrance and exit 
surfaces of a vortex tube, as shown in figure 8.7, we perform the dot products indicated in Eq. 
8.19 and obtain: 
 

 

outin A
outout

A
inin 0dAdA   (8.20) 

or  
0outin   

  

Equation 8.20 implies that outin  , or that the circulation within the vortex tube (i.e. the 
“strength” of the vortex tube) remains constant throughout the vortex tube.  This was first proven 
by Helmholtz, and as we will show in Chapter 10, this even extends to the temporal change for a 
vortex tube in an inviscid flow.  
 

Consider the analogy of circulation to flow rate.  As we know, for an incompressible velocity 
field, V


, the volume flow rate, Q, along a stream tube, will remain constant: 

 

  AdVQ
A


constant along a stream tube 

Similarly, for a vorticity field,  , the circulation strength along a vortex tube is also constant: 
 

  Ad
A

 constant along a vortex tube 

 

Note that as the cross-sectional area of a vortex tube decreases, the average vorticity within the 
tube will increase; conversely, if the cross-section of a vortex tube expands, the average vorticity 
must correspondingly decrease.  However, a vortex tube cannot shrink to zero area, since the 
average vorticity must remain finite.  This constancy of circulation associated with a vortex tube 
implies that the vortex tube, or vortex filament [as we would call a vortex tube when the tube 

in


out


indA

outdA

http://en.wikipedia.org/wiki/Helmholtz%27s_theorems
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gets quite small], and by association a vortex line, cannot terminate in a fluid.  For this to be true 
requires that a vortex tube or vortex line must either:  
 

 (1) form a closed circuit [e.g. a vortex “ring’ or loop, like a smoke ring blown by a smoker];

 (2) extend to infinity [a hypothetical circumstance];  

 (3) end at a fluid-fluid boundary [e.g. at an air-water boundary, like the surface of a lake]; 

 (4) end at a rotating solid boundary [such that the boundary rotation matches the fluid vorticity].   
 

Accordingly, a vortex tube cannot end at a stationary boundary, although one could imagine some 
strange form of vortical flow, with a zero vortex line at its center [and thus no velocity gradient]. 
This is discussed further in Section 8.3.2.2 below, and Section 10.4.   
 

8.3.2.1 Solid-Body Rotation Along a Vortex Tube 
 

While the assumption of solid body rotation is a bit artificial, it can be used to illustrate the 
process of constancy of circulation.  We will examine this type of flow again later in Chapter 12 
when we address the concept of vorticity transport.  Here we assume that a flow enters a vortex 
tube with a solid body rotation, such that the vorticity is constant at an initial value o  across a 
cross-section Ao, as shown.   
 
  

 
 
  
 

 

We designate the vorticity at any other cross-section of the vortex tube as  , where the 
corresponding cross sectional area is A.  The circulation strength within the vortex tube is thus 
established by the initial vorticity and area as oo A .  If we assume that the flow remains in 
solid body rotation within the vortex tube, such that the vorticity is constant at any cross section, 
we have: 
 

  
A

oo AdAA     or    
AA

Aoo 



  (8.21) 

Thus, the vorticity will change inversely with the area of the vortex tube.  Although Equation 
8.21 was determined for a solid body rotation, the same equation applies for any vorticity 
distribution, and applies exactly if we consider the average vorticities at a cross-section, as 
indicated in Eq. 8.22. 
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 (8.22) 
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Equation 8.22 indicates that as a vortex tube narrows, the average vorticity will increase.   This is 
roughly what happens when a slowly rotating fluid passes into a narrowing conduit, such as 
occurs when a bathtub is drained.  The slowly rotating flow in the tub is constricted into a narrow 
exit, with a resulting marked increase in the local vorticity, reflected by a strongly rotating “bath 
tub vortex."  Click the following link to see such a vortex in develop at the inlet to a drain of a 
large lake.   Note that what you see is the air core inside the vortex.  Alternatively, if the vortex 
tube expands, the average vorticity within the vortex tube will decrease.  An example here are 
the trailing vortices (i.e. vortex tubes) from aircraft wings, which will undergo a decrease in 
vorticity as they slow and begin to expand as they trail away from the aircraft.  However, the 
process of vortex tube expansion is a very unstable process, that degenerates very rapidly into a 
chaotic process termed “vortex breakdown,” in which the vortex tube expands quite suddenly, 
rapidly dispersing and decreasing the local vorticity of the vortex tube.  It should be noted, 
however, that this vorticity dispersion process is much more three-dimensional than the process 
reflected in the simple model above (as is illustrated in the video clip in the link above), and the 
mechanics of this break down process are still poorly understood. 
 

8.3.2.2 The Tornado as a Vortex Tube 
 
 
 

 
 
 
 
 
 
 

Figure 8.8   Model of a tornado as a vortex tube, comprised of vortex lines extending 
laterally along the earth surface.  Here the vortex tube is shaded grey. 

 
As we pointed out in section 8.3.2, a vortex tube cannot end at a stationary boundary, since the 
rotation of the boundary, and thus the vorticity would be zero.  However, this raises the question 
of how such things as tornadoes “end”, as they impinge upon the earth.  The answer is that the 
vortex “tube” comprising a tornado does not end at the earth’s surface, but is comprised of a 
collection of vortex lines that [where they appear to impinge on the earth] extend laterally away 
(toward infinity) from the concentrated core we view as the tornado.  The general configuration 
of a tornado vortex tube is illustrated in Figure 8.8. Basically, this is an upward “draining” of 
lower density air near the earth surface into the upper atmosphere.  This is also roughly the 
process that maintains the strength of hurricanes, which are sustained by the effects of high 
temperature oceans heating adjacent air layers, which becomes less dense and effectively “drain” 
upward, adding to the circulation of the hurricane. 

vortex lines 

sense of 
rotation of 

tornado 

https://video.search.yahoo.com/video/play;_ylt=A2KLqIRxJlVV2koA0m0snIlQ;_ylu=X3oDMTBzNHBwZzJzBHNlYwNzcgRzbGsDdmlkBHZ0aWQDBGdwb3MDNDQ-?p=Bathtub+Vortex+Video&vid=1fe749d5f3a234da606956015bb2765e&l=00%3A47&turl=http%3A%2F%2Fts4.mm.bing.net%2Fth%3Fid%3DWN.lYLp%252bMct33H2%252fbi6hnpcxw%26pid%3D15.1&rurl=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DoXTDFlU4P7I&tit=Free+Vortex+in+a+Sink&c=13&sigr=11bb2h8ma&sigt=10ln9j1jj&sigi=1233gpcbj&age=1339476146&fr2=p%3As%2Cv%3Av&b=31&fr=yhs-mozilla-001&hsimp=yhs-001&hspart=mozilla&tt=b
https://youtu.be/ThU_cz75VuM
https://youtu.be/b0TylIqcEsQ
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Clearly, the creation of a tornado, which is a concentrated vortex tube, requires the accumulation 

of vorticity distributed across a broad area of land into the tornado.  The source of this vorticity 

is due to high shearing winds, as well as strong changes in air density, which can cause both the 

modification and creation of vorticity.  The creation and sources of vorticity is a topic we address 

further in Chapter 11.   

 

 
 

Study Problems 
 

1. The stream function for an inviscid flow is given by  
 

  













22 yx

y
 

  

Assume all properties are dimensionless and do the following: 

  

a) plot the stream function  = 1 for all y  0 

b) determine the velocity and vorticity components for the flow field 

c) determine the pressure differences  21 PP   between P1 at (x,y) = (0,1) and P2 at   

 both (x,y) = (0.5,0.5) and (0,0.5); let  = 1. 

 

2. If  kxjxziyV 22 ˆˆˆ 


, determine the circulation for a rectangle with vertices at  

 (x, y, z)= (0, 0, 0), (3, 0, 0), (3, 0, 3) and (0, 0, 3) using both a line integral and an area integral. 

  

3. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   

 

 

 

 

 

 

 

 

 

   

The vortex consists of a core of radius R, which is in solid body rotation with velocity  











R

r
VV 01

, and a portion outside the core (r  R) that has a velocity 









r

R
VV 02

.   

 

Determine the following: 
 

a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  

vs. r/R. 

b) The circulation for, 

i) a circle of radius R. 

ii) a square of side dimensions 4R, with the vortex in the center of the square. 

R 
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4. A circular vortex is present in an inviscid fluid, as shown.   
 
 
   
 
 
 
 
 
 
 

The vortex consists of a core of radius R, which is in solid body rotation with velocity  









 R

rVV 01 .  The portion outside the core (R  r  2R) has a velocity 







 R

r2VV 02 .  

 
Determine the following: 
 

a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  
vs. r/R. 

 
b) The circulation for, 
 i) a circle of radius R  
 ii) a square of side 4R, with the vortex in the center of the square 

 
 
5. A circular vortex is present in an inviscid fluid, as shown.   

 
 
 
 
 
 
 
 
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  











R
rVV 01 .  The portion outside the core (R  r  2R) has a velocity 
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2 .   

 
Determine the following: 
 

a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of 
 vs. r/R. 

 

b) The circulation for, 
i) a circle of radius r = 3R/2  

 ii) a square of side 4R, with the vortex is in the center of the square  
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6. A circular vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o for r  
Ro, and  = 0 for r  R. 
 

   
 
 
 
 
 
 
 
 

If the velocity distribution is  ivV ˆ
 only, determine the following: 

 
a) The velocity distribution, v(r), in terms of o and r, for r  R (assume that v(0) = 0). 

 
b) The velocity distribution, v(r), in terms of o, R, and r, for r  R. 
 
c) The circulation for, 
 i) a circle of radius R. 
 ii) a square of side 3R, with the vortex in the center of the square. 

 
7. The velocity fields in a circulation preserving flow for two different vortices of radius R1 are given by: 

  vortex #1:   )*r*r(V117.2V 4
0  , 

   

  vortex #2:   )*r*r(V75.6V 32
0  , 

 
 where r*=r/R1.  Determine the pressure, vorticity and circulation as a function of  r* for each 

vortex for 0 < r* < 1  (let p = po at r*=1). On four separate graphs, comparatively plot the velocity 

(as 
0V

V ), pressure (as 2
0

0

V
pp




), vorticity (as 

0

1z

V
R

), and circulation (as 
01VR2


) for both these 

vortices vs r*, for 0 < r* < 1.  Which vortex has: The lowest pressure?  The highest circulation?  
The highest vorticity?  How do you explain these variations? 

 
8. A solid rod of radius R rotates steadily in an infinite fluid.  The surface velocity (v) of the rotating rod is 

Vo at r = R and v = 0 for r  .   
 

Determine: 
 
a) The velocity of the fluid surrounding the rod, if the fluid is fully developed at steady state:  
b) The circulation C  at r = 2R and r = 100R, using a line integral of the velocity. 

c) The vorticity  within the fluid at steady state 
d) The circulation A within the fluid by integrating the vorticity of part c) over the area encompassed 

from  rR . 
 
Explain how parts b) and d) can both be correct. 
 

 

o 

R 

vorticity distribution 
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9. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  









 R

rVV 01 , and a portion outside the core (r  R) that has a velocity 







 r

RVV 02 .   

 
Determine the following:  
 

a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  
vs. r/R. 

b) The circulation for, 
 i) a circle of radius R, using both an area integral of vorticity and a line integral of velocity. 
 ii) a square of side dimensions 4R, with the vortex in the center of the square. 
c) The value of the pressure at the center of the vortex, Po, in terms of , V0, and P.  Neglect any 

height changes. 
 

This combined velocity profile exists at the beginning and end of a vortex tube in this inviscid flow, 
where R is the radius at any cross section of the tube (i.e. the tube contains only the solid body portion 
of the vortex, 1V , and the flow outside the solid body rotation is the same as 2V above).  If the 
center of the vortex tube is a streamline along the vortex axis, the beginning and end radii of the vortex 
tube are Ra and Rb, and Rb = Ra/2 (with corresponding velocities at the edge of the stream tube of a0V  

and b0V ), will fluid flow along the axis of the vortex tube, and if so, which way and why?   
 
Extra credit:  If the velocity along the streamline at a is 0VSa  , determine the velocity at b, SbV , in 

terms of a0V . 
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10. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  









 R

rVV 01 , and a portion outside the core (r  R) that has a velocity 







 r

RVV 02 .  The density of 

the flow is , and the pressure far away from the vortex center is P.   
 
Determine the following:  
 

a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  
vs. r/R. 

b) The circulation for, 
 i) a circle of radius R, using both an area integral of vorticity and a line integral of velocity. 
 ii) a square of side dimensions 4R, with the vortex in the center of the square. 
c) The value of the pressure at the center of the vortex, Po, in terms of , V0, and P.  Neglect any 

height changes. 
 
This combined velocity profile exists at the beginning and end of a vortex tube in this inviscid flow, 
where R is the radius at any cross section of the tube (i.e. the tube contains only the solid body portion of 
the vortex, 1V , and the flow outside the solid body rotation is the same as 2V above).  If the center of 
the vortex tube is a streamline along the vortex axis, the beginning and end radii of the vortex tube are Ra 
and Rb, and Rb = 2Ra (with corresponding velocities at the edge of the stream tube of a0V  and b0V ), will 
fluid flow along the axis of the vortex tube, and if so, which way and why?   
 
Extra credit:  If the velocity on the streamline at b is SbV 0 , determine the velocity at a, SaV , in terms 

of a0V . 
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Chapter 9 
 

Two-Dimensional Potential Flow Theory 
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In this chapter, we deal with what is variously called “ideal flow”, “irrotational flow”, and 
“potential flow.”  We consider a flow that we assume to be incompressible, inviscid, and 
irrotational (i.e. without vorticity).  Obviously, no real flow truly meets these restrictions, 
particularly flows close to solid boundaries.  However, certain types of flows come close to 
satisfying these assumptions, such that assessment of such idealized flows may yield reasonably 

http://en.wikipedia.org/wiki/Potential_flow
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practical results.  And at worst, these assumptions can often provide solutions that are good 
starting points, or limiting types of flows, for more complicated viscous flows.   
 
Recall in Chapter 7 that we examined incompressible inviscid flows, which led us to the Euler 
and Bernoulli equations.  While we were restricted in how we could apply these equations, we 
determined there were a number of situations for which we could effectively assess “bounding” 
behavior (i.e. the best-case scenarios).  The same situation applies for potential flows—the 
solutions are restrictive, but provide the best case, limiting behavior in the absence of viscosity.   
 
So what are some examples of where we might utilize potential flow?  In regions where a 
uniform flow is impinging at high speed upon a solid object.  In such situations, as we will 
discuss in Chapter 13, the Reynolds number of the flow (remember, a non-dimensional ratio of 
inertia to viscous forces, Re = UL/) will generally be large, and the region of viscous behavior 
and deformation of the flow will be constrained to a thin region adjacent to the object, which is 
termed the “boundary layer.”  However, the flow outside this boundary layer region will behave 
approximately in an inviscid manner, and will be generally devoid of vorticity.  So, for cases 
where Re  , the potential flow solutions can prove quite useful for flow in regions exterior to 
the boundary layers.  As an example, consider the flow around an airfoil, as shown in figure 9.1.   
 
 
 
 
 
 
 

Figure 9.1 Streamline flow around an airfoil, showing a boundary layer due to viscous 
interaction with the airfoil surface (dotted line). 

 
In cases where the boundary layer is minimal, the potential flow solution around the basic airfoil 
geometry can provide remarkably accurate information on the lift behavior for a range of airfoil 
shapes and angles of attack. However, the results for most practical airfoil flows is limited in 
application by the effects of viscosity, which will modify the resulting potential flow field due to 
the boundary layer development.  This development of a boundary layer (shown as a dotted line 
in figure 9.1) will cause a displacement of the streamlines due to growth of the boundary layer.  
As we will discuss in Chapter 13, the developing boundary layer basically “displaces” fluid, and 
thus the streamlines, away from the surface.   
 
Practical solutions for real flows over airfoils can often be determined by modeling the flow as a 
viscous boundary layer region adjacent to the airfoil, and an inviscid “outer” flow for the region 
outside the boundary layer.  This two-region flow is then solved iteratively, by assuming that the 
velocity and pressure fields of the inviscid flow provide the boundary conditions for the velocity 

Flow 

Streamlines Boundary 
Layer 

http://en.wikipedia.org/wiki/Boundary_layer
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and the pressure gradient at the outer edge of the boundary layer flow.  The final potential flow 
solution can then be used to determine the resultant lift forces on the airfoil (by integrating the 
pressure field around the airfoil), and the boundary layer solution will yield the shear stress to 
help determine the drag forces on the airfoil.   
 
Additionally, potential flow solutions indicate how an ideal flow would behave.  These idealized 
results are then used to identify regions of the flow where we can anticipate that viscous effects 
will strongly modify the ideal solution (e.g. regions where strong flow deceleration is indicated).  
We also touch upon this in our discussion of fluid drag in Chapter 15. 
 
9.1 Basic Approach 
 
As we discuss above, the constraints we place upon our modeled potential flow are that it be 
incompressible, inviscid, and irrotational.  Additionally, we require that the fluid have 
conservative body forces (i.e. gravity), such that the Bernoulli equation applies, which allows us 
to determine pressure variations based on the potential flow velocity field solutions.  Since the 
Bernoulli equation is derived from the momentum equation (via the simplified Navier-Stokes, 
and subsequently the Euler equations), we need only satisfy the constraints of continuity and 
irrotationality ( = 0 everywhere) in order to develop a solution for the velocity field.   
 
Recall that the incompressible continuity equation is represented by: 
 

V 0   (9.1) 
 

and the irrotationality constraint is expressed by:   
 

V 0   (9.2) 
 

Thus, our approach will be to develop a solution technique that assures simultaneous satisfaction 
of both of these constraints.  We will demonstrate that through the effective use of complex 
mathematics we can satisfy both constraint equations 9.1 and 9.2 by use of either: (a) the stream 
function concept we developed in Chapter 8, or (b) an alternative function termed the potential 
function. 
 
9.2 The Steam Function, (x, y)  
 
Recall that in Chapter 8 (Section 8.1) we introduced ),( yx as the stream function---a function 
that identically satisfies the two-dimensional continuity equation, and provides a functional 
expression representing all streamlines for a particular flow field.  In section 8.1, we showed that 
the velocity field is related to   by: 
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 (9.3) 

  

Substituting Eq. 9.3 into the continuity equation (Eq. 9.1), gives: 
 

2 2u vV 0  
x y x y x y
     

     
     

    thus,  satisfies continuity. 

 

Now, for an irrotational flow, we know that the vorticity of the velocity field must be zero, so 
substituting Eq. 9.3 into Eq. 9.2 gives: 
 

2

2

2

2

yxy
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0
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 (9.4)  

 

We note that Eq. 9.4 is the well-known, two-dimensional Laplace equation.  Given the 
appropriate boundary conditions, the solution of Eq. 9.4 will yield the function (x,y), which can 
then be differentiated to yield the velocity field, V .  However, the stream function can only 
apply in a two-dimensional plane.  In order to establish a more universal function that is also 
applicable for three-dimensional flows, we address the solution of the two coupled equations, Eq. 
9.1 and 9.2 (continuity and irrotationality), in the reverse order to derive an equation for what we 
term the potential function, . 
 
9.3 The Potential Function, (x, y)  
 

We now stipulate a potential function,  x, y , for which the velocity field is given by the 

gradient of the potential function, V


.  In two dimensional Cartesian coordinates (x and y), 
the potential function is related to the velocity field components as: 
 

j
y

i
x

jviuV ˆˆˆˆ











      u and v

x y
 

 
 

 (9.5) 

 

Substituting the velocity functions of Eq. 9.5 into the vorticity equation, Eq. 9.2, gives: 
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Thus,  satisfies the irrotationality condition exactly. 

http://en.wikipedia.org/wiki/Laplace%27s_equation
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The potential function must also satisfy two-dimensional continuity, Eq. 9.1, which means: 
 

 0
yxy

v
x
uV 2

2

2

2























 (9.6) 

 

Equation 9.6 is also a Laplace equation, but now for the potential function, .  Again, the 
solution of Eq. 9.6 will yield a function  x, y , from which we can also determine the velocity 

field via Eq. 9.5. 
 
Note that the potential function can satisfy the irrotationality constraint in three dimensions, 
ϕ(x,y,z), not just two dimensions.  To demonstrate this, consider a Cartesian system in three 
dimensions, such that: 
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The vorticity in three dimensions is: 
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 (9.8) 

 

Substituting from Eqs. 9.7 into Eq. 9.8, we have (for a continuously differentiable function): 
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Thus, irrotationality is exactly satisfied in three-dimensions, and continuity gives us: 
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or  

02   (9.9) 
 

Equation 9.9 is again the Laplace equation, applicable in three-dimensions.  The satisfaction of 
irrotationality and continuity in three dimensions allows the potential function to simulate flows 
in three dimensions, such as axisymmetric flows. 
 
9.4 The Pressure Field 
 
Since  and  are both solutions to the equations for continuity and irrotationality (Eqs. 9.1 and 
9.2), we could solve for either function or both.  Once we have determined one or more of these 
functions, they can be used to establish the velocity field by the derivative functions of Eqs. 9.3 
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or 9.5 above.  Since the flow is assumed irrotational, we can apply the incompressible form of 
the Bernoulli equation (7.10) everywhere to establish the pressure field. 
 

i.e.     





  sd
t
VV

2
1ghP 2 



constant (9.10)  

 

Revisiting the development of Eq. 9.10 that was done in Chapter 7 (Section 7.2), we note that we 
can write the Euler equation for an irrotational, incompressible fluid as: 
 

0
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 (9.11) 

 

Recall that we can write the general expression for the velocity in terms of  (Eq. 9.7) as: 
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Using this relationship, we can write: 
 

 























ttt
V


  (9.12) 

 

since x, y, z are independent variables, and not a function of time (a fourth independent variable). 
 
Substituting Eq. 9.12 into Eq. 9.11 allows us to collect all the terms of Eq. 9.11 inside the 
gradient operator, such that: 
 

0
t

V
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1ghP 2 















  (9.13) 

 

Taking a dot product of the Euler equation with k̂dzĵdyîdxsd 


, as was done in section 7.1 
for an irrotational unsteady flow, Eq. 9.13 can be integrated to give: 
 

)(tC
t

V
2
1ghP 2 







, (9.14) 

 

In this modified version of the Bernoulli equation, 
t
  takes care of the time dependency, and 

C(t) is a function of time and must be determined from a known initial condition.   
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The key here is that we can employ the potential function both to determine the velocity field 
and to establish the pressure field by use of Eq. 9.14, the potential function form of the unsteady 
Bernoulli equation.  We will show later in sections 9.9 and 9.10 that Eq. 9.14 can be used 
effectively (among other applications) to establish the “virtual” or "added" mass for a body 
accelerating through a quiescent fluid medium.  The virtual/added mass is the amount of fluid 
mass that that moves along with a moving body, and must also be accelerated when there is a 
temporal change in the velocity of the moving body. This added mass can significantly affect the 
forces required to accelerate/decelerate the body. Added mass is minimal for heavy solid bodies, 
such as cars, passing through air (where air is much less dense), but is important for lighter 
bodies passing through a liquid medium, such as water, where the fluid is equivalent to or 
heavier than the body (e.g. ships, submarines, and even fish). 
 
9.5 The Relationship Between   and  
 
The total differentials of  and  can be written in two-dimensions as: 
 

dy
y

dx
x

d








   (9.15a)    

and    

dy
y

dx
x

d








  (9.15b) 

 

Here we note that along a line of   = constant we have d = 0, and correspondingly dϕ = 0 
along a line of ϕ = constant.  Thus, if we set d  = 0 and d = 0 in Eqs. 9.15a and 9.15b, and 
solve for the slope of lines of constant  and , with the help of the velocity identities of Eqs. 9.3 
and 9.5, we obtain: 
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Comparing, we have:      







dx
dy
1

dx
dy

v
u

    (9.16a) 

 

Recall from calculus that the relationship of the slopes shown in Eq. 9.16a is indicative of two 
orthogonal (perpendicular) lines.  Therefore, we infer that  lines are orthogonal to  lines. 

Slopes of lines of constant  and  
 

http://en.wikipedia.org/wiki/Added_mass


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 9 

 251 

Alternatively, we could take the dot product of the gradients (in two-dimensions) of   and .  
Recall that the gradient of   and  will yield vectors which will always be normal to lines of 
constant   and .  Substituting the relationships for the velocity components from Eqs. 9.3 and 
9.5, we have: 
 

0uvvu
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j
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 ˆˆˆˆ   (9.16b) 

 

Equation 9.16b again indicates that lines of equipotential ( = constant) and streamlines ( = 
constant) are orthogonal at all points within a flow field. 
 
Note the similarity of potential flow theory to electric field theory, magnetic field theory, heat 
conduction, solid mechanics, etc., where lines of constant potential (e.g. voltage, temperature, ϕ) 
are normal to lines of constant flow (e.g. current, heat flow, ).  Thus, the general solutions to 
Laplace’s equation will satisfy all these types of similar physical phenomena. 
Although we can solve for  or  by direct solution of the Laplace equation, determining 
solutions for other than simple geometries can often be quite challenging.   For flow in and 
around some simple geometries, standard closed-form solutions of the Laplace equation can be 
developed.  However, more complicated flow geometries will generally require use of numerical 
computation approaches.  These types of analytical or numerical solutions are generally known 
as the direct method of solution (i.e. given a geometry, determine the flow field).  However, by 
the use of complex mathematics we can develop solutions for a number of elementary flows, 
which can be subsequently employed in a process of linear superposition to “simulate” more 
complicated flows.  Such a process of linear superposition is possible because both  and  will 
be solutions to the Laplace equation, which is a linear differential equation.  Recall that for linear 

differential equations, all solutions of the equation are directly additive [e.g. 1 2 total    , where 

1  and 2  are separate solutions of the same differential equation, but subject to different 
boundary conditions].  Thus, we can combine any number of solutions to the Laplace equation, 
and their cumulative sum will also be a solution to the Laplace equation. 
 
This process of linear superposition is generally termed the indirect or inverse method, wherein 
we employ judicious superposition of selected elementary solutions to create and simulate more 
complicated flows.  Simple superposition solutions can prove quite effective in simulating the 
flow behavior for a number of useful flow geometries (e.g. flow around a cylinder or an ellipse).  
However, the simulation of the flow around a more complicated body shape using this inverse 
technique may require extensive numerical optimization of an array of elementary solutions.  
Additionally, by the use of conformal mapping techniques, simple flow geometries, such as the 
flow over a cylinder, can be "mapped" to simulate more geometrically complicated geometries, 
such as flows around airfoils.  We don't cover conformal mapping techniques here, but these are 
fairly standard extensions of complex mathematics---see this link. 

http://www.public.asu.edu/~hhuang38/pde_slides_numerical_laplace.pdf
http://www.public.asu.edu/~hhuang38/pde_slides_numerical_laplace.pdf
https://en.wikipedia.org/wiki/Conformal_map
http://mathworld.wolfram.com/ConformalMapping.html


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 9 

 252 

9.6 The Complex Potential Function,  z  
 
Since we have shown that both  and  are scalar point functions, satisfy the Laplace equation, 
and are orthogonal to each other, we can make use of complex mathematics to manipulate and 
solve for these functions.   Using the rules of complex mathematics, we can construct in two-
dimensional Cartesian coordinates a complex potential function defined as : 
 

(z) (x, y) i (x, y) ,     where  z x iy        (the complex variable) (9.17) 
 

Note that  will be an analytic function of z since  and 
dz
d  will exist and be single-valued 

except at selected points.  Therefore, from complex variable theory, and our previous definitions 
of u and v in terms of derivatives of  and  [Eqs.9.3 and 9.5], we can write: 
 

 d i where i 1
dz x y
  
    
 

 

      i i iv u
x x y y
   

       
   

  (9.18a) 

or  

 Wivu
dz
d


   the conjugate of the complex velocity (9.18b) 

 

Thus,  ivuW    the complex velocity. (9.19) 
  
 
 

Since many flows are better suited to cylindrical symmetry (such as vortical flows), it is often 
more practical to express the velocity field for such flows, as well as the stream and potential 
functions, in cylindrical coordinates.  Note that in cylindrical coordinates: 
 









 

x
yyxrandrez      where rirz 22i arctan,,,),(),()(  (9.20) 

Note that:    iz x iy r cos i r sin r cos i sin re 
          

 

From the velocity schematic below, we can relate u and v to the velocity components in the r,  
directions as: 
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Substituting Eq. 9.21 into Eq. 9.18b for the complex conjugate velocity gives: 
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https://en.wikipedia.org/wiki/Analytic_function
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      sincoscossinsincos ivivvvivvW rrr  
or 

  

 i
r evivW  (9.22) 

 

One could express W  in terms of cylindrical coordinates, and extract the terms for vr and v.  
However, a simpler alternative is to note that from complex variable theory (Brown and 
Churchill, 2009), the Cauchy-Riemann conditions (also see this link) in cylindrical coordinates 
can be shown to be: 
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Comparing, W  for Eq. 9.22 and 9.24, we have: 
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Therefore, by comparison, and making use of the Cauchy-Riemann equations (Eq. 9.23), we 
obtain the cylindrical components of velocity in terms of  and  as: 
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 9.(25) 

 

To illustrate how we incorporate the complex potential function and its component potential and 
stream functions, we will first examine some elementary flows that satisfy the complex potential 
conditions.  We will then illustrate the use of these elementary flows to synthesize and simulate 
more complicated flows using the inverse method of superposition.   
 
9.7 Elementary Functions 
 

9.7.1 Uniform, Parallel Flow 
  
The uniform flow function is a real building block of potential flow simulations, and simulates a 
uniform, parallel flow. This function generally provides a simulation of the approach flow to 

http://www.math.ucsb.edu/~wei/teach/122/Brown-Churchill-Complex%20Variables%20and%20Application%208th%20edition.pdf
http://www.math.ucsb.edu/~wei/teach/122/Brown-Churchill-Complex%20Variables%20and%20Application%208th%20edition.pdf
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations
http://mathworld.wolfram.com/Cauchy-RiemannEquations.html
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various simulated bodies, such as flow around a cylinder or airfoil.  Here, the complex potential 
function is given by: 
 

     (z) a ib z ax by i ay bx        (9.26) 

 
 
Where a and b are constants.  To determine the 
velocity of this simulated flow, we differentiate  
Eq. 9.26 to obtain the complex velocity. 
 

ivuWiba
dz
d




  (conjugate of the complex velocity) 

 

So by identity, ib-aivu  W
bv  

au









   (the complex velocity) 

 

Thus, the values of a and b determine the angle of the vector velocity relative to the coordinate 
system.  
  
Special cases are: 
 

 i)  Flow parallel to the coordinate axis: 
 

x-axis (z) az  u = a, v = 0     (9.27a) 
 

y-axis (z) -ibz u 0, v b       (9.27b) 
 

ii)  Flow at an angle axisx  the to  : 
 

i(z) Uze (where U is a constant)     
 

Uz(cos isin )    (9.27c) 
 

9.7.2 Source and Sink Flows 
 
These flows simulate flows that either emanate uniformly from a point (a source), or flow 
uniformly into a point (a sink), and are represented by a complex potential function given by:  
 

 
Q(z) ln z
2

 


 (9.28)  

 

Here, Q is a constant representing the “strength” of  
the function.  If Q is positive (+), Eq. 9.28 represents  
a source; if Q is negative (-), Eq. 9.28 represents a sink. 

  y 

x 

 = const. 
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=const. 
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 = const. 

 = const. 
 > 0 

Since source and sink flows are radially symmetric, we make use of the complex variable in 
cylindrical coordinates,  irez , such that:  
 

  


 iir
2
Qz ln)(  

where,  





2
Q

   and    r
2
Q ln


  (9.29) 

 

From Eq. 9.25 for cylindrical coordinates, the velocity components are given by: 
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So, for a source/sink flow, the velocities in cylindrical coordinates are: 
 

r2
Q  v,  0v r


    (9.30) 
 

Since v 0

 , there is no azimuthal velocity (in the  direction).  Thus, this flow simulates flow 

radially outward or inward.  If we solve for the volume flow rate (two-dimensional) for this flow, 
we have: 
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QV ˆ





  and   ridrAd ˆ
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Thus, the strength of this flow, Q, is the volume flow rate (a constant). 
 
Note that the complex potential for this flow displays a singularity and is not analytic (i.e. 
continuous, with a finite derivative) at the origin, z = 0, where the radial velocity is undefined. 
 

9.7.3 Point Vortices 
 
This function represents an irrotational vortex located at 
 a point within the flow (nominally located at the origin,  
unless the position is shifted by biasing the complex  
variable, z — see Section 9.8.1).  For a point vortex  
located at the origin, the complex potential function is given by: 
 

  

r 
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So, 
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2  (9.32) 

 

Here  is a constant reflecting the rotational “strength” of the vortex.  Note that due to radial 
symmetry we again represent the complex variable, and its constituent stream and potential 
functions, in cylindrical coordinates.  Here, the cylindrical velocity components are given by: 
 

r2
v  ,  0vr




   (9.33) 

 

The rotational direction of this simulated vortex corresponds to the sign of  .  If   > 0, the 
rotation is counter-clockwise; alternatively, if   < 0, the rotation is clockwise. The right-hand 
rule gives the sense of rotation. 
 
Eq. 9.31 simulates an irrotational vortex with a singularity at the origin, since (z) is undefined, 
and thus not analytic, at z = 0.  To demonstrate this, we differentiate Eq. 9.31, giving us the 
conjugate complex velocity as: 
 

   
d iW i i e i cos i sin sin i cos
dz 2 z 2 r 2 r 2 r
                

   
 

So,  
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vand
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Thus, for a finite  , we note that W  and W are infinite at z = 0 (r = 0).  Since the flow field 
outside of the origin (z  = 0) is irrotational, this implies that all the vorticity for this function is 
concentrated at the singular point, z = 0, such that a point vortex violates the requirement of 

0V 


 at the origin. We will discuss later how the insertion of one or more point vortices 
can add rotation to a simulated flow, which allows the simulation of lifting body behavior. 
 

9.7.4 The Doublet (dipole) 
 
The doublet is a mathematical construct that represents the linear superposition of a source of 
strength + Q and a sink of identical, but opposite, strength, -Q, which are brought together at the 
same point (in this case, the coordinate origin).  To understand how we develop this hypothetical 
function, consider the following schematic that shows the general streamline pattern for a source 
+Q located at x = -a, and a sink -Q located at x = +a. 
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The complex potential function for this superposed source/sink combination is given by (see 
Section 9.7.6 to see how we use superposition and biasing to create this function): 
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Qzs lnlnln)(  (9.34) 

 

We designate the strength of a doublet as s = 
Qa/, where s is held constant while the 
value of a is shrunk to zero in the limit [i.e. 
the source and sink are brought together in 
such a way that they produce a new 
complex potential function, (z)].  So, 

substituting 
a
sQ 

  into Eq. 9.34, 

rearranging, and taking the limit as a  0, 
we obtain: 
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which is indeterminate.  To establish the limit, we apply L’Hospital’s Rule, differentiating with 
respect to a: 
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Thus, the complex potential function for a doublet (centered on the origin) in Cartesian 
coordinates is: 
 

2 2

2 2 2 2

s s s x i y sx isy(z)
z x iy x iy x i y x y

sx syand
x y x y

  
     

    


    

 

  (9.35) 

 

or in cylindrical coordinates: 
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s s se s(z) cos isin
z r e r r
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   (9.36) 
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Source of +Q Sink of -Q 

a a 

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
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The streamline patterns ( = constant) for a doublet are established by noting that if we let  = 
constant, from Eq. 9.35 we can write:  
 

22 yx
sy



 = constant (9.37) 

 

Rearranging Eq. 9.37 gives: 
 

0syyx 22 


    or    
22

2

2
s

2
syx 





















  (9.38) 

Equation 9.38 represents a set of nested circles of diameter sD 


 with their centers at 




2
sy0x , .  All the streamlines will be tangent to the x-axis at y = 0, as shown in figure 9.2.  

Note that the  > 0 and  < 0 streamlines give reflected circle patterns about the x-axis. 

 
  

Figure 9.2 Doublet streamline patterns for s > 0 and s < 0. 
 
Again, like the point source and point vortex, the doublet flow displays a singularity and is not 
analytic at the origin, with the velocity at the origin being similarly undefined. 
The velocity components for a doublet flow are given by: 
 

 cos2r r
sv       and     sin2r

sv    (cylindrical coordinates)  (9.39) 

 

 
 222

22

yx
yxsu




    and    

 222 yx
sxy2v


     (Cartesian coordinates) (9.40) 

y 

x 

y 

x 

Flow pattern for s > 0 

Flow pattern for s < 0 

Streamlines ( = constant) are circles 
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Note that since we asymptote the source/sink pair to z = 0 along the x-axis, the function 

z
s)z(   aligned along the x, or real axis.  However, if we asymptote the source/sink pair to z = 

0 along the y (imaginary) axis, the corresponding doublet becomes 
z
si)z(  , with streamlines 

appearing as nested circles tangent to the y axis, as shown below. 
 

 
 
 
 
 
 
 

Although a bit cumbersome, and generally not worth the effort, one can also configure the 
complex potential function for doublets with axes lying off the primary axes of the complex 
plane. 
 
While not a particularly useful function by itself (in fluid mechanics), when the doublet is 
superposed with a uniform flow, the resulting pattern simulates the inviscid, two-dimensional 
flow over a cylinder, as we will show in Section 9.8.2. 
 

9.7.5 Corner and Wedge Flows 
 
These are flows which simulate a flow either around a corner or impinging upon a wedge shape.  
The complex potential function for both of these types of flow is given by:  
 

 
nnA A(z) z  x i y    

n n
     (9.41) 

 

Here, A and n are constants.  The constant A controls the strength and direction of the simulated 
flow; the type of flow pattern that this function simulates depends on the magnitude of the 
exponent, n.  In essence, this potential function reflects the conformal mapping of a uniform 
parallel flow (Section 9.7.1) onto either a larger or smaller plane.   
 
Because explicit velocity components for u and v can only be determined in the Cartesian 
coordinate system for integer powers of n, it is often more functional to represent this complex 
potential function using cylindrical variables as: 
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Flow pattern for s > 0 

 = constant 

http://en.wikipedia.org/wiki/Conformal_map
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which gives: 
 

 n
n
rA n

cos    and    n
n
rA n

sin  (9.43) 
 

For these flows, streamlines are lines of constant , with  = 0 representing the bounding 
geometric streamline.  The bounding streamlines for  = 0 are simulated by straight lines passing 
through the origin at angles of  = 0 and  = /n.  Of course symmetry also dictates that lines 
along the angles  = 2/n,  = 3/n,  = 4/n,  …… can also represent a “bounding” streamline.   
Which of these bounding streamlines we employ depends on the particular portion of the 
velocity plane that is relevant to our simulation, as we will demonstrate. 
 
Note that the complex velocity for this function is given by: 

 

   
  )(sin)(cos)( 1ni1nAreAryixA AzW

dz
d 1n1ni1n1n1n  (9.44a) 

 

 n 1W u iv Ar cos(n 1) isin (n 1)         

So that 
    

 n 1W u iv Ar cos(n 1) isin (n 1)        (9.44b) 
 

Thus, the Cartesian velocity components (in terms of cylindrical variables) are: 
 

 n 1u Ar cos (n 1)       and    n 1v Ar sin (n 1)     (9.45) 
 

However, the cylindrical velocity components are given by:  
 

 



  nrA

r
1v 1n

r cos     and     



 

 nrA
r

v 1n sin  (9.46) 
 

Examining Eqs. 9.45 and 9.46 indicates that the value of the exponent, n, markedly affects the 
value of the velocity, V


, at and near the origin, r = 0.   Note that for r = 0, when n > 1, 0r 1n   

and V


= 0 at the origin, which is a stagnation type of flow.  However, for r = 0 with n < 1, 

1nr  and V


will become infinite at the origin.  We will discuss and illustrate this curious 
variance in behavior, and the implications for the type of flow this function simulates in the 
following two sections.   
 

As we mentioned above, nz
n
Az  )(  maps (termed conformal mapping) a uniform flow into 

a smaller or larger region of the complex flow plane.  For n > 1, the flow is mapped into a 
smaller region of the complex plane, simulating a stagnation type flow behavior.   

http://en.wikipedia.org/wiki/Conformal_map
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However, for n < 1, the flow is mapped into a larger region of the complex plane, simulating 
flows that have infinite velocity at the origin.  
 
The reader should also note two further points.  First, when n = 1, the complex potential function 
of course reduces to Az)z(  , which is just a uniform, parallel flow, as described in section 
9.7.1.   Secondly, the sign of the constant A dictates the direction of the simulated flow 
impingement.  For A > 0 the flow will be from the left to right (depending on the value of n); for 
A < 0 the flow is reversed, and will be from the right to left. 
 

9.7.5.1 Concave Corner or Wedge Flow (stagnation flow) 
 
These flows are represented by exponent values 1n  , and simulate inviscid flow patterns 
characteristic of a concave corner or a wedge, as shown.  Note that this can be viewed as a 
wedge flow because of the symmetry of the solution about the x-axis, which simulates the 
junction of two symmetric concave corners, as shown in figure 9.3b. 
 
 
 
 
 
   

Figure 9.3 Illustration of a simulated (a) concave corner flow, and (b) wedge flow. 
 

These types of flows have a stagnation point at the origin, and characterize a broad variety of 
impingement type flows. 
 

Example:  Let n = 2:  Simulates a flow impinging on a corner or normal to a flat plate. 

 Using Eq. 9.41, 2z
2
A)z(  , giving a stream function  2

2
rA

2

sin .  

To establish the boundaries of the geometry, we set  = 0, which means that:  
 

,,,,sin  3 2  0202  
  

such that 
2

3 
2

 0 



 ,,, ,….  all represent four possible body boundaries, which are considered 

in sets of two; two possible boundary sets (hash marked) are shown in figure 9.4. 
 
The selection of the boundaries in figure 9.4, since the flow is symmetric within each quadrant, 
depends on the type of flow to be simulated.  Figure 9.4a represents an imping flow in one 
corner, or quadrant of the flow field.  Since viscosity is not an issue for these simulated flows, 
the combination of two adjacent 90 corners (concave corners), like that shown in figure 9.4a, 

V=0 
(a) Concave corner (b) Wedge 

V=0 
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will simulate the impingement upon a semi-infinite flat plate oriented perpendicular to the 
impingement direction, as shown in figure 9.4b.   
 
 
 
 
 
 
 
 
 

 
 

Figure 9.4 Simulated flow impinging in a 90 corner, and on a flat surface. 
 
To establish the velocity components for the flows depicted in figure 9.4, we differentiate the 
complex potential function: 
 

ivuiAyAxAz
dz
dW 


  

Ayv
Axu



 

 

Note that the sign of A reflects the direction of the simulated flow.  If A < 0, the streamlines will 
be as shown in figure 9.4 (impinging from the right); if A > 0, the streamlines would be reversed, 
exiting to the right, as if the flows are converging from top (and bottom for figure 9.4b), and 
deflecting to the right (i.e. the arrows would be reversed in figure 9.4). 
 

Example:  Let n = 3/2, simulating an impinging flow on a shallower corner or pointed wedge. 

For this flow, Eq.9.41 gives 2
3

z
3
A2)z(  , with a corresponding stream function,  


2
3r

3
A2 2

3

sin . 
  

To establish the boundaries of the geometry, we set  = 0, which means that:  
 

)(,,,sin 02 
3

4 
3

2 00
2
3




  

The possible boundaries represented by this flow are shown in figure 9.5. 
 

 
 

y 

x 
 

=0 
=/2 

=0 
=0 

y 

=0 
=/2 

=0 
=0 

=0 
=3/2 

(a) Concave, 90 corner (b) Flat plate impingement 

Note:  A< 0, as shown 
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Figure 9.5 Simulated impinging flow in (a) a 120 corner, and (b) a pointed wedge. 
 

Note that these flows are again symmetric between the upper and lower half of the complex 
plane.  Here the flow simulated in figure 9.5a utilizes only the upper half of the plane to simulate 
a concave ( = 120) corner.  Again, the combination of the symmetric flow patterns for both the 
top and bottom planes will simulate the behavior of a pointed wedge, as shown in figure 9.5b. 
The complex conjugate velocity for this flow in Cartesian coordinates is: 
 

ivuiyxAAz
dz
dW 2

1




  (9.47)  
 

Equation 9.47 is not functionally useful for establishing the velocity field, since the function is 
implicit. However, in cylindrical coordinates we can establish, from Eq. 9.44a: 
 








 








2
i

2
AreArivu W
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d 2

1
2

i
2
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sincos  

  

such that we can develop explicit velocity component equations:  
 

2
Aru 2

1


 cos   and  
2

Arv 2
1


 sin  

 

Note that for r  0, u = 0 and v = 0, so this is again a stagnation type of flow. 
 

9.7.5.2 Convex Corner Flow (infinite corner velocity) 
 

  
 

Figure 9.6 Schematic of inviscid flow over a convex corner. 
 

V= 

Convex Corner 

y 

x 

 = 0 
 = 0 

y 

 = 0 
 = 0 

(a) Concave corner (b) Pointed wedge 

Note:  A < 0, as shown 

 = 0 
 = 2/3 

 = 0 
 = 2/3 

 = 0 
 = 4/3 
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For exponent values 1n  , the complex potential function nz
n
A)z(   simulates flow patterns 

which are characteristic of what we will term a convex corner as shown in figure 9.6.  These 
types of flows are characterized by bounding streamlines that simulate wall angles of  > 180, 
resulting in an infinite velocity at the origin for the simulated flow.  Since real flows abhor 
infinite velocities, a real flow would adapt to these convex corner flows through the generation 
of significant viscous forces, which would significantly modify both the velocity and the 
pressure fields, both near and downstream of the corner region.  However, examination of 
these inviscid flows allows one to anticipate problems that can be expected in real flow situations 
where rapid velocity changes occur, such as in the vicinity of sharp, convex corners.  Such 
simulations can also assess (via modified inviscid solutions) ways that such regions might be 
avoided, or minimized in real flow situations.  Interestingly, the flow problems encountered for 
sharp, convex corner geometries are similar to the stress concentration problems that accompany 
sharp corner geometries in the cutting or fabrication of metals and other solid materials. 

 
Example:  Let n = 2/3 and n = 1/2, respectively, simulating flows over:  

 

 (a) a 90 step (a 270 corner), and  
 (b) a 360 flow around the end of a finite plate. 

 
 
 
 
 
 
 
 
 
 

 

Figure 9.7 Simulated flow over (a) 270 and (b) 360 convex corners. 
  
Again, using Eq. 9.41, these flows are simulated respectively by:  
 

3
2

z
2
A3)z(      and    2

1

Az2)z(    
 

with corresponding stream functions given by Eq. 9.43 as:   
 

3
2

2
rA3 3

2


 sin     and    

2
rA2 2

1


 sin  

The corresponding boundaries of the geometries, for   = 0, are:  

y 

x 

=0 
=3/2 

=0 
=0 

(a) Convex, 270 Corner (n=2/3) 

Note:  A<0, as shown 

y 

x 
=0 
= 

=0 
=0 

(b) Convex, 360 Corner (n=1/2) 

http://en.wikipedia.org/wiki/Stress_concentration
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2 30 0 and 
3 2

sin  
     for a 270 corner 

 

0 0 and 
2

sin 
      for 360 flow around a finite plate 

 

Since all flows for n < 1 will yield implicit velocity fields in Cartesian coordinates, we again 
express the Cartesian velocities in cylindrical coordinates using Eq. 9.45 as: 
 

3
Aru 3

1





cos  and 
3

Arv 3
1






sin  for a 270 corner, and 
 

2
Aru 2

1





cos  and 
2

Arv 2
1






sin  for 360 flow around a plate. 
 

Here, the velocity field is dominated by the inverse powers of r, which results in an infinite 
velocity at r = 0, and very high accelerations near the origin. 
 

9.7.6 Biasing the Origin Location for Elementary Functions 
 
Except for the uniform, parallel flow of section 9.7.1, all of the other elementary functions we 
examined had their origin located at x,y = 0,0 (z = 0) in the complex plane.  However, when 
performing a linear superposition process it is often useful, and necessary, to locate the 
functional origin of a superposed elementary function at a location other than the origin of the 
complex plane.  To locate an elementary function at a position removed from the complex origin, 
we simply substitute a modified complex variable (z'), biased to the desired origin for the 
function (zo), such that z'=z-zo.  For example, a source having its origin at zo would be written: 
 

  0zz
2
Qz

2
Qz 





 lnln)(  

 

This seems simple enough, but this can be tricky when trying to establish explicit stream and 
potential functions, from which to derive the velocity components.  If we substitute  
z = x+iy and zo = xo+iyo into the complex potential function for the source, we obtain:  
 

    00 yyixx
2
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2
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 lnln)(  

 

for which  and  are implicit.  To allow the determination of explicit functions for  and , we 
need to again employ cylindrical coordinates biased to the origin of the function, xo, yo, where 

iz r e   , and     2o
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o yyxxr      and    
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Thus, the complex potential function can be written as: 
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Clearly, this process makes the determination of the appropriate functions a bit more 
cumbersome.  The determination of the velocity components for these off-origin locations can be 
obtained either by differentiation of the complex potential function or through the appropriate 
differentiation of the component functions  and , whichever is simpler.  For example, to obtain 
u for the above example of a two-dimensional source located at zo = xo+iyo we can write: 
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Alternatively, we could differentiate  or  via the Cauchy conditions: 
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and similarly, 
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These yield the same functional expressions for u and v.   
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Note that expressions for  and  at zo for point vortices are quite similar to the expressions for 
the source/sink flows, and thus the expressions for position-biased stream and potential 
functions, as well as the velocity components, will have a form similar to the point source/sink 
flows.   
 
However, the doublet is a bit different.  The location of a doublet at zo yields a complex potential 
function of: 
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For the velocity we note: 
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From which one can show, 
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Considering corner/wedge flows, the complex potential function for these geometries centered 
on zo is given by: 
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Either of these formulations is cumbersome, particularly for establishing the boundary of 
simulated bodies via a constant stream function, .  For the Cartesian form, the stream and 
potential functions can only be expressed as explicit algebraic functions of x and y for integer 
values of n.  As we will see, establishing explicit expressions are needed to establish the 
bounding streamlines for a simulation, and thus the body shape.  However, when dealing with 
fractional values of n, the cylindrical form of the complex potential function must be used, which 
renders the stream and potential functions trigonometric, such that positional expressions for x,y 
lying on bounding streamlines are generally implicit, and must be dealt with iteratively. 
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9.8 Superposition Flow Simulations 
 
We have shown in sections 9.2 and 9.3 that both  and  are solutions to the Laplace equation.  
Since the Laplace equation is a linear differential equation, that means that all solutions for  
and  are directly additive by a process of linear superposition.  That is, the sum of a set of 
separate solutions is still a solution to the equation.  As discussed in section 9.5, this process of 
linear superposition is termed the indirect or inverse method, since it does not allow us directly 
to determine the velocity field for a specified geometry.  Instead, we employ this indirect 
approach to superpose a set of judiciously selected flow functions ( or ), examine the velocity 
patterns they collectively simulate, and then associate those patterns with flows around/through 
geometries which approximate the bounding streamlines. Taken to its extreme, this process can 
be used iteratively to develop flows for somewhat complicated geometries through the optimized 
superposition of a large number of elementary functions.  In this section, we illustrate the basic 
superposition approach to simulate several simple flow geometries. However, having called them 
“simple,” one may often find that the reduction of the superposed solutions to equations 
describing the respective body shape, velocity, and pressure distributions can be somewhat 
challenging to do in closed form, as will be demonstrated. 
 

9.8.1 Flow Around a Circular Cylinder 
 
 
 
 

 
Figure 9.7 Inviscid flow over a cylinder, simulated by superposition of a uniform flow and 

a doublet. 
 

A very common flow that is readily simulated using superposition techniques is a uniform flow 
passing around a circular cylinder (i.e. like flow around a wire or a rod).  In order to simulate the 
inviscid flow over a cylinder, as shown in figure 9.7, we combine a uniform flow (Section 9.7.1), 

Uz)z(  , with a  doublet function (Section 9.7.4), 
z
s)z(  , giving a combined complex 

potential function of:   
 

z
sUz)z(        (9.48) 

 
As shown in figure 9.7, here we assume that: (1) U > 0, which gives the left-to-right uniform 
flow shown in figure 9.7, and (2) s > 0, such that the doublet flow will emanate outward, toward 
the left of the origin, as shown.  This combination creates a simulated flow pattern where the 
uniform flow and the doublet impinge upon each other along the x-axis, creating a stagnation 
point reflecting the leading edge of a simulated cylinder.  

R 
+  x 

y 
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To determine the stream and potential functions for this flow, we can use either Cartesian or 
cylindrical coordinates.  In the following, we derive the stream and potential functions, and the 
velocity components in both systems.  Thus, using irez  , Eq. 9.48 becomes: 
 

  ii e
r
sUrez)(  

   






















sincos

sincossincos

r
sUri

r
sUr

i
r
siUr

 (9.49) 

 
 
Alternatively, using yixz  , we obtain: 
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For the cylindrical velocity components, we have (using the Cauchy relations):  
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In Cartesian coordinates, the complex velocity components are: 
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A comparison of Eqs. 9.51 and 9.52 suggests that it is generally easier to perform our analysis 
for this configuration in cylindrical coordinates due to the radial symmetry of this flow.   
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Using Eqs. 9.51, we recognize that if the flow is on and around a cylinder, then at the surface of 
the cylinder the radius will be a constant of r = R, and the radial velocity, vr, on this surface will 

be zero (i.e. the velocity will be tangent to the cylinder surface, with v
  the only relevant 

velocity component).   
 
Thus, we set Eq. 9.51a equal to zero, for r = R:  
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Which indicates that: 
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  (9.53) 

  

The result for  in Eq. 9.53 is not particularly useful alone.  However, Eq. 9.53 indicates that the 

radius of the simulated cylinder, 
U
sR  , is a function of the respective ratio of the strengths of 

the doublet and the uniform flow, as might be expected.  Changing the strength of either the 
doublet or the uniform flow will change the simulated diameter of the cylinder.  However, as we 
will see, the dimensionless characteristics of this flow  (e.g.   21

r p 2v U v U C p p U, ,
 

   ) 

are invariant with changes in the flow or doublet strength. 
 
To determine the streamline that defines the boundary of the cylinder, we assess the value of the 

streamline on the cylinder surface, for
U
sRr  :   
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sinsinsin  

 

Thus, the bounding streamline (in this case) is  = 0.  To establish the extent and shape of the 
bounding streamline, we now set  = 0 in Eq. 9.49, and solve for the streamline boundaries. 
 









 sin

r
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Points 
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So, either 0
r
sUr     or   0sin   along the 0  streamline.  

or          R
U
sr    and   or  0       

 

Therefore,   = 0 occurs either: (1) on the cylinder surface (r = R), or (2) along the x-axis for r > 
R (  or  0 ), as shown in figure 9.8. 
 

 
 
  
 
 
 
 

Figure 9.8 Location of the  = 0 streamline, and the respective stagnation points lying on 
that streamline.  

 

The stagnation points on the cylinder will, of course, occur where 0V 


, or where r andv v 0  .  

So, if we let  
U
sR  , which assures that 0vr  , we then set 0v   in Eq. 9.51b and solve for 

the resulting angle: 
 

stag stag stag
sv U 2U 0 0 and
s
U

sin sin


 
 
            

  
    

 

 

Thus, two stagnation points occur on the x-axis at both the leading and trailing edge of the 

cylinder (i.e.  
U
sRx stag  and  0ystag  ), as indicated in figure 9.8. 

 

The portion of the 0 streamline that does not lie on the cylinder surface, lies along the x-
axis, at either  =  or 0 for r > R, or along |x| > R for y = 0.  Along the x-axis, the velocity is 
simply the u component of the complex velocity, Eq. 9.53a, with y = 0. 
  

20 x
sUu 


   along the x-axis 

 

Note for Rx  , we have: 
  

Uu
0
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Therefore, the velocity is essentially constant well upstream and downstream of the cylinder, 
representing an impinging (and departing) uniform flow well away from the cylinder body. 
 
To determine the maximum velocity on the cylinder surface, we note that v  is the velocity on 

the cylinder surface (since vr = 0 on the cylinder).  For  
U
sRr  , Eq. 9.51b becomes: 

 

 sinU2v  (9.54) 
 

The maximum velocity will be where the derivative of Eq. 9.54 along the surface (with respect to 
) is zero, so 
 

o odv 2U 0 90  or 270
d

cos       


 
 

Thus, the maximum velocity on the cylinder is U2v   (we could also have inferred this by 
inspection), occurring at both the top and bottom of the cylinder.  Note that the negative sign in 
Eq. 9.54 simply indicates that the velocity moves in the negative  direction (clockwise) for 0 < 
 < , and positive  direction (counter clockwise) for  <  < 2. 
 

To establish pressure changes, both within the flow field and along the cylinder surface, we 
apply the Bernoulli equation, Eq. 7.11.  Since the flow is inviscid and irrotational, Bernoulli 
applies either along a streamline or between any two points in the flow field. 
 

Applying the Bernoulli equation between a point far upstream of the cylinder (r >> R, where u = 
U), to any other point within the flow field, gives: 
 

2
2
12

2
1 UPVP     (9.55) 

 

In Eq. 9.55, P is the local pressure and V is the local velocity at any point within the irrotational 
flow. P is the static press far upstream of the cylinder where the flow is uniform at velocity U.    
    
Now, on the cylinder surface we have 222 U2vV )sin(   .  Substituting this 2V into Eq. 9.55, 
and rearranging, gives: 
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Defining a non-dimensional pressure coefficient, Cp, gives: 
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2
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1p 41

U
PPC sin  (9.56) 
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The general shape of Cp() on the cylinder is shown in figure 9.9 below. 
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Figure 9.9 General behavior of the surface pressure coefficient versus angle (upper 

surface) for inviscid flow over a cylinder, where 
P P 2C 1 4 sinp 21 U2

 
   


. 

 

Now, consider the forces that act on the cylinder due to the imposed pressure forces, where drag 
is a force parallel to the impinging flow (here, the x-direction), and lift will be a force normal 
(perpendicular) to the impinging  
flow direction (here the y-direction).   
 
Thus, 
  

  xx PAdFDrag  

Where, 
 

  sinˆcosˆˆˆˆ jiRdiRdjdAidAAd ryx


  

 

Here,  xdA R d  cos      differential area projection in x-direction 

   and  ydA Rd  sin      differential area projection in y-direction 
 

Consequently, 
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22
2
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sinsin

cossin

 

This curious result is known as d’Alembert’s paradox, and applies only for a truly inviscid flow 
(which, in reality, does not exist).  One can observe, from the plot of Cp in figure 9.9 that the 
reason for the absence of pressure drag is that the pressure forces are balanced between the front 
and rear of the simulated cylinder---in a real flow there is no such balance of the pressure forces, 
as we will learn later in Chapters 14 and 15.   
 

 x 

y 

riRdAd ˆ


http://en.wikipedia.org/wiki/D%27Alembert%27s_paradox
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To develop a non-zero drag force on a body, which our experiences and experiments indicate 
must occur, requires the presence of fluid viscosity.  Viscosity gives rise not only to shear forces 
at the body boundary, but is also responsible for the development of what is termed flow 
“separation,” wherein a fluid flowing along a body will be brought to rest, such that the surface 
streamline subsequently separates from (i.e. moves away from) the body surface.  Such flow 
separation creates a region of stagnant or recirculating fluid adjacent to the body, which strongly 
modifies both the velocity field around the body, and the pressure distribution imposed on the 
body.  Thus, drag for real flows can result from both surface shearing forces and unbalanced 
pressure forces acting on the body.  However, our assumption of inviscid behavior yields a fluid 
drag of zero on this and other (as we will see) simulated body shapes---a result that runs counter 
to our experiences.  This discrepancy between the zero drag predicted by an inviscid analysis and 
the finite drag that exists for all real flows is, of course, the basis for d’Alembert’s paradox. 
 
Note that the lift forces acting on the simulated cylinder (i.e. the summation of the forces acting 
normal to the impinging flow direction) can also be calculated for the simulated cylinder.  The 
result, not surprisingly, is:  
 

Lift =   0PdAdF yy     
 

This should not be unexpected, since the pressure forces on the simulated cylinder also are 
balanced top to bottom, as well as back to front, because of the symmetric pressure distribution 
indicated in figure 9.9.  However, as we will show in the following section, the addition of 
rotation (circulation) to the simulated flow will modify this vertical pressure symmetry, and 
result in a non-zero lift force. 
 

9.8.2 Flow Around a Rotating Cylinder 
 
This example is similar to the analysis of a stationary cylinder in section 9.8.1.  However, we 
now simulate rotation of the cylinder by the additional superposition (addition) of a point vortex 

function,   z
2

iz ln



 , to the superposed uniform flow and doublet functions employed in 

section 9.8.1 (i.e. uniform flow + doublet + vortex).   
 
 
 
 
 
Here we assume U > 0, s > 0, and  > 0, which will simulate a cylinder rotating counter 
clockwise, with an impinging flow from left to right.  The corresponding complex potential 
function for this flow is: 
 

+  x 

y  > 0 

+ 
R 

http://en.wikipedia.org/wiki/Flow_separation
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  z
2

i
z
sUzz ln




  (9.57) 

 

yielding a stream function (in cylindrical coordinates) of: 
 

  r
2r

sUrr lnsin,












  (9.58) 

 

For this configuration, the radial velocity is the same as for a non-rotating cylinder 
 














 cos2r r

sU
r
1v  (9.59) 

 

However, the azimuthal velocity includes a new component that accounts for the magnitude of 
rotation, 
 

r2r
sU

r
v 2 
















 sin  (9.60)  

 
 

 

Like we did for the non-rotating cylinder, we set 0vr   and solve for the radius of the simulated 

body.  The result is 
U
sR  , which is the same value we obtained for the non-rotating cylinder. 

The bounding streamline for the body is obtained by setting 
U
sRr   in Equation 9.58, 

which gives: 
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2
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s
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U
s

2Rr
ln







 (9.61) 

 

Note that this bounding streamline varies with the respective strengths of the uniform flow, the 
doublet, and the rotation.  That the bounding streamline is not zero is interesting, since this 
indicates that the streamlines above and below the real axis will not be symmetric, but will skew 
to one side of the x-axis or the other, depending on the direction of cylinder rotation.   
 

Rotation 
Component 
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To determine the position of the stagnation points on the rotating cylinder, we let r = R (which 
satisfies, rv 0 ) , set 0v   (Eq. 9.60), and solve for the stagnation angles: 

 Stag Stag2r R

s Uv U U U 0
R 2 R 2 s

sin sin
 

  
              

 

or  

Us4Stag



sin  (9.62) 

  

From Eq. 9.62, we can establish the angle(s), Stag, on the cylinder where the stagnation points 
occur.   
 

(a)  if pts. stag. 21Stag sin  

(b)  if pt. stag. 11Stag sin  

(c)  if surface) Rr(on the pts. stag. No1Stag sin  
 

Examples ( > 0) : 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 9.10 Illustration of the number of stagnation points occurring on a rotating cylinder, 
and the general streamline behavior, depending on the strengths of U, s, and  
in Eq. 9.62.  (a) two stagnation points, (b) one stagnation point, and (c) no 
stagnation points (on the cylinder surface).  Here,  > 0, so stagnation points are 
in upper half of the plane.  If   < 0, the stagnation points would occur in the 
lower half of the plane (and the streamlines would be mirror reflections—top to 
bottom—of the above patterns). 

 
As indicated in figure 9.10, depending on the collective strengths of the uniform flow, the 
doublet, and the rotation, we may theoretically have two, one, or no stagnation points lying on 

sinStag 
+1 

0 

-1 

 0 2 
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the cylinder.   Note that the direction of the cylinder rotation dictates whether the stagnation 
points occur on the upper half (when  > 0) or lower half (when  < 0) of the cylinder. 
 
Notice that for U > 0 and s > 0, the stagnation points will skew toward the upper surface ( >  > 
0) for clockwise rotation ( > 0, as shown), and toward the lower surface  
(2 >  > ) for counter-clockwise rotation ( < 0).  Also note that when the stagnation angle 
equation exceeds unity, Stagsin >1, this indicates that the stagnation point cannot occur on the 

body surface (r = R), but must occur outside of the simulated body, as illustrated in figure 9.10(c) 
above.  Such a stagnation point occurring within the fluid is a particular type of critical point 
termed a saddle point (with flow moving toward and then away from the point). A critical point 
is essentially a point within a flow field where the slope of the streamline is indeterminate.  For 
example, a stagnation point qualifies as a critical point since the equation of the streamline 
intersecting a stagnation point is dy/dx=0/0, or indeterminate.  
 
The velocity on the surface of the rotating cylinder, where rv 0 , is given by: 
 








 































 Us2

2U
R2

U2
R2

U
s
sUv

U
sR

sinsinsin  (9.63)  

 

The pressure distribution on the surface, determined by substituting Eq. 9.63 into the Bernoulli 
equation is: 
 

22
2 21 1

2 22

vP P U 1 U 1 2sin
U 2 RU




    
            

     

 

 
Here, P is again the static press far upstream of the cylinder where the flow is uniform at 
velocity U.   Defining a non-dimensional pressure coefficient, Cp, gives: 
 
 

22

2
2
1p Us2

21
RU2

21
U
PPC 






























  sinsin  (9.64)  

 

The general shape of Cp() on the upper and lower surface of the cylinder is shown in figure 9.11 
for two cases of increasing rotation. 

 

http://en.wikipedia.org/wiki/Critical_point_%28mathematics%29
http://en.wikipedia.org/wiki/Saddle_point
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(a)  (b) 

 

Figure 9.11 Comparison of Cp vs.  (from Eq. 9.64) for (a) 
2 Us




= 0.25  

 and (b) 
2 Us




= 0.5.  Cp with no rotation ( = 0) is shown for comparison. 

 
Although the presence of rotation skews the streamlines, and creates a pressure differential 
between the upper and lower surfaces, as figure 9.11 shows, the pressure distribution between 
the front and back of the cylinder remains symmetric, so like the non-rotating cylinder there will 
be no drag force on the cylinder. 
 

Drag force =    0PdAdF xx  
 

However, it is clear that the variance in surface pressure between the upper and lower surfaces 
must create an unbalanced lift force on the cylinder normal to the direction of the impinging 
uniform flow.  This lift force can be calculated as: 
 

Lift force       yp
2

2
1

yy dACUPPdAdF  
 

where,  ydA Rd  sin  is the differential area projecting in the y-direction. 
 

Thus, 
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which, yields the rather simple result that: 
 

Lift Force = 



 UU  (9.65) 
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Equation 9.65 indicates that a counter-clockwise rotation (  > 0 ) will create a lift force in the 
negative y-direction (downward).  From the pressure distribution shown in figure 9.11, this is 
clearly a result of the generation of a lower pressure on the bottom surface and a higher pressure 
on the upper surface of the cylinder. 
 
Now note that the circulation around the cylinder (from Eq. 8.9) is given by : 
 













  

 

 Rd
R2

U2RdvdsV
2

0

2

0

sin


 (9.66) 

 

Since our lift result in Eq. 9.65 showed that lift = U  , Eq. 9.66 indicates that the lift on the 
cylinder is directly proportional to the circulation about the cylinder.   It turns out that this result 
that lift is proportional to the circulation about a body, is generic, and applies for all inviscid 
flows about bodies, including airfoils, regardless of the source of the circulation. 
 

9.8.3 Flow Around a Half-Body 
 
One of the simpler superposition solutions would seem to be a uniform flow combined with a 
source, which simulates flow over what is called a half body, shown in figure 9.12.  
 
 
 
 
 
 
 
 
 
 
 

Figure 9.12 Schematic of flow over a half-body, simulated by the combination of  
 a uniform flow and a source. 

 
While this is a simple superposition, the calculations to establish the body shape are much less 
straightforward than we encountered in sections 9.8.1 and 9.8.2 using the superposition of a 
uniform flow and doublet to simulate flow over a cylinder. For the present simulation we 
superpose a uniform flow of strength U > 0 moving left to right, given by  z Uz  , and a 

source of strength Q > 0 located at z = 0, given by   z
2
Qz ln


 .  Correspondingly, the 

superposed complex potential function is: 
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  z
2
QUzz ln


  (9.67) 
 

Here, we have two options: either to employ Cartesian variables or cylindrical variables—or 
both.  We will expand  in both variables, and consider which better serves our purposes.   
 

Expanding  using iz re   we have: 
 

 
Q Q Qz Uz z Ur r i Ur i
2 2 2

ln cos ln sin   
                  

 (9.68) 

 

Whereas, expanding using z = x +iy we have: 
 

  2 2 1Q Q Q yz Uz z Ux x y i Uy i
2 2 2 x

ln ln tan    
                   

 (9.69) 

 

Here, the complex velocity components are given by: 
 

ivuW
z
1

2
QU

dz
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and    
Q 1W u iv U where z x iy
2 z

     


 (9.70) 
 

The respective Cartesian velocity components can be shown, in both Cartesian and cylindrical 
variables, to be: 
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To establish the shape of the body, we note that a stagnation point must occur on the body, where 
the complex velocity, W (and so also W ), is zero. Thus, setting Eq. 9.70 to zero, we have: 
 







U2
Qyixz0

z
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2
QUW  

 

Thus, 0y
U2
Qx stagstag 


 ,  or 


 stagstag U2
Qr ,  is the location of the stagnation point for 

the body.  Correspondingly, the value of the stagnation streamline, s , which passes through the 
stagnation point, is given by: 
 

2
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Now, the location of the points along a streamline that describes the boundary of the body (b = 

s, since s must lie on the body boundary) is given by setting  from Eq. 9.68 and 9.69 equal to 
Eq. 9.72: 
 

bbbbs 2
QUr

2
Q




 sin  (cylindrical coordinates) (9.73) 

or    
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2
QUy
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 tan  (Cartesian coordinates) (9.74) 

 

Solving Eq. 9.73 for rb and Eq. 9.74 for xb, we have: 
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b
b U2
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sin
  (9.75) 

and 





















Q
Uy21

yx
b

b
b

tan
  (9.76) 

 

In Eqs. 9.75 and 9.76, the subscript “b” indicates that these equations define coordinate pairs 
lying on the bounding streamline, and thus the surface, as shown in figure 9.13.  Either of these 
expressions allows us to determine the boundaries of the body, although Eq. 9.75 is probably a 
bit more convenient. 
 
 
 
 
 
 
 
 

Figure 9.13  The geometric relationship of xb and yb to rb and b. 
 
From the general body shape shown in figure 9.13, we infer that the maximum thickness of the 
half body must occur far downstream of the stagnation point, at either xb   or  b ≈ 0. 
Employing rb from Eq. 9.75 in cylindrical coordinates to obtain the half-body thickness, yb, we 
have: 

 bbbb U2
Qry 


 sin      (9.77)  
 

The maximum body thickness is obtained by substituting b = 0 into Eq. 9.77, giving: 
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U2

Qy max   (9.78) 
 

Substituting Eq. 9.78 into Eq. 9.77, and dividing through by ymax, allows us to express the non-
dimensional half-body thickness as: 
 

 








 bbb 1

y
y
max

    (9.79) 

 

In Cartesian coordinates, the corresponding non-dimensional streamwise body coordinate from 
Eq. 9.76 is: 
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max tan
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y
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b

b  (9.80)  

 

Substituting Eq. 9.79 into Eq. 9.80, yields the an expression for the corresponding non-
dimensional streamwise body coordinate as a function of b : 

 
 b

bb

y
x






tanmax

 (9.81)

 
  

The figure 9.14 shows the bounding streamline shape, determined by choosing selected values of 
b, calculating yb/ymax and xb/ymax from Eqs. 9.79 and 9.81, and plotting the resulting shape. 

 
 

Figure 9.14  Half-body surface stream line (b = Q/2), pressure coefficient [Cp(x)], and 
cumulative drag coefficient [CD(x-xo)] 
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Alternatively, one could select a series of yb/ymax values, calculate xb/ymax from Eq. 9.80, and plot 
the shape directly.  In either case, one has to be careful in incrementing b or yb/ymax, since 
xb/ymax varies quite rapidly once xb/ymax > 0.6. 
 

Another characteristic we can establish from this simulation is the pressure distribution or 
pressure coefficient (Cp) over the body.  From the Bernoulli equation, we can write: 
 

2
2
12

2
1 UPVP  

    where  WWvuV 222   (9.82) 
 

Here, P  is the static pressure of the upstream impinging flow ( = , or y = 0 and x << 0), 
where u = U, v = 0.  Rearranging Eq. 9.82, we can write the non-dimensional pressure 
coefficient as: 
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   (9.83) 

 

Equation 9.83 allows us to express the pressure changes along the body non-dimensionally, the 
way we did for the cylinder flow in sections 9.81 and 9.82.  We are again faced with which 
coordinate system to employ to expand this expression.  Using cylindrical variables, where 
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 (9.84) 

 

Substituting Equation 9.75 for rb, into Eq. 9.84 we have: 
 

 

 
 

     
b b

2 2 2 2
i i2 2 2b b b b b

2 2
b bb b

U U 2V U e e U 1sin sin sin cos sin  
     
       
    

  (9.85) 

To simplify Eq. 9.85, we let bb   , and note that   bbb sinsinsin  , and 

 b b bcos cos cos       , which lets us write: 
 

2
2 2 b b b

2
b b

2sin cos sinV U 1
 
  
 

  
  

 
 (9.86) 

 

Substituting Eq. 9.86 into Eq. 9.83 for the pressure coefficient, Cp, we have: 
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  sincossin  (9.87) 
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Alternatively, we can write 2V  in Cartesian variables as: 
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  (9.88) 

 

Substituting into Eq. 9.88 from our expression for ymax, Eq. 9.78, (rearranging as maxUy2Q   ) we 
have: 
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 (9.89) 

 

Substituting Eq. 9.89 into Eq. 9.83, yields a second equation for Cp on the bounding surface as: 
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To use Eq. 9.87, one must determine the locus of the surface using Eqs. 9.79 and 9.81 to 
correlate Cp with the location on the body; for Eq. 9.90, Eq. 9.80 is used to correlate the location 
of Cp on the body.  Either approach works, but again care must be used in incrementing b or 
yb/ymax.  The previous Figure 9.14 shows Cp as a function of xb/ymax, superposed with the body 
shape.   
 
Note that the pressure force per unit depth in the streamwise direction, or pressure drag, is given 
by: 
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Or in terms of a non-dimensional drag coefficient, CD: 
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To integrate Eq. 9.91 with respect to y requires that we substitute our expression above for 
xb/ymax= f(yb/ymax) in Eq. 9.80 into Eq. 9.91 for Cp, which makes the integral in Eq. 9.91 much 
too complicated.  Accordingly, we employ our expression for Cp(b) in Eq. 9.87, and note from 

Eq. 9.79 that we can write yb=f(b), where bb  , along the surface as: 
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Substituting Eq. 9.92 into Eq. 9.91, and noting that the appropriate limits of integration are from 
b = 0 ( = ) to b =  ( = 0), we have: 
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Identifying that (not quite self-evident):  
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We can rewrite Eq. 9.93 and integrate, giving: 
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Equation 9.94 is indeterminate at b = 0.  To assess the integral, we apply L’Hospital’s rule to 

the general result of Eq. 9.94 as b  0: 
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Thus, the value of Eq. 9.94 is: 
 

  0001CD 


  (9.95) 
 

Now the result of no drag indicated by Eq. 9.95 might seem a bit unusual, since one would 
assume that the streamwise pressure force would be unbalanced for this geometry. However, 
recall that inviscid flow around a circular cylinder also displayed no drag. The process for the 
cylinder was a bit more obvious, since the pressure forces on the leading half of the cylinder 
were clearly balanced by the pressure forces on the trailing half.  Here, the process is a bit more 
subtle, as shown in figure 9.14.  
 
 Note that when Cp  > 0, a pressure drag force component is applied in the positive x-direction.  
However, such a condition only exists for a short distance after the leading edge (-.159  xb/ymax 

  -0.318).  Thereafter, for xb/ymax   -.159,  Cp < 0 on the bounding surface, which results in a 

negative drag force, or suction force, acting in the negative x-direction.  Since CD  0 as x  , 
this implies that the initial pressure drag forces on the leading portion of the body are identically 
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balanced by the suction forces over the trailing portion of the body.  This is illustrated in figure 
9.14 by the behavior of CD(x-xo), which shows the cumulative drag as a function of x from the 
leading edge (where xstag/ ymax  =  -0.318).  The velocity on the body surface reaches a maximum, 
and thus Cp reaches a minimum, at approximately xb/ymax  =  0.33 (Vmax = 1.26U), and then 
decreases back to zero as V  U as x  .  However, the deceleration of the flow is quite 
gradual over the remainder of the body, which ideally extends to infinity.   
 

As we will discuss later, flow deceleration and the accompanying pressure rise (known as an 
“adverse” pressure gradient) are not well tolerated by real viscous flows.  Real bodies, in real 
flows, will of course be of finite extent, which requires that at some point the body must either: 
(1) terminate at a finite thickness, or (2) taper back down to yb = 0, such as occurs for airfoils.  
Such geometry changes are normally accompanied by local adverse pressure gradients in the 
direction of the flow.  The application of an adverse pressure gradient to a real viscous flow will 
generally cause the flow to undergo a process of flow “separation” (a process that was referred to 
earlier with regard to the cylinder flow) at some point along the body.  The consequence of such 
a flow separation is a sharp divergence from the flow pattern behavior predicted by an ideal, 
inviscid flow, with the consequent generation of non-zero pressure drag.  We discuss the 
development and ramifications of flow separation on flow drag for real viscous flows later in 
Chapters 14 and 15. 
 

Without offering further examples or proof here, we can comment that the general result of zero 
pressure drag obtained for inviscid flow over a cylinder in sections 9.8.1 and 9.8.2, and in the 
present section for flow over a half body, applies in general for superposition solutions 
incorporating any number of sources or sinks. Regardless of how many source/sink combinations 
we superpose to change the shape of a simulated body, the net pressure drag on any resultant 
"body" will always be zero.  Thus, in the absence of viscosity, the flow of an ideal fluid around 
any simulated body will always satisfy the d’Alembert’s paradox of zero drag. 
 

9.8.4 Flow Around a Two-Dimensional Rankine body 
 

In order to simulate a closed body in a uniform flow using sources and sinks, one must assure 
that the total strength of the sources is equal to the total strength of the sinks (i.e. 

0QQ
sinkssources

 ).  When we superpose a single source and single sink of strength Q with a 

uniform flow, the shape of the body will be elliptical in shape, with the shape of the body 
dependent on both the strengths of the source/sink and the separation distance between the 
source and sink. Here, we superpose: (a) a uniform flow of strength U moving left to right, given 

by  z Uz  , (b) a source located at z = -zo of strength Q, given by    0zzln
2
Qz 


, and 

(c) a sink located at z = +zo of strength -Q, given by    0zzln
2
Qz 


, as shown in figure 

9.15.    
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The superposed complex potential function is: 
 

     00 zzln
2
Qzzln

2
QUzz 


 (9.96) 

 

To simulate a closed body, it is clear that the source must be upstream of the sink, otherwise the 
flow will not exhibit a stagnation point at the leading edge.  Additionally, to simulate a 
symmetric body, the source and sink must be located along an axis parallel to the impinging 
uniform flow.  For the present simulation, we assume a uniform flow parallel to the real axis (x), 
and let zo = a, which gives: 
 

     azln
2
Qazln

2
QUzz 


 (9.97) 

 

The general configuration for this simulation is termed a Rankine body, and is shown in figure 
9.15:  

 
Figure 9.15  Elliptical Rankine body shape simulated by superposition of an equivalent 

source (+Q) and sink (-Q) with a uniform flow (U). 
 

Since the logarithm terms in Eq. 9.97 lend themselves best to cylindrical variables, we define 
two new complex variables as; 
 

1i
1 1z z a r e 
    (9.98a) 

and  
2i

22 erazz 
  (9.98b) 

 

where, 

  22
1 yaxr    and   
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y1

1 tan  (9.99a) 

and   

  22
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Substituting Eqs. 9.98 into Eq. 9.97, we have:   
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 ln)(  (9.100) 

 

And substituting from Eq. 9.99 to express Eq.9.100 in terms of x and y yields: 
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From Eq. 9.101, we can identify the stream and potential functions for this flow as: 
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We determine the velocity components by differentiating (z) from Eq. 9.97 for ivuW 

(this is easier than differentiating  or  with respect to x or y).  Thus, 
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And separating the real and imaginary parts, 
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Thus, by identification we have the Cartesian velocity components: 
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The stagnation points (ys and xs) for the simulated body occur where u = 0 and v = 0.  We note 
that v = 0 along the x axis (y = 0).  Thus, to determine the stagnation points, we set u = 0 and let 
y = ys = 0 and x = xs in Eqs.9.104.  This makes v = 0 in Eq. 9.104b, and we can solve for the 
resultant xs with u = 0 in Eq. 9.104a: 
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After some algebra, we determine xs as: 
 

Ua
Q1axs


    (9.105) 

 

At this point, it is advantageous for plotting purposes to define non-dimensional variables as 

a
xx   and 

a
yy  , and a relative source strength term as 

Ua
Q


 .  Thus, the stagnation 

points for the Rankine body are  1xs  and 0ys  . 
 
Now, in terms of x and y the stream function equation (Eq. 9.103) becomes: 
 

1 1Q y yx y Uay
2 x 1 x 1

( , ) tan tan      
                

 (9.106) 

 

Since 0ys  at the stagnation points, Eq. 9.106 indicates that the stream function equation for the 

body surface is ),( ss yx  = 0 (the same as for the non-rotating cylinder flow).  Thus, the equation 
for the body shape is given by: 
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In Eq. 9.107, y'b and x'b are coordinates on the body surface. 
 

Rewriting Eq. 107 in terms of   , as defined previously, gives: 
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The maximum thickness of the body, my , occurs when 0xb  , and is (unfortunately) given 
implicitly by:  
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[Here we substitute the identity:   m
1

m
1 yy   tantan ] 

or, 
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 (9.109) 

 

This implicit equation for my must be solved either iteratively for a given value of , or by 
choosing a desired value of my , and solving for the required  value. 
 
To determine the body shape from Eq. 9.108 appears to be a messy iterative process.  However, 
we can rewrite Eq. 9.108 as: 
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or, taking the tangent of both sides of the equation: 
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[using the trigonometric identity:  
btanatan1
btanatanbatan




 ] 

 

Solving Eq. 9.110 for bx  (trust me) gives: 
 

















b

b2
b

2
b y2

y2y1x
tan

 (9.111) 

 

Equation 9.111 now allows the explicit determination of the body shape. The upper half body 
shape determined from Eq. 9.111 is shown in figure 9.16a for =0.25, 0.5, and 1.   
 

The velocity along the body surface can be determined from Eqs. 9.104, using Eq. 9.111 to 
specify the surface coordinates.  In terms of x and y , we can define non-dimensional velocity 
components as: 
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vv  (9.112b) 

 
 (a) Non-dimensional Rankine body shape (upper half) 

 
 (b) Non-dimensional Pressure Coefficient 
 

Figure 9.16 Body shape and pressure coefficient for inviscid flow around Rankine bodies 

with relative source strengths of 
Ua
Q


  = 0.25, 0.5, and 1.0. 

 
So, knowing bx  and by  from Eq. 9.111, using Eqs. 9.112 we can calculate the dimensionless 

velocity components on the body, bb v,u  , and thus the pressure coefficient Cp, using: 

 2
b

2
b

22
b vuUV  ,    so that:    
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p b b2 21
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 (9.113) 
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Figure 9.16b shows the pressure coefficient for Rankine bodies for =0.25, 0.5, and 1 as 
determined from Eq. 9.113. 
 

Note that the shape of the body, although symmetric, varies markedly with the value of  , as 
does the pressure coefficient. In particular, the minimum pressure coefficient for the largest  
value (1.0) occurs at the center of the body, whereas for the smallest  value 
 (0.25), there are two minimums, occurring near the leading and trailing edges. As we pointed 
out earlier in this chapter, when a real flow passes a point of minimum pressure, and experiences 
an increasing pressure, viscous effects can cause the development of a flow separation region, a 
marked departure from inviscid flow simulations, and a marked increase in drag. For the present 
simulation of a Rankine body, we would expect our small  = 0.25 simulation to experience a 
flow separation sooner than the large  simulation, since the point of minimum pressure is 
predicted to occur much nearer the leading edge of the small  = 0.25 simulation body. We will 
address the sensitivity that real fluids have to pressure gradients when we discuss boundary 
layers in Chapter 13 and 14, and drag in Chapter 15. 
 

9.9 Bodies Translating in a Potential Flow  
 

In the previous section, we superposed elementary functions to create simulations of uniform 
flows around stationary bodies.  However, what if we want to simulate the behavior of a body 
translating through a quiescent potential fluid?  This will change the potential function of the 
flow field surrounding the body, although (as we will see) the pressure on the body and the 
relative velocity field remain the same. Basically, we take a flow that was simulated with a 
uniform approach velocity, and delete the uniform flow function from the initial complex 
potential function (this is like imposing a constant velocity of opposite sign to the superposed 
function).  However, one must first determine how the constants for the other elementary 
function(s) relate to the uniform flow velocity.  In the following section, we examine the 
translation of a cylinder through an otherwise stationary fluid. 
 

9.9.1 Translation of a Cylinder in a Quiescent Fluid 
 

 
 

Figure 9.17 Simulated inviscid flow over a cylinder, passing right-to-left (i.e. moving in the 
negative x direction).  

 
To illustrate the movement of a body through an inviscid, quiescent fluid, we will make use of 
our superposition of section 9.8.1, flow around a cylinder.  Now, since we can make better sense 

R 
+  x 

y 
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of this type of translating flow with a body moving in a positive direction, we will modify the 
superposed function to have the initial function simulate a flow from right-to-left (section 9.8.1 
simulates the flow from left-to-right).   
 
The appropriate function for this right-to-left flow, as shown in figure 9.17, is:  
 

z
sUzz  )(       (9.114) 

 

Note that this is just the negative of Eq. 9.48, which reverses the direction of the flow field, with 
the cylinder stationary within the flow field.  To simulate the translation of the cylinder at a 
positive velocity U to the right, we add +Uz to the superposed function, which gives a new 
function: 
 

z
sUz

z
sUzz  )(  (9.115) 

 

Note that Eq. 9.115 is simply a doublet of strength s.  This yields the flow field in a reference 
frame translating at a velocity U in the positive x direction, as shown at 
the right.  However, what is the value of s for the doublet function in Eq. 
9.115?  Recall that we showed in section 9.8.1 that the radius of the 
simulated cylinder is given by: 
 

2RUs
U
sR   

 

Thus, substituting 2RUs   for s into Eq. 9.115, we get: 
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 )(  (9.116) 

Expanding Eq. 9.116 in both r,  and x, y variables, we have: 
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We will only need to use the potential function in this and the following section, so we note that 
for the translating cylinder: 
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Using the Cauchy relations, we can derive the velocities in both cylindrical and Cartesian as: 
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and: 
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Examining the resultant flow field is quite interesting. Let's examine the simulated velocity at 
three different points: (1) the leading edge of the cylinder at (x,y) = (R,0),  
(2) the trailing edge of the cylinder at (x,y) = (-R,0), and (3) the top of the cylinder (x,y) = (0,R). 
 

Leading edge:    
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Trailing edge:   
  

  
U

0R

0RRUu 22

22





 ;     

 
0

0R
0RRU2v 22

2





  

 

Top of cylinder:    
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These results are shown graphically in figure 9.18. 
 
 
 
 
 

Figure 9.18 Velocity vectors at: (1) Leading edge, (2) Trailing edge, and (3) Top of a 
cylinder moving at velocity U left-to-right.  

 
At the three points shown in figure 9.18, the y-direction velocity is zero, so only the u-direction 
velocity is relevant.  Note that the velocity of the fluid at the leading and trailing edges of the 
cylinder are u = U, which is as expected, since the fluid velocity at the leading and trailing edge 
in a potential flow should be identical, and reflect the simulated velocity of the cylinder of U.  
However, at the top of the cylinder, the velocity of the fluid is u = - U --- exactly the opposite of 
the cylinder velocity.  Now consider that since the coordinates are fixed, these are the velocities 

R 
U U 

-U 

x 

y 
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that would be observed by a fixed observer as the cylinder traveled by.  Thus, a fixed observer 
would see a flow at the top of the cylinder in the negative x direction as the cylinder passed by. 
While this may seem strange, consider that for a fixed cylinder in a uniform flow of velocity U, 
the u velocity will increase from u = 0 at the leading edge to 2U at the top of the cylinder (in 
section 9.8.1 the velocity change was from 0 to -2U, because the flow was in the opposite 
direction).  Thus, one might expect a total change in the velocity from the leading edge to the top 
of the cylinder of U2u  , as our result shows. 

 
This backflow behavior is not just a manifestation of potential flows, but occurs to some extent 
in many real fluid flows.  For example, if you stand close to a passing large truck, train, or other 
vehicle (just not too close!) you will notice a flow of air in the opposite direction to that of the 
traveling vehicle.  Now, a real flow is not a potential flow, but it is similar from the leading edge 
to the thickest point, so the same basic behavior will occur (although somewhat diminished by 
viscous effects).   
 
Another example is an ocean wave---which can be roughly modeled as a translating half-
cylinder.  As a wave moves across the ocean on an otherwise still day, if you are floating on the 
ocean, you can feel a reversed flow of air as the wave passes by.  This is accentuated as the wave 
height increases.  Waves travel at velocities roughly proportional to the square root of their 
height, so a large wave moves faster than small waves.  Consequently, a large wave has a 
stronger back flow of air over its face.  On a calm day, if you watch a large wave just as it breaks 
upon approaching shore, you will see a spray of water blow backwards from the wave. This is 
again the result of a backflow of air created by the translating wave.  The following image shows 
this backwards spray over a breaking wave. 
 

 
 
This backflow of air over a wave is also put to good use by sea birds to aid in flight over water.  
Pelicans are the masters of harnessing these backflows of air over waves (they must have had 
good instruction in fluid mechanics). Next time you are at the seashore, and pelicans and modest 
size waves are present, notice that a pelican will often conserve energy by flying very close to 
the moving wave, and gliding along its face to take advantage of the backflow of air over the 
wave (as observed in the `picture above).  To see a video example of this pelican "wave" riding 
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behavior click this video link. It is really impressive how the pelicans swoop and soar, catching 
the updraft off of one incoming wave after another. They are the original "surfers." 
 

9.9.2 Pressure Field for a Translating Cylinder 
 
It would seem that the determination of the pressure field for a translating body in a potential 
flow would be fairly straight forward.  However, because the body is moving relative to the fixed 
reference frame, the calculation is a bit tricky. Recall from section 9.4 that the Bernoulli equation 
for an unsteady flow is given by Eq. 9.14 (neglecting the term for height changes, since we 
assume g is perpendicular to the flow) as: 
 

)(tC
t

V
2
1P 2 







, (9.14) 

 

Now, Eq. 9.14 assumes that the flow field is stationary relative to the reference coordinates.  
However, the function  in Eq. 9.117 for the translating cylinder is not stationary, but is 
translating at the cylinder velocity U.  Thus, while the flow field is fixed relative to the cylinder, 
it is translating at a velocity U with respect to the x-coordinate.  Consequently, while the flow 
field is fixed relative to the cylinder, it is moving relative to the fixed x-y reference frame.  What 
this means is that we must take into account the translation relative to the reference frame when 

determining the pressure behavior.  To do this requires that we determine 
t
 in a translating 

reference frame. Thus, we must take into account both the temporal and the advective changes in 
.  We do this be recalling that the substantial derivative gives the time changes for a property in 
a translating field.  We note that we can consider  as a flow field "property", since it is directly 
associated with the flow field (i.e. its derivatives define the flow field velocities). Thus, we 
realize we need to rewrite Eq. 9.14 as: 
 

P 1 D2V C t
2 Dt

( )
  


, (9.120) 

 

From Chapter 3, Eq. 3.17, we can write the substantial derivative of  as: 
 

tx
u

Dt
D

rel










  (9.121) 
 

Note that in Eq. 9.121 we only include the advective acceleration term for the translation of  in 
the x-direction, relu , since  does not translate relative to the y-coordinate.  However, what is 

relu ?  This is the velocity observed by the cylinder relative to the flow, which is relu = - U, since 
that is the velocity an observer in the cylinder would perceive relative to the coordinate system--
the fluid would appear to move toward the cylinder in a negative x direction as the cylinder 
moves left-to-right. 

https://video.search.yahoo.com/video/play;_ylt=A2KIo9iOf2xVQDIAzuEsnIlQ;_ylu=X3oDMTByYXI3cnIwBHNlYwNzcgRzbGsDdmlkBHZ0aWQDBGdwb3MDNA--?p=Pelicans+Gliding+Above+Waves&vid=ed3570e03354350bf82cc2ced9761034&turl=http%3A%2F%2Fts4.mm.bing.net%2Fth%3Fid%3DWN.4Ho849tdtiY4S1Whh%252bqUSw%26pid%3D15.1&rurl=http%3A%2F%2Fwww.dailymotion.com%2Fvideo%2Fxcalm7_sea-movies-pelicans_sport&tit=Sea+Movies+-+Pelicans&c=3&h=172&w=300&l=89&sigr=121fqsbl6&sigt=10li5qgrk&sigi=121gf48lg&age=1266608806&fr2=p%3As%2Cv%3Av&fr=yhs-mozilla-001&hsimp=yhs-001&hspart=mozilla&tt=b
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Still with me?  If the translation velocity U and  are steady (we'll consider the case where they 
are not steady in section 9.11), Eq. 9.121 reduces to: 
 

Uu
x

U
Dt
D







     since 
x

u



  (9.122) 

 

Now, substituting Eq. 9.122 back into Eq. 9.120, noting 222 vuV  , gives: 
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 (9.123) 

 

To determine C(t), we note that far upstream from the translating cylinder (x >> R), the flow will 

be quiescent and will have a pressure P
 = constant  where u = 0, v = 0.  Thus, C(t) =

P



.  

Substituting into 9.123, we do some rearranging, as shown: 
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 (9.124) 

 

Checking some selected points for the pressure reflected by Eq. 9.124, we showed above that u = 
U, v = 0 at the leading and trailing edges of the cylinder, (x.y) = (R,0) = (-R,0), and u = -U, v = 0 
at the top of the cylinder, (x,y) = (0,R). Checking the pressures predicted by Eq. 9.124, we have: 
 
Leading and Trailing edges: @ (x,y) = (R,0) and @ (x,y) = (-R,0), where u = U, v = 0: 
 

 
2 2LEP P1 1U U 0 U

2 2
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Top (and also the bottom) of cylinder: @ (x,y) = (0,R), where u = -U, v = 0: 
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Note that these values are identical to what we found for a flow around a stationary cylinder in 
section 9.8.1.  Thus, the pressure field around a translating cylinder is unchanged from that for a 
comparable flow around a stationary cylinder.  This will also be the case for any other simulated 
potential flow geometry translating through a quiescent potential fluid. 
 

9.10 Accelerating Bodies in a Potential Flow: Virtual/Added Mass  
 

 Now, consider what happens if we specify that the velocity of a simulated body varies with 
time, such that U(t).  As the body accelerates or decelerates, the adjacent fluid will also undergo 
a commensurate acceleration or deceleration as well. The acceleration/deceleration of the 
adjacent fluid requires an additional force above that required to accelerate/decelerate the body 
alone.  This additional force is reflected by a virtual or "added" mass of fluid proportional to the 
body displacement.  In this section, we will examine how a time-changing velocity impacts the 
pressure field on a body, and how that is reflected in the amount of virtual or added mass.  Note 
that fluid mechanics literature uses the terms virtual and added mass interchangeably.  To 
simplify our discussion, we will simply use the term added mass 

 

9.10.1 Acceleration of a Cylinder in a Quiescent Fluid 
 

We will again consider a translating cylinder as our example of a body translating in an inviscid 
fluid at a velocity U in the positive x-direction, but such that U is a function of time, U(t).  We 
can revisit Eq. 9.121, the substantial derivative of . 

 

tx
u

Dt
D

rel










  (9.121) 
 

In section 9.9.2, we showed that the advective part of Eq. 9.121 was uU
x

u rel 


 .  This 

advective component remains the same for a time-varying velocity.  And we can determine 
t


from our previous expression for , Eq. 9.117, as: 
 

  dt
dU

r
R

dt
dU

yx
xR

t

2

22

2







 cos     

 

Thus, Eq. 9.121 becomes: 
 

dt
dU

r
RuU

Dt
D 2


 cos  (9.125) 
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Substituting Eq. 9.125 into the unsteady Bernoulli equation, Eq. 9.120, and noting C(t) = 
P



, 

where P
  is the pressure in the quiescent fluid well-removed from the translating cylinder, we 

can rearrange the equation to give: 
 

 
2

2 2 2PP 1 1 R dUu U v U
2 2 r dt

      
 

cos  (9.126) 

 

Note that this is similar to Eq. 9.124, with the addition of the last term in Eq. 9.126, which is the 
additional momentum change due to the acceleration of the fluid surrounding the cylinder. If we 
examine the pressure at the leading and trailing edge for a cylinder 
accelerating linearly at  at1UtU 0 )( , where 0U  and a are constants, 
Eq. 9.126 gives: 
 

Leading edge:  @ (x,y) = (R,0), u = U, v = 0, and  = 0 
 

    
2 2LE

0
P P1 1U U 0 U R 0 U a

2 2
cos     

 
 

 

2LE
0

P P 1 U RU a
2

  
 

 

 

Trailing Edge:  @ (x,y) = (-R,0), u = U, v = 0, and  =  
 

    
2 2TE

0
P P1 1U U 0 U R U a

2 2
      

 
cos  

 

2TE
0

P P 1 U RU a
2

  
 

 

 

These results indicate that as the cylinder accelerates, the leading and trailing sides of the 
cylinder are subject to significantly different pressures.  This is a significant difference from the 
constant velocity situation we examined in section 9.9.2. For the accelerating cylinder, pressures 
will be higher on the leading surface, and lower on the trailing surface.  This pressure difference 
results in an additional force on the cylinder due to acceleration or deceleration of the fluid 
adjacent to, and moving with, the cylinder.  As we will show in the following section, this 
additional force can be modeled as an "added mass"--an equivalent amount of fluid mass that 
would have to be accelerated/decelerated to account for the force due to the unbalanced pressure 
difference over the cylinder surface. 
 
 
 

R U(t) 
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9.10.2 The Added Mass for an Accelerating Cylinder 
 

To determine the force required to accelerate a cylinder in a quiescent flow, we note that this will 
just be the drag force, acting in the x-direction on the cylinder.  We can determine this force by 
integrating the pressure field, similar to what was done in section 9.8.1. Thus, the drag force will 
be given by: 
  

  xx PAdFDrag  (9.127) 

Where, 
 

  sinˆcosˆˆˆˆ jiRdiRdjdAidAAd ryx


  

Thus,  xdA Rd cos    is the differential area projection  

in the x-direction.  From Eq. 9.126, we have the pressure  
of the surface as: 
 

 
2 22

r R r R r R

1 1 1 dUP P U u U v R
2 2 2 dt  

         cos  (9.128) 
 

Now, we can most easily perform the integration along the surface of the cylinder  
(r = R, 0 <  < 2) in cylindrical coordinates.  To do perform this integration, we must express the 
x and y-direction velocities in cylindrical coordinates.  Using our expressions for u and v from 
Eq. 9.119, and noting that on the cylinder surface that x = Rcos, and y = Rsin, we can write u 
and v as: 
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sincos  (9.129a) 

 

 









2UU2

R
RU2

yx
xyRU2v 4

4

222

2

Rr
sinsincossincos  (9.129b) 

 

Now, substituting Eqs.9.129 into Eq. 9.128, we get (using a few trigonometric identities along 
the way): 
 

 2 2 2 2 2
r R

1 1 1 dUP P U U 2 2 2 1 U 2 R
2 2 2 dt

cos cos sin cos


            

 2 21 dUP U U 1 2 R
2 dt

cos cos


         

 2 2 21 dUP U 2 U R
2 dt

sin cos


         

 2 21 dUP U 1 4 R
2 dt

sin cos


        (9.130) 
 

 
 

x 

y 

riRdAd ˆ




Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 9 

 301 

Finally substituting Eq. 9.130 into the drag equation, Eq, 9.127, and integrating from  = 0 to :  
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dt
dUR

dt
dURDrag 22   (9.131) 

  

Notice that the first two terms in Eq. 9.131 are identical to those in the drag calculation in section 
9.8.1 for flow around a stationary cylinder, and satisfy d'Alembert's paradox.  However, the last 
term in Eq. 9.131, that is associated with the acceleration of the cylinder, does not equate to zero, 
and is proportional to the mass of fluid displaced by the cylinder (per unit depth).  Notice also 
that the Drag force is negative, indicating that it is acting in opposition to the direction of 

acceleration (negative if 0
dt
dU

 , and positive if )0
dt
dU

 . Thus, 2
added Rm   is the mass of 

fluid per unit depth whose acceleration must be accounted for when the cylinder is accelerated.  
Note that if the cylinder is much denser than the fluid (e.g. a metal rod in air), the added mass 
has little effect.  However, if the mass of the fluid is heavier, or comparable to the mass of the 
cylinder, the added mass can have a significant impact (e.g. a wooden rod being moved through 
water). 
 
The added mass for the cylinder is equivalent to the mass of fluid displaced by the cylinder.  One 
might be tempted to think that all other bodies would have added masses equivalent to the mass 
of the fluid displaced by the body.  However, that is not the case.  For example, the added mass 

for a sphere is equivalent to ½ the displaced fluid (i.e. 3
added R

3
2m  ).  And the added mass 

for a square rod of sides w is roughly 2
added w171m  . , or 1.17 times the displaced mass.  A 

good table of added mass values for a number of geometries can be found in a Naval report by 
C.E. Brennen (1982), available electronically through the Caltech library.  Note that added mass 
is quite relevant to the U.S. Navy, and others who make use of ship and boat transport, since the 
mass of a ship and the water it sails in are closely equivalent, and thus added mass significantly 
influences the forces on a ship during acceleration/deceleration, and changes of direction. 
 
Note that we have only considered added mass in one dimension.  In reality, translating 
geometries can experience added mass effects in multiple directions, which can make the issue 

http://authors.library.caltech.edu/233/
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quite complicated.  Brennen's report touches on a number of the issues of added mass associated 
with multiple motions of a body. 
 
The present section has considered the effects of added mass for inviscid flows.  However, real 
flows are viscous, and bodies experience drag forces due to viscosity.  Moreover, it would seem 
logical that the acceleration of bodies in a viscous flow should also experience some form of 
added mass as well. That is the case, and we will discuss how we deal with added mass in real, 
viscous flows when we examine flow separation and drag in Chapter 15. 

 
 
 
 
 

Study Problems 
 

1. The stream function for an inviscid flow is given by   tytxV)t,y,x( 0  , where Vo = 1.   
 

a) Show that  represents a potential flow solution. 
b) Determine the corresponding form of (x, y, t) [note: let  = 0 at x,y = 0,0].  
c) Employ  to help determine a general expression for the pressure difference, P2-P1, 

between any two points in the flow field, (x1, y1) and (x2, y2).   
d) Determine the non-dimensional pressure difference (P2-P1)/Vo

2  between: 
 Case #1: (x1, y1) = (0, 0) and (x2, y2) = (1, 0); and 
 Case #2: (x1, y1) = (0,0) and (x2, y2) = (0,1). 
e) Plot (P2-P1)/Vo

2  vs. t for both cases on the same graph for 0 < t < 2.   
f)  Plot the streamline and the potential lines passing through (x, y) = (1,1) at times t=0 and 

t = 1 (plot each time on separate graphs); plot over the region 0 < x < 2 and  
0 < y < 2.   What is characteristic about the behavior of the streamline and potential lines 
in these two graphs? 

 
2. The stream function for an inviscid flow is given by   tytxV)t,y,x( 0  , where Vo = 1.   
 

a) Show that  represents a potential flow solution. 
b) Determine the corresponding form of (x, y, t) [note: let  = 0 at x,y = 0,0].  
c) Employ  to help determine a general expression for the pressure difference, P2-P1, 

between any two points in the flow field, (x1, y1) and (x2, y2).   
d) Determine the non-dimensional pressure difference (P2-P1)/Vo

2  between: 
 Case #1: (x1, y1) = (0, 0) and (x2, y2) = (1, 0); and 
 Case #2: (x1, y1) = (0,0) and (x2, y2) = (0,1). 
f) Plot (P2-P1)/Vo

2  vs. t for both cases on the same graph for 0 < t < 2.   
g)   Plot the streamline and the potential lines passing through (x, y) = (1,1) at times t=0 and 

t = 1 (plot each time on separate graphs); plot over the region 0 < x < 2 and  
0 < y < 2.   What is characteristic about the behavior of the streamline and potential lines 
in these two graphs? 

 

http://authors.library.caltech.edu/233/


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 9 

 303 

3.  In the section 9.8.1 example, it was shown that one could represent the flow around a cylinder 
by superposition of a uniform flow and a doublet, to give the complex potential function as:  

 

  
z
sUz)z(      

    

Here the uniform velocity approaches from the left, where x < 0.  The stream function in 
Cartesian variables is: 

 

  
 











 22 yx

sUy  

 

Assume a doublet strength s = U, and:  
 

a. Determine the velocity field components u and v for this stream function in terms of x 
and y: 

b.  Determine the pressure coefficient 2
2
1p U

PPC



   as a function of x, y variables (don't 

try to simplify—it's messy).   
c.   Simplify your expression for Cp to give  xfCp   along the  = 0 streamline (y=0), for 

x < -R (the stagnation point of the cylinder).  
d.  Using your result from part c, determine the non-dimensional pressure gradient 

coefficient,  xf
U

dx
dP

dx
dC

2
2
1

p



  along the  = 0 streamline (y = 0), for x < -R (the 

stagnation point of the cylinder). 
e.  On one graph, plot u/U, Cp, and dCp/dx vs. x along the  = 0 streamline (y=0), for  

-4R < x < -R (use Eq. 9.53 to establish the value of R). 
 
 
4.  The flow field near a tornado can be approximated as the superposition of a sink and a 

irrotational vortex, with the steam function given by: 
 

r
22

Q ln






  

 

For Q = -2 and  = 2, determine the velocities in both radial and Cartesian coordinates, and an 
expression for the pressure, where P = Patm for r  .  Create a plot of the streamlines that pass 
through (x,y) = (2,0), (0,2), (-2,0), and (0,-2).  Show the streamlines in the region 
 -2 < x < 2, -2 < y < 2.   
 
Is this a realistic approximation as r  0?  Justify your answer. 
 
 

5.  A point vortex with circulation strength  = +A is located at x = 0, y = 1; a similar point vortex 
with  = -A is located at x = 0, y = -1.  Determine the velocity field V  uˆ i + v̂  j  and the 

pressure coefficient Cp along the x-axis, where 
2

2
1

p
A
pC













 .   

Plot Cp for y = 0, -3 < x < 3.   Let p = 0 at x = 0, y = 0.   
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6.  Uniform flow U approaching from the left encounters a sink of strength Q = - A, located at x,y = 
0,0.  This roughly approximates the behavior of a flow approaching a drain.  The complex 

potential function for this superposition is given by   z
2
AUzz ln


 .   

 
 

 
 
 
 
 
 
Determine the following: 

 

a)  The stream function, , in terms of both r,  and x, y; 
b) The velocities u and v in terms of x, y, and r, ; 
c) The location of a stagnation point in the flow, if there is one; 
 

Now, let U = 1 and A = 1 and make a nice engineering graph of: 
 

d)  The streamlines  = 0, -0.05, and -0.30 all on one graph.  Show all streamlines for the 
region -0.6 < x < 0.3 and 0 < y < 0.6 only.  Note:  to plot each streamline, you will have 
to determine r = f(), calculate r for a series of  values, then determine the 
corresponding series of x and y locations. 

 
 

7 .   Consider a vertical wall with an impinging jet, as modeled by the complex potential function 
(z) = (A/2)z2, with A = -2 (flow right-to-left).  Determine the following, considering all 
quantities dimensionless (simplify all answers): 

 

a) Expressions for the stream function  in terms of both x, y and r,; 
b) The velocity components vx, vy (in x, y) and vr, v (in r,); 
c) The location of the stagnation point for x  0, and the value of  which passes through 

this stagnation point; 
d) An expression for P-Ps as a function of r,, where Ps is the stagnation pressure (let the 

fluid density be  =2); 

Plot the following: 

e) Graphs on x, y axes of: 
i) Streamlines  = 0 and -2 for the region 3 > x > 0 and 3 > y > 0; 
ii) The pressure P-Ps and the pressure gradient dP/dx along y = 0, 3 > x > 0; 
iii) A line of constant pressure p-ps= -16 for x > 0. 

 
8. Consider a vertical wall with an impinging jet, as modeled by the complex potential function 

(z) = (A/2)z2, with A= -2 (flow right-to-left) [problem 7, above].  Now, a source of strength Q 
= 4 is located at the origin (x, y = 0, 0).  Use superposition to simulate the effect of the source 
on the vertical wall with an impinging jet modeled in problem 7 above.  For this modified flow, 
specify the appropriate complex potential function and determine the following:  

 

a) Expressions for the stream function  in terms of both x, y and r,; 
b) The velocity components vx, vy (in x, y) and vr, v (in r,); 

Q < 0 

y 

x 

Uniform 
Flow 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 9 

 305 

c) The location of the stagnation point for x  0, and the value of  which passes through 
this stagnation point; 

d) An expression for P-Ps as a function of r,, where Ps is the stagnation pressure (let the 
fluid density be  = 2); 

 

Plot the following: 

e) Graphs on x, y axes of: 
i) Streamlines  = 0 and -2 for the region 3 > x > 0 and 3 > y > 0; 
ii) The pressure P-Ps and the pressure gradient dP/dx along y = 0, 3 > x > 0; 
iii) A line of constant pressure P-Ps = -16 for x > 0; 
 
 

9 .   Consider a flow over a 90° step (a convex, 270° corner), as modeled by the complex potential 

function   3
2

z
2
A3z  , with A = -2 (flow right-to-left).   

 
 
 

 
 
 
Determine the following, considering all quantities dimensionless (simplify all answers): 

 

a) An expressions for the stream function  in terms of r,; 
b)   Expressions for the Cartesian velocities u and v in terms of r,; 
c)  An expression for P-P in terms of r,, where P is where r  ; 

 

Now, Create nice engineering graphs of: 

d)  The streamlines  = 0, -1, and -2 all on one graph.  Show all streamlines for x < 10 and 
y > -10 only.  Note:  to plot each streamline, you will have to determine r = f(), 
calculate r for a series of  values, then determine the corresponding series of x and y 
locations. 

e)  A plot of P-P vs. x along the streamline  = 0 from x = 10 to x = 0.2.  Why wouldn't 
you plot the pressure at x = 0? 
 
 

10. Consider a circular cylinder of radius 1 meter and density of 500 kg/m3, which is moved back 
and forth within a vat of inviscid water ( = 1000 kg/m3) at a velocity U = U0sin(t), where U0 = 
2 m/s and  = /2 s-1.  Determine or show the following: 

 

a) An expression for the displacement (in m) of the cylinder (call it x) as a function of time 
[let x = 0 at t = 1]. 

b) An expression for the pressure difference ( in N/m2)between the leading and trailing 
edge of the cylinder (Ple - Pte)as a function of time. 

c) The force (per unit length of cylinder, in N/m) as a function of time that must be applied 
to the cylinder to maintain the velocity [hint: you must include both the cylinder mass 
and the added mass in the calculation]. 

d) Three separate graphs on one sheet of: (1) the cylinder displacement, x, (2) (Ple - Pte), 
and (3) force, all for 0 < t < 4. 

y 

x 

Convex, 270 Corner (n=2/3) 

Note:  A < 0, as shown 
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11. Consider a circular cylinder of radius 1 meter and density of 1000 kg/m3, which is moved back 
and forth within a vat of inviscid water ( = 1000 kg/m3) by a time-dependent force (per unit 
length of cylinder)  F = F0sin(t), where F0 = 10,000 N/m and  = /2 s-1.  Determine or show 
the following: 

 
a) An expression for the velocity (in m/s) of the cylinder as a function of time [let U = 0 at 

t = 1]. 
b) An expression for the displacement (in m) of the cylinder (call it x) as a function of time 

[let x = 0 at t = 0]. 
c) An expression for the pressure difference ( in N/m2)between the leading and trailing 

edge of the cylinder (Ple - Pte)as a function of time. 
d) Three separate graphs on one sheet of: (1) the cylinder displacement, velocity, U, (2) 

displacement, x, and (3) (Ple - Pte), all for 0 < t < 4. 
 
 

12. A marble of density 2.5 gm/cm3 is dropped into a vat of inviscid fluid the density of water, 1 

gm/cm3.  If gravity is constant at 2

mg 9 81
s

.  (acting downward), what is the acceleration of the 

marble as it descends in the inviscid fluid?  Take into account the buoyancy of the fluid, and the 

added mass of a sphere, 3
added R

3
2m  .  If the initial height and velocity of the marble are 

zero, how much less would it descend (in meters) in 3 seconds due to the added mass? 
 
 
13. A six cm diameter wooden rod (density of 0.5 gm/cm3) accelerates perpendicular to its length 

(sort of like rowing with the rod) through an inviscid fluid of density 2 gm/cm3.  A one-meter 
length of the rod is submerged in the fluid. If a constant force of 10 N is applied normal to the 
rod’s length, what will be the rod’s velocity after 4 seconds?  How far will the rod travel after 4 
seconds?  Assume U = 0 and x = 0 at t = 0. 

 
 
14. A six cm diameter wooden rod (density of 0.5 gm/cm3) accelerates perpendicular to its length 

(sort of like rowing with the rod) through an inviscid fluid of density 1 gm/cm3.  A one-meter 
length of the rod is submerged in the fluid. If the rod is accelerated at 1 m/s2, determine the force 
applied normal to the rod’s length.  

 
 What will be force on the rod after 1 second?  What is the force at 4 seconds?  What amount of 

the calculated force is due to the added mass? 
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Chapter 10 
 

Changes in Circulation and Kelvin’s Theorem 

Contents 
 
10.1  Circulation Changes for a Translating Fluid Region  ..................................................... 309 
 
10.2  Examples of Regions Showing Temporal Changes in Circulation  ................................. 312 
 10.2.1  Diffusion of a Viscous Vortex  .......................................................................... 312 
 10.2.2  Regions of Baroclinic Density Variations ........................................................... 314 
 10.2.3  Baroclinic Variations in the Atmosphere  .......................................................... 314 
 10.2.4  Baroclinic Variations Due to Local Heating ....................................................... 317 
 10.2.5  Baroclinic Variations Due to Density Stratification  ........................................... 319 

 
10.3  Kelvin's Theorem for a Translating Fluid Region  ......................................................... 321 
 10.3.1  Examples of Circulation Preserving Flows  ........................................................ 322 

 
10.4  Helmholtz's Theorems for Inviscid Flow  ..................................................................... 325 

 
 
As we showed in Chapter 8, the circulation of a region of fluid reflects the summation of the 
vorticity over the area of the region, which can be shown by Stoke’s Theorem to be equivalent to 
the integration of the tangential velocity around the bounding circuit of the region.  Since both 
vorticity and circulation are functions of the velocity field (i.e. a property field), they are also 
properties of the flow field, and are subject to changes as they move within the flow field.  The 
respective changes of circulation and vorticity due to transport through the flow field can 
accordingly be assessed by applying the substantial derivative to each property, and then use our 
previously-derived equations of momentum (i.e. Navier-Stokes) and continuity to assist in 
simplifying the resulting expressions.  In this chapter, we address the temporal changes in 
circulation that take place for an initial vorticity-bearing quantity of fluid, such as a decaying 
vortex, as the fluid moves within a flow field.  In the following Chapter 11, we will develop the 
vorticity transport equation, which models how vorticity can change within a flow field, and 
explore the different types of behavior that cause such changes in vorticity. 
 
As we show in section 10.3, the additional assumption of inviscid flow for a flow with 
circulation gives rise to what is known as Kelvin’s Theorem.  This theorem, derived initially by 
Lord Kelvin in the 1800’s, states that for an inviscid fluid the circulation of an initial quantity of 
fluid will not change with time. Although limited in application, since real fluids are viscous, 
Kelvin's theorem allows us to consider the limiting behavior of a fluid due to changes in 
circulation. 
 
 

http://en.wikipedia.org/wiki/Stokes%27_theorem
http://en.wikipedia.org/wiki/Kelvin%27s_circulation_theorem
http://en.wikipedia.org/wiki/Lord_Kelvin
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10.1 Circulation Changes for a Translating Fluid Region 
 

Consider the circulation for a region of fluid bounded by a contiguous circuit (any closed path 
that starts and ends at the same point within a fluid, like a circle).  At any instant, from the 
development of the concept of circulation in Chapter 8, we know that the circulation within that 
circuit is given using Stokes theorem as:    
 

  

  sdV 
 (10.1) 

 
 

However, what happens to the circulation within this initial region of fluid as time progresses?  
Is there a temporal change in  as the fluid particles comprising the original fluid region move 
within the fluid?  To examine this, we take the substantial derivative of Eq. 10.1 (in Cartesian 
coordinates), which yields: 
 

 
 )wdzvdyudx(

Dt
DsdV

Dt
D

Dt
D 

      where  k̂dzĵdyîdxsd 
  (10.2) 

 

In Eq. 10.2 we assume we can follow the original bounded region of fluid, such that the initial 
mass of fluid within the region remains constant (although the shape of the bounding circuit and 
the properties within the circuit can change).  Recall that Leibniz’s rule states that if the limits of 
integration are not a function of time [ )t(f ], then the derivative can be performed inside the 
integral.  In the present case, we assume that our initial region of fluid is constant (i.e. of fixed 
volume), although the boundary of the volume can vary.   However, since the volume of material 
does not change, this implies the limits of integration also do not change.  Thus, by Leibniz's rule 
we can move the substantial derivative inside the integral, such that we perform the substantial 
derivative on the integrand of Eq. 10.2, which allows us to write Eq. 10.2 as:  

 

 
 )( wdzvdyudx

Dt
D

Dt
D     (10.3)    

  

To assess the circuit integral of Eq. 10.3, we will examine one element of the integrand, and 
extrapolate the resulting behavior to the other two elements.  So, expanding the substantial 
derivative of the first term of the integrand in Eq. 10.3 (the x-direction component), we obtain: 
 

 
Dt
dxDu

Dt
Dudx

Dt
udxD


)(   

 

 2
2
1 ud

Dt
Dudxudu

Dt
Dudx

Dt
udxD


)(  (10.4) 

 

du 

C V



Ad


sd  

A’ B’ 
A 
 

B dx 
dx' 
 

duuu
dt

dxdx



'

'

Note that  
Dt
dxD  is 

the rate of change of 
the projection of dx, 
which is simply du, 
the change in the x-
direction velocity, du. 

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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In Eq. 10.4, similar to what we showed in section 3.3, the substantial derivative of the 
differential change in the x-direction (dx) is simply the differential of the x-direction velocity 
(du).   
  
We know from the x-direction component of the Navier-Stokes equation (Eqs. 5.44 and 5.46a) 
that: 
  

u
x
P1

Dt
Du 2

x 





   (10.5) 

 

Substituting 
Dt
Du from Eq. 10.5 into Eq. 10.4, we get:  

 

)()( 22
x ud

2
1dxu

x
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Dt
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  (10.6a) 

 

Similarly, the other components of the integrand in Eq. 10.3 become: 
 

)()( 22
y vd

2
1dyv

y
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Dt
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  (10.6b) 

 

)()( 22
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Substituting Eqs. 10.6 into Eq. 10.3 and collecting terms gives: 
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 (10.7) 

 
 
 

After identification of the collected terms, as indicated in Eq. 10.7, as the total differentials of 
pressure, body force, and V2, the time change in circulation can be separated into three parts as:  
  

 2 2D dP 1d dV V ds
Dt 2
  
        

  
    (10.8) 

 
 = 0, if d  is a conservative body force  
 

dP d 

sdV2 
 V2 
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If we assume conservative body forces (e.g. a gravitational field), the second circuit integral in 
Eq. 10.8 will not depend upon the path of integration.  Thus, the result of the second circuit 
integral in Eq. 10.8 must be zero, which reduces Eq. 10.8 to: 
 

  



 sdVdP

Dt
D 2 

 (10.9) 

 
 = 0 if  = f (P) 
 

In Eq. 10.9, the rate of change of the circulation now depends on the variation of fluid density 
and the viscosity.  If the density of the fluid is only a function of pressure [ i.e.  that  = f (P) ], 
the fluid is termed a barotropic fluid, within which lines of constant pressure (i.e. isobars) are 
parallel, or aligned, with lines of constant density (i.e. isopycnals).  If    f (P), the fluid is 
termed a baroclinic fluid, which means that the isopycnals within the fluid are misaligned with 
the isobars [e.g. this often occurs when there are significant thermal variations within the fluid]. 
So, if a fluid is barotropic, which is true for most single, isothermal fluids in a gravity field, then 

the integral  

dP  is also not dependent upon the path of integration, and also becomes zero, such 

that Eq. 10.9 reduces to: 
 

  
 sdV

Dt
D 2 

 (10.10) 
 

Equation 10.10 is generally applicable for any Newtonian fluid that is barotropic and has a body 
force due only to gravitation.  This is the most general equation for temporal changes in 
circulation for a defined region of fluid moving within a broader flow field, and indicates that 
changes in circulation for such a fluid are due to the viscous behavior of the fluid.  There are a 
number of practical flows that satisfy this situation, particularly single, isothermal, 
incompressible liquids, and polytropic gases [i.e. for which constantPPv nn   ].  However, 
for fluids where density variations exist due to dissimilar fluids or when   f (P), we then have 

 


0dP  [more on this in section 10.2.2].  For fluids with significant thermal or salinity 

variations, such as density stratifications within the atmosphere or the ocean, changes in the 
circulation of a defined material region can and will take place, as we will discuss in section 
10.2.2.  
 
Basically, circulation of an initial amount of advecting fluid can only change due to: 
  

1)  Viscous effects (e.g. real flows near surfaces), or  
2)  Changes in density that are not direct functions of pressure changes, )(P , 
3)  Non-conservative body forces. 

http://en.wikipedia.org/wiki/Conservative_force
http://en.wikipedia.org/wiki/Barotropic_fluid
http://en.wikipedia.org/wiki/Isopycnal
http://en.wikipedia.org/wiki/Baroclinic
http://en.wikipedia.org/wiki/Polytropic_process
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Generally, since the body force for most practical flows is due to gravity, circulation changes in 
real fluids will generally only occur due to: (1) viscous effects, and (2) density variations. 
 
10.2 Examples of Regions Displaying Temporal Changes in Circulation 
 

10.2.1 Diffusion of a Viscous Vortex 
 

Consider a symmetric, viscous vortex, with its vorticity initially concentrated within a region of 
fluid of radius, R, as shown schematically in figure 10.1.  We will assume the vortex to be 
stationary relative to the center of rotation, and to have only an azimuthal velocity (i.e. v).  Here, 
the effects of viscosity will cause the vorticity within the initial region of fluid to diffuse radially 
outward, and eventually migrate across the boundaries (r = R) of the fluid region.  When the 
vorticity diffuses across the fluid boundary, there will be a corresponding loss of vorticity from 
the originally defined region of fluid (Area = R2), and thus a loss of circulation from the region. 
 
 
 
 
 
 
 
 

Figure 10.1 Example of the temporal diffusion of vorticity outward from an initial point 
vortex due to viscosity. 

 
If the vorticity within the vortex is all concentrated into a small region such that, rvortex << R, then 
the viscous vortex will initially be enclosed within the bounded region and   will initially 
remain constant within the region r  R.  Changes will only occur when the vorticity eventually 
diffuses outward to and across the boundaries of the original region, R.  However, given enough 
time, all of the vorticity will diffuse outward and across the larger bounding region, r = R.  At 

that extended point in time (t  ), 0
Dt
D


 , and = 0, since all of the vorticity will have 

diffused out of the bounded region, assuming that R is finite. 
 
As a further example, consider an initially rotating viscous fluid inside a circular container with 
solid boundaries at r = R, as illustrated in Figure 10.2.  One might think of this type of rotating 
flow as similar to that created within a cup of coffee or tea by the vigorous stirring of the fluid.  
Since the no slip condition applies at the outer solid boundary, that means that the circulation 

R 

V(r) 

r Vorticity diffuses 
outward by viscosity.  
No radial velocity  

0
dt
d


Fluid circuit, across which 
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within the confined fluid is zero, since v = 0 at the boundary, which gives the circulation as 

0sdVtotal  


. 

 
 
 
 
 
 
 
 
 

Figure 10.2 The circulation behavior of a viscous fluid contained within a circular container. 
 
This lack of circulation and the zero velocity at the container boundary means that the total 
circulation within the container can never change, and that total = 0 for all time.  Since this 
situation clearly involves a viscous flow, with plenty of initial vorticity, how is that possible?  
The key here is to recognize that such a flow contains equal amounts of positive and negative 
vorticity within the region r  R, and that these vorticity components diffuse and decay in such a 
way as to effectively cancel each other at all times.  In essence, if we envision the circulation 
within the bounded region as the sum of:  (1) the circulation associated with all elements of fluid 
with positive vorticity, positive, and (2) the circulation associated with all elements of fluid with 
negative vorticity, negative, then for any instant of time: 
 

total postive negative
all fluid
in region

dA 0        (10.11) 

 

Where  postive positive
all positive
vorticity fluid

dA    (10.12a) 

 

and,      negative negative
all negative
vorticity fluid

dA    (10.12b) 

From Eq. 10.11 we note that:  
 

positive = - negative (10.13) 
 

This implies positive > 0 and negative < 0, such that positive and negative always effectively offset 
each other, yielding a net circulation of zero.  Initially, for our stirred coffee or tea, these values 
of  positive and negative can be substantial.  From consideration of Eq. 10.13 and Eqs. 10.12, we 
can infer that 0positive   and 0negaitive  , and that these initial vorticities can also be substantial.  

However, after an extended period, we know that the fluid within the cup will come to rest due to 

positive 

negative 
total = 0 

Velocity 
profile 

Stationary 
container 

(e.g. coffee cup) 

R 
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viscous effects, such that the velocity and vorticity within the cup will be zero everywhere.  
When the fluid is at rest, all the vorticity must have been dissipated, such that positive = negative= 
0.  What can be inferred from this assessment is that the initial distributions of positive and 
negative vorticity within the cup must cross-diffuse in such a manner as to continually cancel 
each other, eventually resulting in the dissipation of all the vorticity of both signs, as the fluid is 
brought to rest.  We will revisit this question of cross-diffusion of vorticity in Chapter 11, as well 
as to examine how vorticity is initially created within such flows.  

 
10.2.2 Regions of Baroclinic Density Variations 

 
In Section 10.1 we discussed how circulation can change due to density variations.  Assume for 
illustration that we have an inviscid fluid with conservative body forces.  This would reduce Eq. 
10.9 to: 
 

 


 dP
Dt
D  (10.14) 

 

As we discussed previously, if  = f (P), or conversely P = f (), the result is that the circuit 
integral in Eq. 10.14 is independent of the path of integration, and will equal zero.  These types 
of flows, as we discussed, are termed barotropic, which means is that lines of constant pressure 
(i.e. isobars) and lines of constant density (i.e. isopycnals) are parallel, or aligned. We can 
describe this process mathematically as 0P  , which means that the gradients of the 
density and pressure are aligned. An example of such a fluid would be an isothermal body of 
water, or a uniformly compressible gas.  Note that isobaric behavior is not necessarily 
constrained to isothermal flows, since it could also exist if the isotherms (i.e. lines of constant 
temperature) in the fluid are also parallel the isobars and isopycnals [often a difficult situation to 
achieve].   
 
However, when the isobars and isopycnals do not align with each other, such as when there are 
lateral variations in temperature, then 0dP




  , and a change in circulation will result.  A flow 

where the isobars and isopycnals do not align is termed baroclinic.  Examples of baroclinic flows 
include circulation induced by density stratifications within the world’s oceans or atmosphere, 
where thermal gradients created by solar heating of the ocean/land can result in the generation of 
winds within the atmosphere or water currents in the ocean (salinity gradients within the ocean 
can also cause this). This is also the case for forest fires. 
 

10.2.3 Baroclinic Variations in the Atmosphere 
 
One of the more instructive examples of the generation of circulation by density variations is 
what is known as the sea breeze problem (Green 1995).  Consider a simplified model of the 

http://en.wikipedia.org/wiki/Sea_breeze
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density variations in a coastal air layer spanning a region comprised of: (1) the sea, and (2) the 
land bordering the sea, as shown in Figure 10.3. 
 

  
Figure 10.3 Modeling of the sea breeze problem.  
 Solid lines (       ) = isobars. Dotted lines (       ) = isopycnals. 

 
Here we assume a time during mid-day, when solar radiation has had appreciable time to act 
upon both the land and the sea.  Since land will warm more quickly than water, due to better 
solar absorption, a significant temperature difference will develop between the land and the sea.  
Consequently, the air over the sea will be cooler, and thus of higher density, whereas the air over 
the land will be warmer, and thus less dense.  As this density variation within the air layer 
develops, the isopycnals (lines of constant density), will become sloped relative to the earth, and 
thus misaligned with the lines of constant pressure (we assume the isobars are parallel the earth), 
as modeled in Figure 10.3 (a).  To make the calculation of circulation simpler, we will simplify 
the model even more, by assuming the isopycnals to be perpendicular to the isobars, as shown in 
Figure 10.3 (b).  While this is an extreme situation, it is easy to perform the integration, and is 
still a reasonable, although extreme, model of the process. 
 
Employing our simplified model, we now consider the circulation for a region one kilometer 
high by 20 kilometers wide, stretching equally from the land to sea, as shown in Figure 10.4. 
 
 
 
 
 
 
 
 
 
 

Figure 10.4 Atmospheric circulation for a region 20 km wide by 1 km high 
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Using Eq. 10.14, the change in circulation for the defined circulation loop can be calculated by 
integrating segmentally around the circuit shown in figure 10.4, starting at point A, as follows: 
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 (10.15) 

 

Note that by assuming that the isopycnals are perpendicular to the isobars, only the integration of 
pressure in the vertical direction contributes to the change in circulation, since the pressure is 
assumed to not change laterally.  If we now assume a 5 C difference in the air temperature, from 
20 C (sea) to 25 C (land), this reflects air densities of approximately S = 1.205 kg/m3, and L = 
1.185 kg/m3.  We also assume Po-Ph  11 kPa, roughly the vertical atmospheric pressure change 
over one kilometer, assuming a constant temperature. 
 
Thus, Eq. 10.15 becomes: 
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 (10.16) 

 

If we assume the average tangential velocity at the periphery of the defined circulation region is 
V, then the circulation for that region is approximated as:  Lh2VxdsV   .  Now, 

assuming that 
Dt
D  is relatively constant over a period of time, we can approximate: 

 

 Lh2Vxt
Dt
Ddt

Dt
D

0t

t

0







  (10.17) 

 

Here we assume initially quiescent conditions, with Vinitial = 0, and thus 00  . Solving Eq. 
10.17 for the velocity, and substituting from Eq. 10.16, we can determine the wind velocity after 
one hour under these baroclinic conditions: 
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This is roughly 30 miles per hour!   Since this value is negative, this implies that the velocity 
must move in opposition to the presumed counter-clockwise rotation (right-hand rule) for 
circulation.  Accordingly, this means that the airflow would be toward the land at lower 
elevations, and toward the ocean at higher elevations.  This would typically be what is known as 
an “on shore” wind, due to the warming of the air over land during the day.  In the evening, since 
the land cools faster than the sea, the air over the land will cool more quickly, resulting in a 
reversal of the flow, with flows from the land to the sea at lower elevations, in what is termed an 
“off shore” wind. 
 
Obviously, the assumed skewing of the density isopycnals is extreme, and would be much less 
severe.   Also, for a real atmospheric flow, viscosity will mediate the wind effects.  However, 
this example should make clear the importance of baroclinicity in generating circulation, and 
thus vorticity.  These thermally-induced variations in atmospheric density [along with Coriolis 
effects] basically control the world’s wind and weather patterns, including the generation of 
ocean waves, which are the result of prolonged wind interactions with the ocean surface. 
 

10.2.4 Baroclinic Variations Due to Local Heating 
 
Other examples of baroclinic generation of circulation are natural convection due to a heated 
vertical surface or air currents generated by a flame.  In the case of a heated vertical plate, the 
isobars will be horizontal, but the isopycnals are essentially vertical—almost identical to the 
model we employed for the sea breeze problem (see study problem #6).  The situation with a 
flame (let’s assume a candle) is also similar.  Figure 10.5 illustrates (roughly), the velocity field 
associated with a flame.  Here, we assume that the flow field is two-dimensional, but similar 
conclusions can be drawn for an axisymmetric flame.  Note that we assume that the air adjacent 
to the flame is quiescent before the candle is lit, and thus has no circulation and no vorticity.  
However, after the candle is lit, both the air that undergoes the combustion process, and the air in 
proximity to the flame, become less dense, and circulation is generated. 
 
 
 
 
 
 
 
   
 

Figure 10.5 Generation of circulation by a flame. 
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After flame       0 
 Flame 

R < 0 L > 0 

http://en.wikipedia.org/wiki/Wind_wave
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This generation of circulation is also indicative of the accompanying generation of vorticity.  
However, the flow field in Figure 10.5 illustrates that the circulation for the region to the right of 
the flame, R, is less than zero because the vorticity generated would have a clockwise rotation 
(for this figure, the right-hand rule assigns counter-clockwise rotation as positive). However, the 
circulation for the region to the left of the flame, L, is greater than zero because the vorticity 
generated would have a counter-clockwise rotation.  Further note that the total circulation will be 
the sum of both regions, i.e. total = L+R.  If the flow is symmetric, it is obvious that L = -R, 
and total = 0!  This is an interesting revelation, but clearly explainable.  Although the flame will 
generate significant vorticity, it will generate equal amounts of both positive and negative 
vorticity, such that the cumulative positive vorticity (if one considers a large enough region 
surrounding the flame) will directly offset the cumulative negative vorticity.  This is not 
dissimilar from the processes discussed in section 10.2.1 regarding the effects of viscosity in 
dissipating the vorticity within a contained, viscous fluid.   
 

As a further extension of this example, consider a candle burning in air as a viscous fluid within 

a closed room.   Here the equation that applies is:    



 sdVdP

Dt
D 2 

, since we must 

consider both baroclinic effects and viscous effects impacting the generation of circulation.  
However, if we note that 0sdVtotal  


, since the boundaries of the room will be stationary, 

then the change in circulation within the room, 0
Dt
D

room 
 , since the circulation within the 

room can’t change due to the no slip condition.  Thus, the effects of vorticity generation by the 
flame due to baroclinicity, must either be: (1) balanced, due to symmetry, or (2) offset by viscous 
effects such that the total circulation within the room never changes.  This balancing act between 
baroclinic effects and viscosity also assures that the velocities within the room, associated with 
the generation of vorticity, will never reach high values [note that without the presence of 
viscosity, the local velocities within the room could continually increase due to forcing by the 
density variations].   
 

As a final aspect of temperature-induced circulation changes, consider the spread of a forest fire.  
By its very nature, a forest fire creates large local density variations, with isopycnals at sharp 
angles to the earth, whereas the isobars are generally aligned with the earth.  As illustrated in 
figure 10.6, this creates strong circulation, which results in strong updrafts of high temperature 
gasses, flanked by strong down and side drafts that feed oxygen to the fire, thus intensifying the 
combustion process.  Figure 10.6(a) is a balanced situation on a flat surface, with 
counterbalancing inflows holding the fire in place. However, when fires occur on a sloped 
surface, the inflows are unbalanced, such that the downhill circulation will be higher than the 
uphill circulation, causing such fires to migrate onto an upslope due to a skewing of the 
baroclinic process such that the fire creates its own uphill “wind”, as depicted in figure 10.6(b). 
This induced uphill airflow can cause a fire to accelerate up the slope of a hill or mountain.   
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 (a)  (b) 
 

Figure 10.6 Creation of up and down drafts in proximity to fires, due to circulation created 
by density variations: (a) on a flat surface (b) on a sloped surface. 

 
This generation of combustion-induced winds is extremely dangerous to fire fighters when the 
terrain becomes constrained, such as in a canyon, often resulting in a situation known as a “fire 
storm”, which usually results from a confluence of the fire with plentiful fuel on hilly terrain. 
 

10.2.5 Baroclinic Variations Due to Density Stratification 
 

The effects of strong density stratification (e.g. due to strong salinity variations in sea water, or 
dissimilar fluids) on the generation of circulation, and thus vorticity, can be illustrated by 
considering the behavior of two adjacent horizontal layers of inviscid, immiscible (non-mixing) 
fluids where ba  .   If the two fluid layers are suddenly exposed to a uniform, lateral pressure 
difference or gradient, then Euler’s equation indicates that the acceleration of the two layers will 
be inversely proportional to the individual densities, such that a velocity gradient will be created 
across the interface, and thus vorticity and circulation must be created. 
 

 
 
  
  
  
  
   
 
 
 

Figure 10.7 Circulation for a two layer, immiscible vertical density variation exposed to a 
lateral pressure gradient. 

side draft 

updraft down draft 

fire 

fire-induced 
circulation 

fluid a, a 

P1 

fluid b, b 

 

P2 

x 

C B 

A D 

L 

Ua 

Ub 

Induced uphill flow  

updraft 

down draft 

fire 

fire-induced 
circulation 

down draft 



Introduction to Graduate Fluid Mechanics:   C.R. Smith  Chapter 10 
 

 320 

Consider the model above, and apply Euler’s streamline equation (Eq. 7.7) in the x-direction : 
 

0sd
t
V

2
VddP1 2





















     (10.18) 

 

Here, we let V = U, where U is the x-direction velocity within either of the two fluids.  Since the 

fluids are constrained to move in the x-direction, we also have dx
dt
dUsd

t
V




 


. 

 

Substituting into Eq. 10.18 and rearranging, we have: 
 

UdUdP1
2

UddP1dx
dt
dU 2















     

 

Or     
dx
dUU

dx
dP1

dt
dU




  

 

However, since the velocity within either fluid will increase uniformly with time, but will not 

vary in the x-direction, 0
dx
dU

  within each fluid, and we have for either fluid: 

dx
dP1

dt
dU


  (10.19) 

 

In Eq. 10.19, the pressure difference is assumed to decrease linearly with x, and to be uniform 
across the two fluid layers, such that the pressure gradient is constant, and given by 

0
L

PP
dx
dP 12 


 .  Assuming that both fluids start from rest, we integrate Eq. 10.19 over time 

for fluid a to obtain the velocity behavior: 
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      where P1 > P2 (10.20a) 

 

Likewise, for fluid b, we get: 
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From Eqs. 10.20, we can see that if ba  , then Ua > Ub.  Likewise, if ba  , then Ua < Ub.    
In either case, each fluid will accelerate uniformly with time, but at differential rates according to 
their density, such that a shear layer will be generated at the fluid interface, resulting in the 
generation of circulation and vorticity.  
 
If we apply Eq. 10.14 about the circuit A-B-C-D shown in figure 10.7, we have: 
   

 















A

D b

D

C

C

B a

B

A

dPdPdPdPdP
Dt
D      since dP = 0 from A-B and C-D 

 

   12
b

21
a

P

P b

P

P a

PP1PP1dPdP
Dt
D 2

1

1

2
















  

 

 21
ab

PP11
Dt
D


















    where 1 2P P  (10.21) 

Equation 10.21 illustrates that if ba  , then 0
Dt
D


 , which means that negative circulation 

and negative (clockwise) vorticity are generated.  Conversely, if ba  , then 0
Dt
D


 ,  and 

positive circulation and positive (counter-clockwise) vorticity are generated.  Basically, under the 
same applied pressure (force) difference, the lower density fluid will accelerate faster than the 
higher density fluid, thus creating a velocity mismatch at the fluid interface.  This velocity 
mismatch reflects generated vorticity, which cumulatively reflects the change in circulation. 
 
Although not a perfect model, this example demonstrates, how vorticity can be generated within 
the ocean or the atmosphere when lateral pressure gradients act on a vertically stratified fluid.  
Examples of this situation are density stratifications near the sea surface due to strong thermal or 
salinity changes (although in reality these flows are a bit more complicated).  As we will discuss 
in Chapter 11, once vorticity has been generated it can undergo a number of modifications, 
which can greatly change its character and complexity. 
 

10.3 Kelvin’s Theorem for a Translating Fluid Region 
 

If we additionally restrict a material region to the flow of an ideal, inviscid fluid ( = 0), the right 
side of the circulation change equation, Eq. 10.10 becomes zero, due to the absence of viscosity.  
This further assumption of inviscid flow indicates that a region of fluid moving within an 
inviscid flow, and satisfying the constraints of: 
 

1)  barotropic fluid, with 
2)  conservative body forces, and  
3) 0  

0 0 
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will undergo no change in circulation, 0
Dt
D


 , such that  constant over time.  This statement 

is known as Kelvin’s Theorem.  Fluids that satisfy Kelvin’s Theorem 
D

0
Dt



 
 
 

 are accordingly 

termed circulation-preserving fluids, since there is no change in circulation as the initial material 
region of fluid moves within a flow field.  
  
Kelvin’s theorem indicates that if a region of inviscid flow starts from rest, or is uniformly absent 
of vorticity at some initial time, then the circulation of this fluid region will remain zero as it 
moves through the flow field.  However, if the region has some initial circulation, due to 
previous effects not satisfying the initial assumptions for the flow, then the circulation of the 
region will remain constant at its initial value.  
  

10.3.1 Examples of Circulation Preserving Flows 
 

Potential flows, as were discussed in Chapter 9, are examples of circulation preserving flows.  
For example, a material region of fluid approaching a cylinder [i.e. the potential flow process 
modeled in section 9.8.1], would come from a region of uniform flow (far upstream), and thus 
have no circulation.  Since the flow is irrotational and inviscid, the material region, as it passes 
around the cylinder, and then departs downstream, according to Kevin’s theorem will not change 
its circulation, and thus remain without circulation.  This is also the case for the flow over a 
rotating cylinder, that we modeled by the additional superposition of a potential vortex [section 
9.8.2].  Here again, the circulation within a fluid region does not change as the region passes 
from the upstream region of uniform flow, around the cylinder, and continues downstream.  
Recall that the source of vorticity in this flow, and thus the source of circulation, is confined to 
the origin of the superposed point vortex, which is contained within the modeled cylinder 
boundaries, and does not contribute circulation to the modeled material flow region.  Thus, the 
circulation of a material fluid region, however defined, will thus remain zero as the region moves 
within the flow field. 
 
Now consider the variation of circulation along a vortex tube.  As we showed in section 8.3.2.1, 
the circulation at the entering and exiting cross-sections of a vortex tube will be constant, such 
that at any instant: 
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Thus, the circulation at any cross-section along a vortex tube must be constant.  This relationship 
holds regardless of the type of fluid, as long as the boundaries of the vortex tube are comprised 
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http://en.wikipedia.org/wiki/Kelvin%27s_circulation_theorem
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of vortex lines [so this also holds if the flow is viscous or baroclinic].  However, if viscous or 
baroclinic effects are present, Eq. 10.9 indicates that the instantaneous circulation within the 
vortex tube can change within the original material region [the material volume will remain 
constant, but the shape of the tube may change].  However, for a circulation preserving flow, 

0
Dt
D


 , which means that the circulation at all cross-sections along the vortex tube will remain 

constant with time 
 
A further example of the behavior of a circulation preserving fluid is illustrated by the impact of 
“stretching” a vortex tube (i.e. an increase in the tube length).  Such stretching processes occur 
when a fluid with streamwise rotation passes through a nozzle, where the streamwise velocity is 
accelerated, and thus the fluid is “stretched” in the streamwise direction.  Consider a section of a 
vortex tube, shown initially in Figure 10.8a below.   
 

 
 
 
 
 
 
 
 
 

Figure 10.8 The effect of stretching on a vortex tube of constant cross-section 
 
For simplicity, assume that the vortex tube is of constant cross-section and in solid body rotation 
such that, initial = constant.  This vortex tube has an initial circulation at any cross-section of 
initial = initialAinitial.  If this constant volume section of the vortex tube is then stretched [due to a 
spatial change in velocity along its axis], it will undergo an increase in length, and a 
commensurate decrease in cross-sectional area, as shown in Figure 10.8b.  
 
If the fluid is circulation preserving, the circulation will not change during this stretching 
process, such that  stretched = initial.  Since the circulation of the stretched vortex tube will remain 
constant, the total vorticity encompassed at a cross-section must increase, since [assuming solid 
body rotation again]: 
 

initialinitialstretchedstretched AA   
or    











stretched

initial
initialstretched A

A  (10.22) 

stretched


stretched 

initial


initial 

stretching of 
vortex tube 
 

 

stretched = initial 

stretched  > initial 
(a) initial vortex tube (b) stretched vortex tube 
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From Eq. 10.22, it is clear that stretched  > initial, since Astretched < Ainitial. 
 
This is obviously a simplistic model, but it illustrates that the generic stretching of a vortex tube 
will result in intensification of the vorticity within the tube, due to preservation of angular 
momentum.  In a real vortex, the vorticity will most likely not be uniform [i.e. in solid body 
rotation], but the vortex lines will undergo a similar intensification. 
 
The opposite effect of stretching takes place if a vortex tube undergoes compression [i.e. a 
reduction in the length of the vortex tube segment].  Such a compression is accompanied by an 
expansion of the tube cross-section, and a reduction in the vorticity magnitude.  Such processes 
occur when a flow undergoes a deceleration, such as in a diffuser, where the streamwise velocity 
is decreasing with streamwise distance.  A similar analysis to Eq. 10.22 yields: 
 
















compressed

initial
initialcompressed A

A  (10.23) 

 

Equation 10.23 indicates that   compressed < initial, since Acompressed > Ainitial.  So, compression of the 
vortex tube results in a reduction in the local vorticity.   
 
One caveat is that vortex compression is an unstable process, such that when a vortex tube 
undergoes more than a mild compression, the vortex tube will be come unstable and “break 
down” or degenerate into a complicated tangle of vorticity.  This process, as we discussed 
previously in section 8.3.2.1, is termed vortex breakdown, and generally results in a loss of 
angular momentum, and a rapid increase in the complexity of the original vortex tube.  Vortex 
breakdown is not well understood, and causes the rapid, and complicated, dispersion of the 
vorticity of the initial vortex tube over a broader cross-section.  While vortex stretching is a 
generally stabilizing process, the viscosity of a real fluid can cause vortex breakdowns to 
develop in even accelerating, or stretched flows.  It has been determined experimentally that 
vortex tubes may break down into a variety of different shapes, including closed and open 
bubbles, spirals and cone shapes.  In general, at least seven different forms or types of 
breakdown have been identified. See some examples in videos shown here. 
 
It is relevant at this point to remind the reader of the analogy of circulation to flow rate, and 
vortex lines to streamlines.  Recall that for an incompressible flow the flow rate is the area 
integral of the velocity across a material cross-section, and circulation is the area integral of the 
vorticity across a material cross-section.  The flow rate within a stream tube will also be identical 
at any cross-section, as will the circulation at any cross-section of a vortex tube.  The analogy 
falters for the temporal changes in flow rate and circulation, since we do not have a similar 
corollary to Kelvin’s theorem for flow rate.  For a circulation preserving flow, the temporal flow 

https://www.google.com/search?q=vortex+breakdown+bubble&newwindow=1&client=firefox-a&hs=twz&rls=org.mozilla:en-US:official&channel=sb&tbm=isch&tbo=u&source=univ&sa=X&ei=1nKrU6bXLIyuyATsqICQDg&ved=0CCMQsAQ&biw=1920&bih=1067
https://video.search.yahoo.com/yhs/search;_ylt=A0LEVjN0vQtXTdsAeKInnIlQ;_ylu=X3oDMTByMjB0aG5zBGNvbG8DYmYxBHBvcwMxBHZ0aWQDBHNlYwNzYw--?p=Vortex+Breakdown&fr=yhs-mozilla-001&hspart=mozilla&hsimp=yhs-001
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rate within a stream tube can change due to a temporal change in pressure, whereas circulation 
cannot change with time along a vortex tube.   
 
Streamlines and vortex lines are also defined similarly [lines with their tangent parallel to the 
local vector property].  However, note that the velocity along a streamline can change due to 
pressure/height changes [Euler’s equation shows us that], whereas the vorticity along a vortex 
line may or may not remain constant.  For a circulation preserving fluid, the vortex lines are 
associated with a fixed set of fluid particles such that the vortex line will move with the set of 
fluid particles defining the vortex line.  The vorticity of each fluid particle will thus be “frozen” 
at a constant value within the fluid. However, the influence of viscosity allows the vorticity of 
individual fluid particles to change, such that a vortex line will not be necessarily associated with 
the same fluid particles, nor will the fluid particles retain a fixed value of vorticity.  Thus, if the 
fluid is not a circulation preserving fluid [due to viscous or baroclinic effects] the circulation and 
the vortex lines may both change with time.  
 
10.4 Helmholtz’s Theorems for Inviscid Flow 
 
Helmholtz (1858) developed three theorems that govern inviscid flows, which preceded Kelvin’s 
theorem.  Helmholtz dealt with similar concepts for circulation preserving fluids, but also 
addressed some issues that Kelvin did not.  These three theorems are as follows [paraphrased 
from Helmholtz]. 
 

(1) An element of fluid, which is originally without rotation, will remain without rotation. 
 

(2) Any element of fluid on a vortex line will remain on that vortex line, regardless of the 
translation of the line. 
 

(3) The product of the area cross section and angular velocity of an infinitely thin vortex 
filament is constant throughout its whole length, and retains the same value during all 
displacements of the filament.  Hence, vortex filaments must be closed curves, or must 
have their ends in the bounding surface of the fluid. 
 

Since an inviscid fluid [in a gravitational, barotropic environment] will be a circulation 
preserving fluid, application of Kelvin’s theorem to an infinitesimal element within the fluid 
implies that the circulation of that element will not change, from which the first theorem of 
Helmholtz follows directly.  A corollary [from Kelvin’s theorem] would be that if an element of 
fluid originally has initial rotation [i.e. circulation], it will retain that rotation throughout its 
movement within the fluid. 
 
Helmholtz’s second theorem is demonstrated by use of the result of section 8.3.2.1, where it is 
shown that the circulation at any cross-section along a vortex tube must remain constant.  Now, 
imagine shrinking a vortex tube to the point where it is of infinitesimal cross-section, creating a 
vortex filament, which will contain: (a) a fixed line of fluid particles, and (b) a single vortex line.  

http://en.wikipedia.org/wiki/Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/Helmholtz%27s_theorems
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From Kelvin’s theorem, we know that the circulation along the inviscid filament must remain 
constant, and will not change as the line moves with the fluid.  One can think of a linked set of 
symmetric fluid particles, which have both translational and angular velocities, where the angular 
velocities of the particles comprising the line are initially identical.  If gravity or a pressure 
gradient acts on the flow field, the translation of the individual particles can change, but the 
angular velocity will remain unaffected, and the vortex line will move with the original fluid 
particles.  One might think of a set of pearls frictionlessly rotating on a deformable string.  In the 
absence of friction, external body or pressure forces may move the pearls about, but the rotation 
of each pearl, and their orientation relative to each other, will be maintained along the 
deformable string. 
 
Helmholtz’s third theorem is again a variation on what was shown in section 8.3.2.1, but also 
adds the need for a vortex tube or line to be contiguous.  As discussed in section 8.3.2.2.2, vortex 
lines cannot summarily “end” within a fluid; there must be some aspect of closure of the line, 
either upon itself [e.g. a vortex ring or closed loop], or it must extend to infinity [which again 
actually assumes that the line must eventually close upon itself].  This is true for both inviscid 
and viscous fluids.  A frequently cited exception to this vortex closure law is the hypothesis that 
a vortex line may end at the free surface of a fluid [e.g. at an air-water interface].  Such “ending” 
of a vortex line in water is often reflected by the dimpled swirls one sees on the surface of a 
stream.  However, this supposed termination of the vortex line at the air-water interface only 
means that the water vortex line is matching the local vorticity [i.e. angular velocity] of a vortex 
line within the air on the opposing side of the interface.  Thus, a vortex line in water “ending” at 
the water-air interface is contiguous to a vortex line within the air, which must somehow “close” 
upon itself (albeit in a complicated manner).   
 
As a corollary, if the interface is a fluid-solid boundary, a vortex line within the fluid could only 
end at the boundary if the angular velocity of the solid boundary matches the angular velocity 
(vorticity) of the vortex line.  This latter situation is relatively rare.  However, this situation can 
occur for a fluid contained within a tank rotating about its axis.  If the fluid and tank rotate in 
equilibrium, both the fluid and tank will be in steady, solid body rotation. The fluid will have a 
constant vorticity field, with vortex lines that extend from the surface of the fluid and end at the 
rotating surface of the tank.   
 
Generally, when a real, viscous fluid interacts with a solid boundary, vortex lines will be 
generated, in the form of closed vortex “loops” either around a body [as for flow around a 
sphere] or within a duct [e.g. flow within a pipe].  Figure 10.8 illustrates the general orientation 
of several such vortex lines for flow around a sphere and through a rectangular duct. 
 
The process of vorticity generation at a solid boundary is a topic that certainly merits further 
discussion. We will revisit the behavior, dynamics, and generation of vorticity, circulation, and 
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vortex lines further in the following Chapter 11, when we derive the governing differential 
equation for vorticity. 
 

 

 

 

 

 

 

 

 

 
Figure 10.8 Contiguous nature of vortex lines for flow (a) around a sphere, and (b) through a 

rectangular duct. 
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Study Problems 
 

1.  A combined Rankine vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
  
 The vortex consists of a core of radius R, which is in solid body rotation with velocity  

 







 R

rVV 01 , and a portion outside the core (rR) that has a velocity 







 r

RVV 02 .  The 

density of the flow is , and the pressure far away from the vortex center is P.   
 Determine the following: 

a) The vorticity,  for the entire flow field, as a function of r.  Plot a graph of R/Vo vs. r/R 
from 0 < r/R < 2. 

b) The circulation for, 
i) a circle of radius R 
ii) a square of side dimensions 4R, with the vortex in the center of the square. 

c) The value of D/Dt at r = R. 

Flow 

Generation of contiguous “loop” 
vortex lines at fluid-sphere boundary 

Vortex lines 
translate with 
streamwise flow 

Flow 

Generation of contiguous “loop” 
vortex lines at fluid-duct boundary 

Vortex lines 
translate with 
streamwise flow 

(a) (b) 

R 

P 
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2. A vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o for r  
  Ro, and  = 0 for r  R. 

 
   
 
 
 
 
 
 
 

 
If the velocity distribution is  ivV ˆ

 only, determine the following: 
a) The velocity distribution, v


(r), in terms of o and r, for r  R (assume that v(0) = 0). 

b) The velocity distribution, v

(r), in terms of o, R, and r, for rR. 

c) The circulation for, 
i) a circle of radius R. 
ii) a square of side 3R, with the vortex in the center of the square. 

d) The value of D/Dt at r=R. 
 

3. A vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where, 

o
r1
R

 
    

 
 for r    Ro, and  = 0 for r  R. 

 
   
 
 
 
 
 
 
 

 
If the velocity distribution is  ivV ˆ

 only, do the following: 
a)   Determine the velocity distribution, v


(r), in terms of o, R, and r, for r  R (assume that  v(0) = 0). 

b)   Determine the velocity distribution, v

(r), in terms of o, R, and r, for r  R. 

c)   Plot 
o

v
R



 vs. 

r
R

 for 
r0 2
R

   

d)   Plot the non-dimensional circulation within a circle of radius r, 2
o2 R



 vs. 

r
R

 , for 
r0 2
R

 

. 
e)   Explain what is happening to the circulation with increasing r, and why. 
 

 

o 

R 

vorticity distribution 

r 

 

o 

R 

vorticity distribution 

r 
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4.  A vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
 
 
  
The vortex consists of a core of radius R, which is in solid body rotation with velocity  

 1 0
rV V
R

 
  

 
.  The portion outside the core (R  r  2R) has a velocity 2 0

rV V 2
R

 
  

 
.  

The density of the flow is , and the pressure far away from the vortex center is P, including at  
 r = 2R.   
 
 Determine the following: 
 

a) The vorticity for the entire flow field, as a function of r.  Plot a graph of R/Vo vs. r/R from 
0 < r/R < 2. 

b) The circulation for, 
i)  a circle of radius R  
ii) a square of side 4R, with the vortex in the center of the square 

c) The value of D/Dt at r=R. 
d) A section of an inviscid vortex tube of length L with the velocity profile shown above, is 

stretched by acceleration of the fluid along the axis of the vortex tube to a length 4L, while 
retaining the same rotational velocity profile. If R = R1 and Vo = Vo1 for the tube of length 
L, and R = R2 and  Vo = Vo2 for the tube of length 4L, determine the value of R2 in terms 
of R1, and Vo2 in terms of Vo1 for the stretched tube of length 4L. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

R 

P 

1 0
rV V
R

 
  

 
 2 0

rV V 2
R

 
  

 
 

 stretching of 
vortex tube 
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4L 
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5. The velocity field for an Oseen line vortex is given by: 
 

  





















 t4

r1
r2

AV
2

exp   

  
 Let all parameters and variables be non-dimensional, and   
 

a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine 
 at t = 0, t = R2/4, and t = . 

b. Again for curves of r = R and r = , and at t = 0, t = R2/4, and t = , determine D/Dt, 
both directly (by differentiation) and by using Eq. 10.10.  Show that these are identical.  

c. Based on your results of part a and b, explain (briefly) what 
is physically happening to the vorticity and circulation of 
the flow field.  

 
6. A vertical heated plate, 1 m in length, heats the adjacent air such 

that the temperature varies uniformly across a 4 cm thickness, 
from ambient (20 C) 4 cm from the plate surface to 30 C at the 
plate surface.  As shown in the model at the right, assume that 
the isopycnals are parallel to the plate surface, and that the 
pressure varies with height according to P = gh, where the 
density is the ambient density, and the pressure is constant 
perpendicular to the plate surface.  Treating air as an inviscid 
fluid, what will be the maximum velocity within the air after 1 
minute?   In your opinion, is this answer reasonable?  Explain 
your rationale for your opinion. 

 
7. The velocity field for a viscous vortex is given by: 

 

  


















 t

r1
r2

1V exp   

  

 Let all parameters and variables be non-dimensional.   
a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine 

 at t = 0, t = R and t = . 
b. Again for curves of r = R and r = , and at t = 0, t = R, and t = , determine D/Dt directly 

(by differentiation using the substantial derivative of  ) 
c.  Plot three separate graphs:   

i. V

 vs. r from0 < r < 10 for t = 0.1, 1, and 5; 

ii.  vs. r from0 < r < 10 for t = 0.1, 1, and 5; and  
iii. D/Dt vs. r from 0 < r < 10 for t = 0.1, 1, and 5. 

d. Based on your results of part a, b, and c explain (briefly) what is physically happening to 
the vorticity and circulation of the flow field.  
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8. The velocity field for a Taylor dissipating vortex is given by: 
 

  
2

2 2

M r rv exp
16 t 4 t

 
  

   
  

  
 Let all parameters and variables be non-dimensional, and  

a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine 
 at t = 0, t = R and t = . 

b. Again for curves of r = R and r = , and at t = 0, t = R, and t = , determine D/Dt directly 
(by differentiation using the substantial derivative of  ) 

c.  Plot three separate graphs:   

i. 
216 vv '

M





  vs. r from0 < r < 10 for t = 0.5, 1, and 3; 

ii. 
28'

M
 

   vs. r from0 < r < 10 for t = 0.5, 1, and 3  

iii. 
2D ' 4 D

Dt M Dt
  

 vs. r from 0 < r < 10 for t = 0.5, 1, and 3. 

d. Based on your results of part a, b, and c explain (briefly) what is physically happening to 
the vorticity and circulation of the flow field.  

 
9. An inviscid fluid of thickness h and length L, as shown, varies in density according to 

h
y

o  .  It is initially at rest.  At time t = 0, a constant pressure difference is applied over 

the length L, with a pressure P1 at x = 0, and P2 at x = L , with P1 > P2.   
 
 
 
 
 
 
 

 
 
Neglect gravity effects, and determine: 
 
a)   Using the unsteady Bernoulli equation along a streamline, an equation for the x-direction 

velocity within the fluid, u = f (y, t), for t  > 0 and 0 < y < h.   
 
b)  A graph of u(y,t) for t = 1, 2, 3 over 0 < y/h < 1 for (P1-P2)/L = 1, 1o  , and  = 0.2 

c)  The time rate of change in circulation, 
Dt
D

, for the region 0 < y < h and 0 < x < L in terms 

of P1, P2, o , and  . 

 

P1 P2 
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Chapter 11 
 

The Vorticity Transport Equation 

Contents 
 
11.1  Derivation of the Vorticity Transport Equation ........................................................... 333 
 
11.2  The Physical Relevance of the Terms of the Vorticity Transport Equation .................... 335 
 11.2.1  Temporal Changes in Vorticity  ........................................................................ 335 
 11.2.2  Transport (Advection) of Vorticity by the Velocity Field  ................................... 335 
 11.2.3  Diffusion of Vorticity  ...................................................................................... 337 
 11.2.4  Generation of Vorticity by Stretching and Tilting  ............................................. 338 
 
11.3  The Two-Dimensional Vorticity Transport Equation  ................................................... 342 
 
11.4  One-Dimensional Vorticity Solutions .......................................................................... 344 
 11.4.1  Flow Over a Flat Plate with Suction  ................................................................. 345 
 11.4.2  Poiseuille Flow in a Parallel Channel ................................................................ 349 
 11.4.3  Steady Flow Outside a Rotating Rod  ................................................................ 352 
 
11.5  Sources of Vorticity  ................................................................................................... 354 
 11.5.1  Vorticity Generation by Viscous Effects  ........................................................... 354 
 11.5.2  Vorticity Generation by  Acceleration  .............................................................. 358 
  11.5.2.1  Acceleration of a Rotating Rod ........................................................... 358 
  11.5.2.2  Acceleration of a Circular Vessel  ........................................................ 361 
 11.5.3  Vorticity Generation by a Streamwise Pressure Gradient  ................................. 363 
 11.5.4  Vorticity Generation by Surface Transpiration  ................................................. 365 
 11.5.5  Vorticity Generation by Baroclinic Effects  ........................................................ 368 
 
11.6  Circulation Changes in a Fixed Reference Plane  .......................................................... 372 
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In Chapters 8 and 10 we dealt with vorticity and circulation, and the behavior of circulation for 
both viscous and inviscid fluids, as well as barotropic and baroclinic fluids.  However, those 
considerations where primarily concerned with the behavior of either material regions or vortex 
tubes.  In this chapter, we derive a differential equation to model the behavior of vorticity as it is 
transported within an incompressible flow field.  Using this vorticity transport equation, we can 
assess the behavior of the vorticity field within a fluid, as well as address the processes of 
vorticity generation and destruction.  In addition, we will employ the vorticity transport equation 
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to reexamine the behavior of circulation for a defined spatial region within a fluid, rather than 
just a material region.  This will act as a springboard to begin to address the behavior of viscous 
flows adjacent to solid boundaries. 
 

11.1 Derivation of the Vorticity Transport Equation 
 

To obtain an equation for the transport of vorticity, we begin with the Navier-Stokes equation 
(Eq. 5.44), since we have shown that the Navier-Stokes equation models the “changes” within a 
velocity field.  Since vorticity is defined as the curl of the velocity field, we take the curl of the 
Navier-Stokes equation and examine the result. 
 












 VBP1

Dt
VD 2




 

   2DV 1 P g h V
Dt

 
         

 
 (11.1) 

 

We expand the first term on the right hand side of Eq. 11.1: 
 
 

  2

1 1 1 1P P P P       
                

          
 

 

Recalling that f 0   (see Eq. 2.16a), where f is a scalar, and noting that P and h are scalar 
properties, we have 0handP  , which reduces Eq. 11.1 to: 
 

2
2

DV 1 P V
Dt

 
     

 
 (11.2) 

 

Expanding the left side of Eq. 11.2 using the definition of the substantial derivative, the vector 
identity Eq.2.16g, and that  V   , the vorticity,  we get: 
 

   2DV V V 1V V V V V
Dt t t 2
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Again by Eq. 2.16a we are able to eliminate  2V , since 2V  is a scalar, leaving Eq. 11.3a. 
 

 
DV V
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 (11.3a) 

 

0 (by Eq. 2.16a) 

0, since V2 is a 
scalar  



0 (by Eq. 2.16a) 
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Expanding the last term in Eq. 11.3a using vector identity Eq. 2.16h, and noting that 

 V 0      (Eq. 2.16c) and V 0   (continuity), we end up with Eq. 11.3b. 
 

       
DV V V V V
Dt t


          
 

 
 

   
DV V V
Dt t


     


  (11.3b) 

 

Next, using the vector identity Eq. 2.16n, the last term on the right side of Eq. 11.2 becomes 
 

  


222 VV  (11.4) 
 

Finally, substituting Eqs. 11.3b and 11.4 into Eq. 11.2 gives: 
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2 P1VV
t

 (11.5) 

 
 
 
 

If we assume a barotropic fluid, where the gradients of density and pressure are parallel, then 
0P  , and our final equation becomes [moving the  V


  term to the right hand side of 

the equation]: 
 

   VV
tDt

D 2








  (11.6) 
 

Equation 11.6 is commonly known as the Vorticity Transport Equation, since it models all the 
processes by which vorticity can be transported and modified.  The constraints on this equation 
are a constant density, barotropic fluid with constant viscosity.  Note that a unique aspect of this 
equation is that by taking the curl of the Navier Stokes equation, we have eliminated any 
dependence of the fluid property of interest (vorticity) on pressure or height changes, as long as 
the only body force is conservative (i.e. gravity) and the fluid is barotropic.   
 

The physical relevance of each of the terms Eq. 11.6 is indicated below. 
 

  VV
tDt

D 2








  (11.7) 

 
 

 
 
 

Dt
D

total time 
rate of 

change of 
vorticity 

local rate 
of change 

of vorticity 

advection 
of vorticity 
by velocity 

field 

production of 
vorticity—by 
stretching or 

tilting of existing 
vorticity 

viscous 
diffusion 

of vorticity 

0 0 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 11 
 

 335 

11.2 The Physical Relevance of the Terms of the Vorticity Transport Equation 
 
In the following section, we examine the processes modeled by the individual terms in the 
vorticity transport equation.   As indicated in Eq. 11.7, the terms represent the:  (1) local rate of 
change, (2) advection (transport), (3) viscous diffusion, and (4) production of vorticity.  Note that 
production of vorticity is a process unique to the property of vorticity, since neither the 
continuity nor the Navier-Stokes equations include processes for “production” of either mass or 
momentum.  
 

11.2.1 Temporal Changes in Vorticity, 
t



  

The term 
t



 in Eq. 11.7 reflects the local temporal changes of vorticity at a point within the 

flow field.  One might think of the decay of vorticity at a point over time in a swirling cup of 
coffee or tea.  After the initial generation of the vorticity within the cup by stirring, the vorticity 
at any point within the cup will slowly decrease due to viscous effects.  If we focus on a single 

point within the fluid, we will note temporal changes in the local vorticity as reflected by the 
t



 

term.  Figure 11.1 illustrates such a change in the vorticity at a point for the decay of a viscous 
vortex. 
 
 
 
 
 
 
 

Figure 11.1 An example of the temporal change of vorticity in a viscous vortex  
 

11.2.2 Transport (Advection) of Vorticity by the Velocity Field, 


V  
 
The 


V  term in Eq. 11.7 reflects the transport (i.e. advection) of vorticity by the action of the 

velocity field.  Note that this term is similar to the advection of momentum term VV


 in the 
Navier-Stokes equation, and has a similar function of transporting a material (i.e. fluid) related 
property by physical translation of the fluid.  As the material derivative [Section 3.3] illustrates, 
when fluid particles move within the velocity field, they also carry with them any associated 
property, such as mass (i.e. density), momentum (i.e. velocity itself), energy (i.e. temperature), or 
angular rotation (i.e. vorticity).  However, since the differential equations are Eulerian-based, 
changes in the respective property are reflected by the spatial gradient of the property change 
[i.e. the spatial changes of the property with position within a non-uniform property field].  Thus, 

A later vorticity distribution 
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Initial vorticity distribution 
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as fluid undergoes translation within a spatial region, it will experience a change in the value of a 
local property due to its motion within the property field.  One might think of this as similar to 
the change in temperature that we experience when we walk from a shaded to a sunny area.  On a 
molecular level (i.e. using a Lagrangian view), it is of course a bit more complicated, since the 
cumulative distribution of a property [i.e. the property “field”] is really a reflection of the 
concentration of particles carrying that particular property.  However, from an Eulerian 
viewpoint (viewing the fluid as a continuum), we perceive the local value of a fluid property as 
changing due to the translation of the fluid within that respective property field.   
 
Thus, when considering the Eulerian view of a fluid as a continuum, the 


V  term reflects 

changes in the vorticity at any point due to the transport of vorticity by the fluid towards or away 
from that point.  This transport process is one means of physically redistributing existing 
vorticity within the region of interest [i.e. the “field”].  Note that since vorticity is a vector, and 
not a scalar, 

  is not exactly a gradient.  It actually reflects three separate gradients—one for 
each directional component of rotation For example, in a Cartesian coordinate system, 

kji zyx
ˆˆˆ 

 ].  Thus, k
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xxx
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  reflects the changes in the x-

direction component of vorticity, x , in each respective coordinate direction.  However, the 

actual changes in x  depend upon whether fluid is transported in a particular direction by the 

respective directional velocity component [e.g. a change of x in the x-direction, 
x

x



 , will only 

occur if material is carried in the x-direction by the x-direction velocity component, u].  Thus, 
the product (i.e. dot product) of the directional velocity with the corresponding directional 
vorticity gradient gives the rate of transport of the components of vorticity.  
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Note that a change in a particular directional component of vorticity due to advection will only 
occur when a vorticity gradient exists in the direction of transport.  In addition, even though a 
vorticity gradient may be present, no change in a particular component of vorticity will occur due 
to advection if there is no velocity component in that direction.  Consider the example of the 
stationary, decaying vortex, as was illustrated above in Figure 11.1.  Although a significant 
gradient of vorticity exists in the radial direction, since there is no radial velocity, there is no 
advection of vorticity in the radial direction. 
 

Transport of x-direction 
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Transport of y-direction 
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Figure 11.2 below illustrates a simple example of vorticity transport for a vortex translating 
through an otherwise uniform flow in the x-direction at a velocity u.  Here  

u > 0 and 0
x

z 


  inside the vortex, and u > 0 and 0
x

z 


 outside of the vortex.  Clearly, 

vorticity transport is taking place, but only within the region where 0
x

z 


 .   Note that as the 

vortex moves along the x-axis, the vorticity transport at a point will change from 0 to < 0 and 
back to 0 at any fixed point along the x-axis. 
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(For 2-D Flow) 
  

Figure 11.2 Example of the transport of vorticity along the x-axis by a compact vortex 
translating in an otherwise uniform x-direction flow. 

 
11.2.3 Diffusion of Vorticity, 

2  
 
The 

2  term in Eq. 11.7 models the viscous diffusion of vorticity due to fluid viscosity.  This 
term is similar to the diffusion transport term in the Navier-Stokes equation, and is again 
associated with the redistribution of existing vorticity within the vorticity field.   
 

The diffusion of vorticity, like the diffusion of momentum, is the result of the interaction of the 
fluid particles.  In the case of vorticity, this interaction is reflected as fluid friction, or viscosity, 
which causes a reduction in the local vorticity (i.e. angular momentum).  Such angular 
momentum losses are a result of local shear stresses created by spatial velocity gradients.  The 
shear stresses act as a damping agent, causing a decrease in the local angular momentum, and 
thus a decay and redistribution of the vorticity within the fluid.  Assuming a constant viscosity, 
the 

2  term reflects the transport of vorticity due to viscous effects, where  represents the 
diffusivity of vorticity for a given fluid (i.e. the fluid’s capacity to diffuse vorticity).  Note that 
this term is directly proportional to the Laplacian of the vorticity, 

2 , which deserves some 
assessment.   
 

In Cartesian coordinates, we can write the Laplacian term as (see Eq.2.16ℓ): 
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Thus, the Laplacian represents the divergence of the gradient of each vorticity component.  To 
assess the dynamics of this term, consider a flow with only x-direction vorticity, such that

 ix
2 ˆ
 , similar to that shown in Figure 11.3 for a viscous vortex tube aligned along 

the x-axis.   
 

i
zyx 2

x
2

2
x

2

2
x

2
ˆ






















   

 

Figure 11.3 Example of the transport of vorticity by radial diffusion from a vortex aligned 
with the x-axis. 

 

Here, x reflects the gradient, or spatial variations, of the x-direction vorticity, which is given by 
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Recalling that the divergence reflects the cumulative expansion of a vector field, this term is 
indicative of the cumulative “balance” of the spatial changes in the gradient of the vorticity field.  
As we discuss below in Section 11.5.1, the gradient of the vorticity can be viewed as proportional to 
the “flux” of vorticity within the fluid.  Thus, the Laplacian of the vorticity for a “balanced” flow 
(i.e. one where 0x  ) demonstrates that the flux of vorticity in one direction will be offset by 
changes in the other directions, similar to how the velocity field for an incompressible flow behaves 
(where 0V 


, by continuity).  Thus, in the absence of other transport effects, the Laplacian 

indicates that viscosity will have the effect of redistributing existing vorticity in such a way that 
angular momentum is decreased, but the total (i.e. the total circulation) of each component of 
vorticity is conserved.  Again, consider the viscous vortex shown in Figure 11.1.  In the absence of 
advective transport, the vorticity within this vortex will redistribute, and the angular momentum 
will diminish, but the total vorticity, or circulation (taken over an infinite region) will be conserved.  
  

11.2.4 Generation of Vorticity by Stretching and Tilting,  V


  
 

This last term in Eq. 11.7,  V


 , is unique in that it models: (1) the generation of new 
vorticity, and (2) the redirection of existing vorticity.  This can be the result of either:  (1) the 
generation (reduction) of vorticity by the stretching (compression) of existing vorticity in one 
direction, or (2) the reorientation (i.e. tilting) of existing vorticity from one direction into another 
direction.  To illustrate how this occurs, let’s expand the  V


  term in Cartesian coordinates.  
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Now, if we ignore the effects of viscous diffusion, and only consider the changes for the x-
direction, we can write a simplified version of Eq. 11.7 as: 
  

z
u

y
u

x
u

Dt
D

zyx
x
















  (11.8) 

 

Equation 11.8 indicates that as a fluid moves within a velocity field, the vorticity in the x-

direction can materially change (i.e. )0
Dt

D x 


 due to the influence of gradients of the x-

direction velocity (u) on existing components of vorticity [here we illustrate the x-direction 
changes, but the same process equally applies in the y and z directions as well].  The first term 
on the right-hand side of Eq. 11.8 indicates that changes in x will occur when the local flow 

undergoes acceleration/deceleration along the x-axis.  Note that an acceleration (i.e. 
x
u



> 0) will 

result in a “stretching” of the fluid in the x-direction, with a commensurate increase in the x-

direction vorticity, x .  However, a deceleration of the flow along the x -axis (i.e. 
x
u



< 0) will 

result in a contraction or compression in the x-direction, which results in a reduction in the 
existing x-direction vorticity. 
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Figure 11.4 Schematic of the generation of new x-direction vorticity due to (a) “stretching”, 
and (b) “tilting” of existing vorticity by local velocity gradients.  

 
The second and third terms on the right hand side of Eq. 11.8 indicate that changes in x  can 
also occur when the vorticity components orthogonal to the x-direction ( zy or  ) are “tilted” 
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into the x-direction by a gradient of the x-velocity (u) normal to the x-direction (i.e. 
y
u


  or 
z
u



).  

For this process, there is no generation (or reduction) of vorticity, but only a reorientation of 
existing vorticity components from one direction to another.  Figure 11.4 shows schematically 
how such processes of stretching and tilting of vorticity can occur.   
 

To illustrate that a stretching process does result in the generation of “new” vorticity, let’s 
consider a further simplification of Eq. 11.8, such that we only consider a fluid element with 
vorticity x under pure stretching, such as shown in Figure 11.4a.  For this situation, we can 
write Eq. 11.8 as: 
 

x
u

Dt
D

x
x







 (11.9) 

We now consider that 
x
u



 is the rate of x-direction stretching or straining (i.e. 

dx
)dx(d

) of a 

differential material element dx lying along a vortex line of strength x .  Now, we can express 

x
u



 via the material derivative as: 
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)dx(D

dx
1

dx
du

x
u





 (11.10) 

 

Here we let 
dx
du

x
u





 for pure stretching in the x-direction only.  Substituting Eq. 11.10 into Eq. 

11.9 gives: 
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Mathematically, we note that we can write: 
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Or rearranging, 
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Substituting Eq. 11.12 into Eq. 11.11 gives: 
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Equation 11.13 indicates that, in a pure stretching process, the strength of the vorticity of a fluid 
particle increases (or decreases) proportionally to the length of dx.  Thus, the generation of new 
vorticity, or the reduction of existing vorticity, is directly proportional to the local stretching or 
contraction of a fluid element with initial vorticity x.   
  
Alternatively, consider an inviscid vortex tube with its axis in the x-direction, and subjected to an 
accelerating flow along its axis (such as in a nozzle), such that its cross-sectional area decreases, 
as shown in Figure 11.5.     
 

 
 
 
 
 
 
 
 

Figure 11.5 Schematic of a vortex tube undergoing stretching in a converging nozzle. 
 

Let us assume that: (1) the stream-wise vorticity is uniform across the tube cross section at both 
the entrance and exit of the vortex tube, and (2) the section of the fluid within the tube of length 
L, as shown in Figure 11.5, will elongate during transit through the tube to a section of length  , 
where L .  During this transit, the diameter of the fluid section will likewise contract from 
diameter D to d.  As we showed in Section 8.3.2.1, the circulation at any cross-section of a 
vortex tube will remain constant such that: 
 

4
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inoutin     assuming constant vorticity at each cross-section 

Thus, 
2

inout d
D








   so inout   if  D > d (11.14) 

 

Since the volume of the fluid section of length L must equal the volume of the fluid section of 
length l, then: 

2 2 2

2

D d DL
4 4 d L

      
 

and substituting into Eq.11.14 gives: 
 

Linout


  (11.15) 
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Therefore, the vorticity increases as the fluid within the vortex tube is stretched.  However, is 
there vorticity generated during this process?  To answer this, we note that the total amount of 
vorticity contained within each fluid section is equal to the product of the vorticity times the fluid 
volume, such that: 
 

L Volume weighted vorticity for section L = L
4

D2

in  

 Volume weighted vorticity for section   = 
4

d2

out  

However, since the volumes of the fluid sections must be equal, then a ratio of the total vorticity 
within the respective volumes is: 
 

Lin

out

L

 







    (11.16) 

Thus, as Eq. 11.16 indicates, the stretching of a vortex tube ( 1
L



) will generate new vorticity, 

whereas the contraction of a vortex tube ( 1
L



) will result in an overall decrease in the existing 

vorticity. 
  
11.3 The Two-Dimensional Vorticity Transport Equation 
   
The vorticity transport equation, Eq. 11.7, like the Navier-Stokes equation, is a particularly 
complex vector equation, which requires sophisticated numerical techniques and significant 
computer resources to develop solutions for a three-dimensional flow.  However, there are 
several tractable and relevant two-dimensional flow situations where the vorticity transport 
equation can be applied and solved in closed form.  In this section, we examine the reduced two-
dimensional vorticity transport equation.  In Section 11.4, we consider some simple applications 
of this reduced equation. 
 
 
 
 
 

Figure 11.6 Two-dimensional vortical flow (x-y plane) 
 
If we restrict ourselves to flows in a two-dimensional plane, we will have only one component of 
vorticity — that in the direction normal to the plane.  For purposes of example, consider a two-
dimensional flow in the x-y plane of a Cartesian coordinate system, as shown in Figure 11.6.  For 

this case, the velocity will be given by ĵvîuV 


, and the vorticity will be kz
ˆ


.   
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For this flow, note that the stretching/tilting term in Eq. 11.7, V


 , becomes: 
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 ,  for a flow in the x-y plane only.   
 

Therefore, the vorticity transport equation for this two-dimensional flow reduces to single scalar 
equation:   
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In a more generic vector form, applicable to all coordinate systems, the two-dimensional 
vorticity equation can be written as: 
 

  





 2V
tDt

D 
  (11.18) 

 

The direction of , and the specific velocity components comprising Eq. 11.18 will depend upon 
the particular coordinate system employed. However, Eq. 11.18 will still reduce to a single, 
scalar equation. 
 
The key observation from Eqs. 11.17 and 11.18 is that for a two-dimensional flow, material 
transport of vorticity will balance the diffusion of vorticity.   
 
Two further simplifications can be made for:  (1) flows where advection is irrelevant, and 
diffusion dominates, such as the decaying viscous vortex shown in Figure 11.1, and (2) steady 
flows, where there are no local temporal changes.  The simplified equations for these types of 
flows are: 
 

Diffusion dominated flows:  
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 (11.19) 

 

Steady flows:   2V       (11.20)  
 

Expanding Eqs. 11.19 and 11.20 in a Cartesian coordinate system (x-y plane) gives: 
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Expanding Eqs. 11.19 and 11.20 in cylindrical coordinates (r- plane) gives: 
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Diffusion dominated flows:    
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Steady flows: 
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Since the vorticity transport equation contains both velocity and vorticity terms, the solution of a 
flow for which the advection terms are relevant may require that we initially substitute the 
velocity derivatives comprising the vorticity, which can make the resulting equation quite messy.  
However, there are a number of useful solutions of the vorticity equation that are independent of 
the advection terms, and capitalize upon the vorticity equation being decoupled from the local 
pressure.  In the following sections, we examine several simple examples that demonstrate the 
application of the two-dimensional vorticity transport equation.  These examples entail situations 
for which changes in vorticity depend upon only one independent variable (e.g. y).  In Chapters 
12 and 13 we will consider more complicated examples where vorticity is dependent on more 
than one independent variable (e.g. y and t), and thus require more sophisticated mathematical 
approaches. 
 
11.4 One Dimensional Vorticity Solutions 
 

Here we examine three simple flows: two with planar symmetry and one with radial symmetry.  
Two of these are flows we considered previously in Chapter 6. Similar to our solutions of the 
Navier-Stokes equation in Chapter 6, the key elements required to solve the vorticity transport 
equation for a particular flow situation are: (1) an appropriate integration technique for the 
differential equation, and (2) specification of the appropriate boundary/initial conditions for the 
flow in question.  When dealing with vorticity, the appropriate boundary conditions may not be 
evident.  Quite frequently, the boundary conditions may not be able to be specified in terms of 
vorticity, but may frequently be specified in terms of velocity boundary conditions (since 
vorticity is a derivative function of the velocity field, this generally works).   
 
In reality, the most commonly applicable vorticity boundary condition is at certain bounding 
locations where there is no vorticity.  For example, for portions of a flow well away from a solid 
surface, where we expect (or suspect) that a flow asymptotes to a uniform flow, we can generally 
specify that the vorticity (and most likely the spatial derivatives of the vorticity) within these 
regions far from a solid boundary will be zero.  However, near solid boundaries we have no 
comparable condition to the velocity no-slip condition to fall back on, and thus must depend 
upon the use of velocity boundary conditions at those locations. We will demonstrate this 
process for establishing boundary conditions as we consider the following examples.  
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11.4.1 Flow Over a Flat Plate with Suction 
 
As we will discuss in Chapter 13, an unconstrained flow along a solid surface results in the 
development of what in fluid mechanics is termed a boundary layer.  This is a layer of fluid 
adjacent to the solid surface within which viscous effects dominate, and the flow undergoes an 
adjustment from no slip at the surface to the velocity of the outer flow.  This region is generally 
quite thin (relative to the surface length).  Once a flow encounters a solid surface, this boundary 
layer thickness will generally expand continually as the flow passes along the surface.  This 
continual expansion, due to the viscous diffusion of momentum (and vorticity) away from the 
surface, makes a developing boundary layer a complicated problem to solve, since changes 
continually take place both away from and parallel to the solid surface.  However, if we consider 
a flow over a porous surface with suction through the surface, we can in essence balance the 
outward diffusion of vorticity with the advection of vorticity back toward the surface due to the 
suction.  Once this balance develops (at some point along the surface), the thickness of the 
“boundary layer”, or viscous readjustment region adjacent to the surface, will remain of constant 
thickness, and the flow will become fully developed (such that there are no further changes in the 
streamwise direction).  In the present example, we derive the corresponding velocity and 
vorticity field for this fully-developed viscous region with an external uniform flow, u = U = 
constant, passing over a flat plate with uniform suction of v = -V through the surface, as shown 
in Figure 11.7. 
 
 
 
 
  
 

 
 

Figure 11.7 Uniform flow over a flat plate with suction. 
 

For this flow, we employ a Cartesian coordinate system, as shown in figure 11.7.  Note that since 
we only consider the region of fully-developed flow, the location of the x-direction origin is 
irrelevant (this will not be the case when we examine boundary layer growth over a non-porous 
surface in Chapter 13).  As shown in figure 11.7, the origin of the y-axis is located at the plate 
surface. 
 

From the continuity equation (in 2-D) we have: 
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 v0
y
v  constant 

 

Since v = -V at y = 0, then v = -V everywhere. 
 
Now, for a steady flow, Eq. 11.22 applies: 
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We simplify Eq.11.25 by noting that for a fully-developed flow, all derivatives of vorticity in the 

streamwise (x) direction drop out, i.e. 0
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Thus, Eq. 11.25 simplifies to: 
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Rearranging Eq. 11.26, we have a second-order, linear differential equation for vorticity as a 
function of y: 
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Integrating Eq. 11.27 once gives: 
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To determine the integration constant C1 in Eq. 11.28, we note that the outer vorticity boundary 

conditions for this flow are  0
dy

d0 z
z 


 and as  y    [since the velocity asymptotes to a 

uniform flow].  Applying these boundary conditions (simultaneously) to Eq. 11.28, gives: 
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Separating variables and integrating again: 
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We now have a problem.  If we apply our boundary condition of 0z   as 
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22 CeC0y   So C2 is indeterminate in vorticity form. 
  
Carrying C2 forward, we now substitute for the vorticity in Eq. 11.29 in terms of the appropriate 

velocity derivatives, by letting
dy
du

y
u

x
v

z 
















  [since )x(fv  ]. 

This gives: 
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Integrating Eg. 11.30 gives: 
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We now apply a velocity boundary condition of  Uu  as y , which gives C3: 
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Our final boundary condition is the no slip condition, 0yfor    0u  , which allows us to 
determine C2. 
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So that the final expression for the velocity is: 
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Substituting 


 

VUC2  into Eq. 11.30 for the vorticity, we have: 
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Figure 11.8 shows the general behavior of both the velocity and the vorticity within this 
boundary region 
 

 
 
 
 
 
 
  

Figure 11.8 Behavior of the streamwise (u) velocity and the vorticity (z ) for a fully-
developed flow over a flat plate with constant suction, V. 

 
If we substitute Eq. 11.32 into the terms of the original differential equation, Eq. 11.26, we have: 
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These are of course equivalent (as they should be), and illustrate that diffusion of vorticity away 
from the plate is balanced by the advection of vorticity toward the plate. 
 
 
 
 
 
 
  

Figure 11.9 The effect of the ratio 
V
 on the development of the vorticity-bearing layer for a 

flat plate with suction. 
 
Notice that the governing parameter for this flow is the ratio of the kinematic viscosity () to the 
suction velocity (V), as illustrated by figure 11.9.  As we discussed in Section 11.2.3, the 
kinematic viscosity represents the diffusivity of vorticity.  For this flow, V is proportional to the 

advection of vorticity.  Note also that the ratio
V
  has the units of length.  Thus, if the suction 

velocity (V) increases or the viscosity () decreases, the thickness (i.e. a “length”) of the 
vorticity-bearing region becomes thinner, and thus moves closer to the porous plate.  Conversely, 

      Diffusion  
away from plate 

 Fully Developed 

y 

u, z 
U V


U 

      Advection 
toward plate 
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the vorticity-bearing region will become thicker, and extend farther from the plate if V decreases 

or  increases.  Additionally, the smaller the ratio 
V
 , the sooner the flow will become fully 

developed, as Figure 11.9 shows.  In the limit, as V 0, diffusion of vorticity will no longer be 
constrained by the suction, and the vorticity bearing layer will continuously expand with distance 
along the plate, yielding a flat plate boundary layer—the flow behavior we address in Chapter 
13. 
 
As a final observation, note that the shear stress in this fully-developed region is given by: 

VUeVUeVU
dy
du 0

0y

Vy

0y
w 































  (11.33) 

 

Equation 11.33 is quite interesting, since the shear stress is only a function of the suction 
velocity, and not the viscosity!  However, this is a bit misleading.  What this indicates is that the 
shear stress at the surface is really equivalent to the momentum “lost” from the main flow due to 
suction.  This momentum is lost, because elements of fluid with a momentum of U  enter the 
outer edge of the fully-developed region, are drawn across the region by the suction velocity V, 
and are removed from the region through the porous surface, having dissipated all of the original 
momentum due to the viscous interaction.  For a more viscous fluid, the fully-developed region 
will be thicker, and thus the shear gradients will be smaller and this dissipation of momentum 
occurs more slowly (although it will take the flow longer to become fully developed).  For a less 
viscous fluid, the fully-developed region will be thinner, with higher shear gradients, and the 
dissipation will occur more rapidly (with the flow becoming fully developed more rapidly).  
Interestingly, if the products of the density, flow velocity, and suction velocity for two different 
fluids are identical, then the momentum lost during the transit across the fully-developed region 
will also be identical, and as will the wall shear stresses, regardless of the viscosities of the two 
different fluids.  How cool is that? 
 

11.4.2 Poiseuille Flow in a Parallel Channel 
 

In Section 6.3.2 we solved the problem of a pressure-gradient driven flow between two parallel 
plates, termed a Poiseuille flow.  In this example, we demonstrate how we can solve the same 
problem by employing the vorticity transport equation.  What is interesting here is that the 
vorticity transport equation has no pressure term.  Therefore, the question arises as to how we 
incorporate the pressure into the solution.  The answer, as we will show, is by use of a boundary 
condition that evolves from the Navier-Stokes equation. 
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Reconsider the basic flow behavior of a Poiseuille flow -- a fully-devleoped, laminar flow 
between parallel surfaces, with a constant, decreasing pressure gradient in the x-direction, as 
shown here. 
 
 

 
 
  
We again utilize Eq. 11.22, the two-dimensional vorticity transport equation for steady flow in 
Cartesian coordinates. 
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From our solution in Section 6.3.2, using the continuity equation we showed that v = 0 for this 
fully-developed flow.  Additionally, since the flow is fully developed, all x derivatives are also 
zero.  Applying these conditions, and noting that the vorticity is only a function of y, reduces 
equation 11.34 to: 
 

0
dy
d

2
z

2




 (11.35) 

 

Thus, the only relevant term is the vorticity diffusion term.  Integration of Eq. 11.35 is a 
simplistic double integration, giving: 
 

21z CyC       where C1 and C2 are integration constants. (11.36) 
 

The only vorticity boundary condition available to us is that on the symmetry plane,  

at y = h/2, 0z   (where by symmetry, 0
y
u




 ).  Applying this condition gives: 
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And Eq. 11.36 becomes: 
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We also note for this flow that 
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Integrating again gives: 
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Equation 11.37 requires two other boundary conditions.  One of these is the no slip condition we 
employed for the Navier-Stokes solution in Section 6.3.2: 

 

 u = 0 @ y = 0    (no slip) 
 

which yields C3 = 0 . 
 

So Eq. 11.37 becomes: 
 

 yhy
2
Cu 21   (11.38) 

 

We cannot use the boundary condition on the opposing wall of: 
 

u = 0 @ y = 0 or h    (no slip) 
 

since this would give    2 21 1C C0 0 0 or 0 h h
2 2

      ,  either of which gives  1C 0 0
2

 , 

and makes C1 indeterminate. 
 
Thus, to establish C1 requires a third boundary condition, which we obtain from the Navier-
Stokes equation.  Recall from Section 6.3.2 that the x-direction Navier-Stokes equation reduces 
to: 
 

x
P1

dy
ud
2

2






  = constant (11.39) 

 

Employing equation 11.39 as a third “boundary” condition (although it applies at any point 
within the flow field), we differentiate Eq. 11.38 twice and equate to Eq. 11.39: 
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Thus, Eq. 11.38 becomes: 
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  (11.40) 

 

Equation 11.40 is, of course, the same result, Eq. 6.17, that we obtained in Section 6.3.2. 
 
Note that for this flow:  
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Figure 11.10 The vorticity distribution for a Poiseuille flow 
 

Thus, although this flow clearly transports vorticity, the only “changes” in vorticity transport are 
due to viscous diffusion normal to the plates, in the y-direction.  As Eq. 11.41 and figure 11.10 
show, there must be “sources” of vorticity at either plate surface (positive at the top, negative at 
the bottom), with vorticity generated at the plate surfaces, and then diffusing toward the center, 
where the opposing sign vorticities mutually cancel each other.  The processes that result in this 
generation of vorticity at the plate surfaces are discussed in detail in Section 11.5.  
 

11.4.3 Steady Flow Outside of a Rotating Rod 
 
The solutions of problems with rotational symmetry follow a similar procedure to that employed 
for problems with Cartesian symmetry.   These flows generally vary with the radial direction, r, 
and possess azimuthal (angular) symmetry.  These types of flows may be bounded at only one 
radius, or enclosed between two bounding surfaces of different radii.  The simplest of these types 
of flows is the viscous, steady flow external to a rotating solid rod, which we examine in the 
following example. 
 
Consider the 2-D flow outside a rotating circular rod.  Assume that the cylinder is in a fluid of 
infinite extent with kinematic viscosity  and density ; the cylinder is of radius R and rotates at 
a constant angular velocity .  Note that this flow is a variation on the generic type of flow we 
examined in Section 6.4.2. 
 

Consider a schematic of the flow, defined in cylindrical coordinates as shown below.  We 
assume the flow is two-dimensional, steady, with no changes in the azimuthal () direction.  
Consequently,    ivivrVV rr

ˆˆ
, and the 2-D continuity equation in r and  yields: 
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Eq. 11.24, the steady two-dimensional vorticity transport equation in cylindrical coordinates, can 
be reduced as follows: 
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Since vr = 0, derivatives in the -direction are zero, and z = z (r), Eq. 11.42 reduces to: 
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   (11.43) 

 

This flow is again only dependent on viscous diffusion.  Integrating Eq. 11.43 twice gives: 
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Since this fluid is of infinite extent, we reason that 0z   as r  , which requires that both C1 
and C2 must be zero [ since ln ()   ].  Thus, we have the surprising result that 0z   
everywhere.  We now note that in cylindrical coordinates,  
 

    








 rv

dr
d

r
1v

r
1rv

rr
1 r

z  
 

So, for 0z   we have: 
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Now, since v R   @ r = R, this yields 2
3 RC  , and: 
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Rv

2


 (11.45) 

 

Thus, this flow is viscous, but contains no vorticity!  It also displays the same functional velocity 
as an irrotational point vortex we examined in Section 9.7.3 for a potential flow.  However, that 
was for an inviscid fluid, whereas the present flow is a viscous fluid.  
 
Consider the shear stress for this flow, which is given by (see Section 5.8.1): 

0 0 0 
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This is an interesting finding, since one might assume that if the fluid displays a shear stress, 
then there must also be vorticity, which is not the case here.   
 
This absence of vorticity in a viscous flow raises the question of whether this flow ever 
contained vorticity (e.g. when the cylinder first started to rotate); and if vorticity was present, 
where did it come from and where did it go?  The answers, as we will discuss in the following 
section, are: (1) the flow did contain vorticity when the rod initially started to rotate, (2) the 
vorticity was generated by the initial acceleration of the rod, and (3) the vorticity that was 
initially generated all diffused to infinity as the flow reached steady state.  In the following 
section, we discuss the sources of vorticity, and mechanisms for its generation, in a viscous flow. 
 
11.5 Sources of Vorticity 
 
Throughout Chapters 8, 10 and the present chapter, we have developed the governing equations 
for and the processes by which we assess the effects of vorticity, its transport, and modification.  
However, the presumption in these evaluations is that vorticity is already present (or not present, 
in the case of irrotational flows), and that it somehow arose through the action of viscosity or 
baroclinic effects.  Just how vorticity is generated within a fluid is the topic of this section.  As 
we will see, there are three processes of vorticity generation that require viscous interaction with 
a bounding surface, and one where vorticity is created because of baroclinic behavior. 
 

11.5.1 Vorticity Generation by Viscous Effects 
 
Vorticity in a viscous, barotropic [ P P ( ) ] fluid can only be generated by fluid interaction with 
a bounding surface, where viscous deformation of the fluid creates gradients of vorticity.   Just 
like the diffusion of heat in a solid or fluid is dependent on a gradient in temperature to transfer 
energy as heat [i.e. q k T   ],  a vorticity gradient [actually the gradient of each directional 
component of vorticity, e.g. z ] is necessary for the viscous transfer (i.e. diffusion) of 
vorticity.  At first, this may sound a bit confusing, since there really isn’t a physical property, 
like heat, that is proportional to the vorticity gradients.  However, just as we can view the 
gradient of a temperature field, T , as proportional to the flux of heat energy (which is reflected 
by the temperature within the material itself), we can view the gradient of a vorticity component 
(e.g. z ) as proportional to the flux of that vorticity component.  By flux, we mean the rate of 
transfer of a property per unit area.  When this property flux, whether it is heat or vorticity, 
occurs adjacent to a bounding surface, this is construed as an infusion of “new” property into the 
fluid, which we consider an addition to the fluid. In the case of vorticity, we choose to call this 
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flux across the boundary a “generation” of vorticity, since no vorticity actually existed within the 
boundary, unlike heat.   
 

Note that a property will diffuse in the direction of a decreasing property (i.e. "down" the 
gradient of the property).  For heat transfer, heat will diffuse in the direction of decreasing 
temperature.  Likewise, vorticity will also diffuse in the direction of decreasing vorticity. 
 

In addition, the total vorticity flux really reflects the vector sum of the gradient of each of the 
directional components of vorticity.  However, to demonstrate the processes that lead to viscous 
generation of vorticity, we will restrict our assessment to a two-dimensional flow, with only one 
component of vorticity.  
 

Consider the flow of a viscous fluid parallel to a flat surface.  Such flows will develop a region 
of viscous deformation adjacent to the surface (i.e. a boundary layer), where the velocity profile 
adjusts from no slip at the surface to the free stream velocity of the outer flow, as shown in 
Figure 11.11. 
 

 
 
 
 

 
 
Figure 11.11 A typical velocity profile for a viscous flow adjacent to a flat surface. 

 
To assess the behavior of the fluid at the surface boundary, we evaluate the x-direction, two-
dimensional Navier-Stokes equation in Cartesian coordinates (Eq. 5.45) at the bounding surface 
(i.e. at y = 0).  Therefore, at the surface, we have:  
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Since the streamwise velocity, and its derivatives don’t vary along the plate (y = 0), we have 
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  at y = 0, allowing us to delete the terms indicated in Eq. 11.46, giving the 

simplified Eq. 11.47.  
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Note that in Eq. 11.47 we leave open the possibility for transpiration across a porous surface (v ≠ 
0).  By neglecting the gravity component (assuming gravity acts in the y direction) and noting 
that the vorticity at the surface (y = 0) is: 
 

y
u
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v

z








  ,   

  

we can further simplify Eq. 11.47 to yield Eq. 11.48, which describes the flux of vorticity at the 
surface: 
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  (11.48) 

 
Flux of vorticity @ surface 

 
As discussed above, at the bounding surface the flux of vorticity is indicative of vorticity 
generation.  As Eq. 11.48 illustrates, for a solid boundary (v = 0) there are two possible sources 
of vorticity:     

 

1) acceleration (of the surface or the adjacent fluid), and   
 

2) a streamwise pressure gradient. 
 

However, if the surface is porous, this also opens up the possibility for vorticity generation by 
transpiration at the surface  0v

0y



. 

 

Note that vorticity is only generated when 0
y

z 


 .  However, recall from the above discussion 

that vorticity will diffuse in the direction of a decreasing vorticity gradient.  Consequently, the 

implication of the sign of 
y

z



 on the type of vorticity that is generated is counter intuitive.  That 

is: 

1) when 0
y

z 


 , Positive rotation vorticity will be diffused into the fluid (i.e. generated) 

from the boundary, whereas  
 

2) when 0
y

z 


 , Negative rotation vorticity will emanate from the boundary.  

However, this generation process is relative to the direction of the normal for the generating 
surface.  If the outward normal for the generating surface is positive (relative to the defining 
coordinate system), the convention is as just stated.  However, if the outward normal is in a 
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negative coordinate direction, the sign of the vorticity generation will be reversed [e.g. if 

0
y

z 


 , and the surface normal is in a negative direction, the vorticity generation will be 

negative, relative to the coordinate system].  If we consider each of the terms on the right side of 
Eq. 11.48 as “sources” of vorticity, one can see that a flow could have several sources of either 
positive or negative vorticity, depending on the sign of each term. 
 
We can perform a similar assessment of vorticity generation for a circular cylinder of radius R in 
cylindrical coordinates, starting with the two-dimensional Navier-Stokes equation in the r- 

plane. Here we consider the limiting conditions of 0
vv

v 2
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Eq. 11.49 is an expression for the flux of vorticity at a cylindrical surface of radius R.   
 

Again, just as for a flat plate, the sources of vorticity are:   
 

1) acceleration (of the surface or the adjacent fluid),  
 

2) an azimuthal pressure gradient (in the  direction), and 
 

3) transpiration (if the boundary is porous) 
 
Note that the sign of the first two terms on the right-hand side of equation 11.49 is positive, 
whereas those same terms were negative in equation 11.48.  This is simply a consequence of the 
way that the coordinate axes in cylindrical coordinate systems are defined. 
 
Vorticity generation by viscous processes is a quite common, since all fluid-adjacent surfaces are 
frequently subject to accelerations or pressure gradients.  Often, the vorticity generation process 
is the result of the action of both localized acceleration and pressure gradients adjacent to a 
surface.  Examples are the acceleration and movement of vehicles (e.g. cars, planes, ships), the 
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paddling of a canoe, and the flight of a bird.  We most frequently notice this generation of 
vorticity as a by-product, which is the “shedding” or release of this generated vorticity into the 
fluid as discrete vortices (more on this in Section 15.4).  Although these vortices are often not 
visible, their effects are often perceived by secondary effects such as pressure pulsations, noise, 
or deformation of the free surface of a liquid.  Anyone who has driven behind a large truck has 
experienced the buffeting of your vehicle, which is the result of the truck shedding large, discrete 
vortices that are felt as oscillatory pressure changes when they impact your vehicle.  The 
dimpling of the surface of a lake by your canoe paddle is due to vortices shed from your paddle 
as it both accelerates and generates a pressure gradient as it passes through the water.  And if you 
have ever heard the thump, thump of a helicopter, or the similar (but softer) sounds of a goose, 
duck, or bird as they come in for a landing, or the buzzing of a bee or humming bird, then you 
were hearing the effects of generated vorticity as it is shed as vortices from the rotor or wings.    
 
While the above processes are examples of where vorticity generation is commonly observed, 
they are actually quite complicated processes.  To assess the processes of vorticity generation by 
viscous effects, we require some much simpler examples.   Therefore, in the following three 
sections we will examine and assess some very simple examples that will illustrate more clearly 
the process of viscous vorticity generation by surface acceleration, streamwise pressure 
gradients, and transpiration. 
 

11.5.2 Vorticity Generation by Acceleration 
 

11.5.2.1 Acceleration of a Rotating Rod 
 

Consider an initially stationary, solid circular rod in a viscous fluid, which at time t = 0 suddenly 
starts rotating at a constant angular velocity , such that: 
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As we showed above, for a radially symmetric system such as this, Eq. 11.49 models the 
vorticity flux as: 
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For this type of flow, the flow is azimuthally symmetric such that there will be no change in 
pressure in the azimuthal () direction, and the solid surface renders 0v
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.  Thus, the 

vorticity flux for this situation is only a function of the acceleration of the rod. 
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Note that Eq. 11.50 indicates that when:  
 




  0
t

v
  vorticity is generated 




  0
t

v
  no vorticity is generated 

 

Therefore, the generation of vorticity can only occur during the initial acceleration of the rod.  
After the rod reaches steady state, no more vorticity is generated, and the vorticity that was 
generated can only diffuse away from the rod.   
 

As we showed in the example of Section 11.4.3, the steady state velocity field outside of a rod 
rotating at a constant speed in an infinite fluid contains no vorticity.  However, vorticity was 
originally present, since Eq. 11.50 indicates that a finite amount of vorticity must have been 
generated within the fluid when the cylinder underwent its initial acceleration.  However, after 
the cylinder reached steady state, no more vorticity was generated, and over time the vorticity 
generated during the initial acceleration all diffused outward to infinity, leaving the flow without 
vorticity.  
 
 
 
 
 
 
 

Figure 11.12 Illustration of fluid region 3R outside rod of radius R. 
 
How much vorticity is generated?  We can examine this question by assessing the vorticity 
initially present within a region of fluid extending well away from the cylinder surface.  
Immediately after the rod rotation is initiated, the vorticity that is generated will still remain 
within a region of fluid very close to the cylinder.  Fluid well away from the rod (for purposes of 
example, let’s assume a circle of radius 3R) will not have noticed that the cylinder is rotating, 
since the generated vorticity will not have had sufficient time to diffuse outward, and thus the 
fluid at r = 3R will still be quiescent ( 0V 


).   

 
If we calculate the circulation within the region r = 3R, as shown in Fig. 11.12, we have: 
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2

0cA
initial  






 (11.51) 
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since 
 ivV ˆ
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  iRd3irdsd ˆˆ , and 0v
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.  However, when this flow reaches a steady 

state, we know from Section 11.4.3 (Eq. 11.31) that within the fluid: 
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Thus, the circulation (at any radius) for this steady state flow is: 
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Note that statesteady :  (1) depends only on the cylinder radius, not the radius of the fluid region, 

and (2) is a non-zero value.  However, how can statesteady  be a non-zero value when the vorticity 

within this flow field was shown to be zero in Section 11.4.3?   The answer is that while there is 
no vorticity within the steady state flow, the boundary we are integrating around also contains 
the rod, which does have “vorticity”, in the form of a solid body rotation.  As we showed in 
Section 8.2.2, the circulation within a specified region is the sum of all the vorticity within that 
region.  So, for this example, we can write that: 
 

fluidrodtotal   (11.53) 
 

Now, if we only consider the rod, the region of r  R, the circulation at any time after the rod 
reaches steady state is given by: 
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 (11.54) 

 

Substituting Eq. 11.53 back into Eq. 11.52, we have: 
  

fluid
2

total R2    (11.55) 
 

Thus, when the flow has reached steady state, we can set Eq. 11.52 equal to Eq. 11.55, and solve 
for the circulation within the fluid: 
 

2
statesteadyfluid

2
total R2R2   (11.56) 

 

Equation 11.56 indicates that in the steady state flow, 0fluid  .  This supports the fact that at 
steady state all the vorticity within the fluid will have diffused away to infinity, as we showed in 
Section 11.4.3.  However, if we set the initial circulation (Eq. 11.51) within our region r = 3R 
equal to the total circulation of Eq. 11.56, we have: 
  

0R2 initialfluid
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Equation 11.57 indicates that 2
fluid 2 R    !  This represents the total amount of vorticity (i.e. 

circulation within the fluid) that was generated by the initial acceleration of the cylinder, and that 
initially resided within the fluid close to the rod.  This is also the cumulative amount of vorticity 
that eventually diffuses out to infinity.  Since the circulation for the fluid is negative, this 
indicates that the vorticity generated within the fluid must have a negative orientation (i.e. 
vorticity with a clockwise sense of rotation).   As the rod accelerates in the positive  direction, 
this creates a positive vorticity flux,  
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which corresponds to the generation of negative vorticity, as discussed in Section 11.5.1. 
   
Thus, the initial acceleration of the rod generates a finite amount of vorticity within the fluid 
adjacent to the rod boundary.  This initial vorticity is then redistributed within the fluid according 
to our vorticity transport mechanisms [in this example, it eventually diffuses to infinity]. 
 
Does it make any difference how fast the rod is accelerated to R ?   If I accelerate the rod very 
slowly, or very quickly, will it influence how much total vorticity is generated?  The answer is 
no.  There will always be the same amount of vorticity generated, regardless of how the cylinder 
accelerates.  If we expand our region of integration for the circulation outward toward infinity, 
the value of initial  will remain zero for an extended period, and thus 2

fluid R2   for all 
modes of acceleration, as long as the terminal angular velocity of the rod is the same.   
 

11.5.2.2 Acceleration of a Circular Vessel 
 

Now, using the rotating rod example as a guide, what happens if I place a circular vessel full of 
quiescent water on a turntable and suddenly start it rotating at an angular velocity  [here we 
will again assume two-dimensional behavior]?  For this situation, vorticity is generated at the 
inner boundary of the vessel, but how much?  Consider the circulation within the boundaries of 
the vessel (i.e. @ r = R). 
 

2R2R2RsdVAd   )(  (11.58) 
 

Here, as in our previous example, vorticity is generated adjacent to the bounding surface during 
the acceleration of the vessel, yielding a circulation of 2R2  .  After the flux of new 
vorticity passes into the fluid adjacent to the outer boundary, the vorticity is spread by viscous 
diffusion uniformly throughout the fluid, eventually creating at steady state a solid body-like 
velocity field within the fluid, as shown in Figure 11.13. 
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Figure 11.13 Illustration of the development of the velocity field within the fluid inside a 
circular vessel subjected to sudden rotation to a constant angular velocity . 

 
After reaching a steady state condition, what if we suddenly bring the vessel to rest?  What 
happens?  When the rotation terminates,

Rr
v

 , the velocity at the vessel surface, becomes zero, 

and the circulation within the vessel becomes:  
  

   Ad0R2vsdV 


!  (11.59) 
 

Equation 11.59 indicates that the total vorticity of the fluid within the cylinder is now zero. What 
happened to the original vorticity?  The answer is that it was cancelled out by a new flux of 
vorticity of opposite sign, which was generated at the wall surface, and transferred to the fluid 
adjacent to the vessel wall when the vessel rotation was decelerated and stopped.   However, 
while the circulation for the total fluid within the vessel will be zero at the instant of stoppage, 
the local response of the fluid will be quite unsteady and protracted. The original vorticity and 
the newly generated vorticity will interact through viscous diffusion to eventually bring the 
velocity field within the vessel to its new steady state of zero (vorticity, velocity, and 
circulation).   This process is similar to what happens to the fluid in a cup of coffee or tea after it 
is stirred.  Since the bounding surface of the cup is stationary, the circulation of the fluid within 
the cup must always be zero.  Consequently, after stirring and removal of the stirring implement, 
there must be equal amounts of positive and negative vorticity contained within the cup.  Over a 
period of time, viscous diffusion (and some advective transport and stretching/tilting) will cause 
the competing vorticities within the cup to cross-cancel, resulting in the eventual decay to a 
quiescent (but well mixed) cup of beverage. 
 
Note that while the above examples deal with vorticity generated by the acceleration/deceleration 
of a surface adjacent to a fluid, the same process also holds for the acceleration of a fluid 
adjacent to a stationary surface.  This mechanism of vorticity generation is most clearly apparent 
when considering a fluid that accelerates/decelerates above a flat surface, such as the interaction 
that occurs when gusts of wind pass in proximity to the earth.  Since wind gusts (acceleration) 
and lulls (deceleration) occur all the time, wind interactions with the earth provide continual 
sources of both positive and negative vorticity, which subsequently interact in complicated 
vorticity transport processes that further affect local wind patterns.   
 
 

 
Initially 

 
Steady State  
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11.5.3 Vorticity Generation by a Streamwise Pressure Gradient 
  
To assess the generation of vorticity by a streamwise pressure gradient, consider a fully-
developed laminar flow between parallel, bounding surfaces.   This is the Poiseuille flow that we 
considered in Section 6.3.2, and in Section 11.4.2 above. 
 
 
 
 
 
 

In Section 6.3.2, the velocity and vorticity for this flow were determined as: 
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  (11.62) 

 

Recall that this flow has solid boundaries, is steady, and has a constant pressure gradient that is 
decreasing in the x-direction (to give a positive, x-direction flow).  Simplifying Eq. 11.48 for a 
solid boundary with a steady flow, and employing Eq. 11.62, we have for  
y = 0: 
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Likewise, for the y = h boundary, we have the same result: 
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Thus, since the flux of vorticity is equivalent at the respective boundaries (y = 0 and  
y = h), equal but opposite amounts of vorticity will be generated.  Since Eq. 11.63a indicates that 
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, this indicates that negative vorticity 
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boundary, Eq. 11.63b, also gives 0
y

 
hy

z 






, which we would initially anticipate indicates the 

generation of negative vorticity.  However, Eq. 11.61 indicates that the vorticity generated at the 

boundary 









 h
U4

0yz
max is positive.  Here we note that the surface normal for the upper 

boundary will be in the negative y-direction. Recall from our discussion in Section 11.5.1 that a 
negative surface normal will reverse our convention for vorticity generation, such that a positive 
vorticity gradient results in the generation of positive vorticity for a negative surface.     
 
As vorticity is generated at each of the opposing surfaces, it will diffuse toward the midline 
between the plates, resulting in a mutual cancellation of the respective opposing sign vorticities.  
Note that if there were not mutually opposing surfaces, but only one bounding surface, the 
presence of a pressure gradient would only generate vorticity at that bounding surface.  
Examples of such pressure-gradient flows are the external flow over a cylinder or an airfoil, as 
we discussed in Chapter 9 for inviscid potential flows.  In the presence of viscosity, such external 
flows will result in the generation of vorticity at the body boundary due to the spatially varying 
pressure gradients that are created over the bodies due to their respective shapes.  The subsequent 
transport of the generated vorticity will of course result in a modification of the associated 
velocity field, which will modify the external flow, and thus affect the subsequent generation of 
vorticity.  The process, as one can imagine, can get quite interactive and complicated.   
 
Consider the external flow over a cylinder.  In Section 9.8.1 we showed that inviscid potential 
flow around a cylinder is subject to large spatial variations of the surface pressure (and thus 
pressure gradient).  For a viscous flow, the variation of the pressure gradient from negative to 
positive, as the external flow circumvents the cylinder, will result in the generation of both 
positive and negative vorticity within the bounding flow.  Since no opposing surface is present to 
generate counter-balancing vorticity, these types of flows undergo very strong modifications 
from the hypothetical inviscid flow, which further modify the pattern of vorticity generation.  
Often, a preponderance of one sign of vorticity or the other will be generated, resulting in flow 
field adjustments that allow the flow over the body to release or "dispose" of the continually 
generated and accumulating vorticity.  At higher Reynolds numbers, these flow field adjustments 
result in very unsteady and often complicated processes of vorticity “shedding”, often as discrete 
vortices, which pass into the departing flow field.  We will discuss these types of external flows, 
and the processes for shedding vorticity in Chapter 15.  
 

11.5.4 Vorticity Generation by Surface Transpiration 
 
While transpiration through bounding surfaces is not widely encountered in many practical fluid 
applications, transpiration is of importance in such things as turbine blade cooling, paper making, 
and flow control (particularly for control of separated flows, which we discuss later in Chapters 
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14, 15, and 17).  To examine vorticity generation due to transpiration through a porous surface, 
we utilize the example that we did in Section 11.4.1 for a fully developed flow over a flat plate 
with suction.  From Eq. 11.31 and 11.32, the expressions for the velocity and vorticity were 
determined as: 
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This flow is steady with no streamwise pressure gradient, but with a constant suction velocity 
through the bounding surface, Vv

0y



.  The vorticity flux equation, 11.48, thus simplifies to: 
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Substituting v = -V = constant for this flow and employing Eq. 11.65 @ y = 0, we have: 
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 (11.67) 

 
 
 
 
 
 
  
 
 

 
 

Figure 11.14 Generalized velocity and vorticity curves for flow over a porous flat plate with 
suction  Vv

0y



.  The positive surface gradient of vorticity indicates a 

flux of negative vorticity across the boundary. 
 

Since 0
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, this implies that vorticity is being generated at the surface (which has a 

positive normal) in the amount
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This negative vorticity will diffuse outward from the surface.  However, as we discussed in 
Section 11.4.1, this vorticity is simultaneously transported (by advection) back towards and 
removed through the surface by the suction.  Because of this balance between viscous diffusion 
and transpiration, the velocity profile for this flow does not change, and attains the fully 
developed condition shown in Figure 11.14.   
 
However, what will happen if, as the flow passes along the flat surface, the flow leaves the 
porous surface with suction, and passes onto a solid boundary with 0v

0y



?   Equation 11.66 

then would give 0
y

 
0y

z 






, which indicates that there will be no flux of vorticity from the solid 

surface.  Consequently, no additional vorticity will be generated, nor will the existing vorticity in 
the flow field be restrained by the surface suction.  Therefore, the existing vorticity will diffuse 
outward as the fluid moves along the solid boundary, resulting in a continual increase in the 
thickness of the vorticity bearing layer.  This process, as we will discuss in Chapter 13, results in 
a growing “boundary layer.”  The flow for this situation is no longer fully developed, and (as we 
will see in Chapter 13) the analysis of the flow becomes more complicated.   The general 
character of this flow over a solid boundary is represented in Figure 11.15.   
   
 
 
 
 
 
 

Figure 11.15 Generalized velocity and vorticity curves for flow over a solid flat plate 
 0v
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.  Note that there is no vorticity flux since the gradient of the 

vorticity at the surface is zero. 
 

Note that although 0
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, at the boundary we have 0
0yz 


 (from the previous developed 

vorticity distribution).   Since no new vorticity is generated over the solid boundary, the total 
vorticity that initially existed within the vorticity-bearing layer will continually redistribute as the 
flow advects downstream, with a non-zero vorticity value at the boundary. 
Now consider what happens if we transition from a porous plate with suction, to a porous plate 
with injection of fluid through the surface and into the flow field.  Assuming that the injection is 
equal, but opposite, to our suction process, this would transition from a boundary condition of 

Vv
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to a boundary condition of Vv
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.   Since this flow would start with an initial 
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distribution of negative vorticity  0z   within the vorticity-bearing region, and a non-zero 

vorticity at the boundary  0
0yz 


, the vorticity flux will now be given by: 

 

0V
y

 
0y

z
0y

z 









   (since z 0   initially) (11.68) 

 

Equation 11.68 indicates that injection will result in the generation of positive vorticity at the 
surface (recall our discussion in Section 11.5.1).  This positive vorticity will be both advected 
(by the injected fluid) and diffused away from the surface, initially modifying the vorticity and 
velocity profiles as shown in Figure 11.16. 
  
 
   
 
 
  
 

 
 
 (a)  Shortly after transition to injection (b)  After extended exposure to injection 

 
Figure 11.16 Generalized velocity and vorticity curves for flow over a porous flat             

plate with injection  Vv
0y




.  Here the negative slope of the vorticity at 

the surface indicates a flux of positive vorticity across the boundary. 
 

As shown in Figure 11.16a, the flux of positive vorticity due to injection will begin to cross-
cancel with the original negative vorticity distribution within the vorticity bearing layer, such 
that the vorticity distribution will develop a vorticity maximum (in absolute terms) away from 

the plate surface.  At this maximum, the slope of the vorticity is zero, 0
y
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 .  This null 

vorticity gradient roughly reflects a null second derivative of streamwise velocity 
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z , which indicates a cross-stream inflection in the streamwise velocity.   As we 

will discuss in Chapters 13 and 17, a cross-stream inflection in the streamwise velocity is 
generally an undesirable flow characteristic, since it is a precursor of unstable flow behavior, and 
can quickly result in a transition from laminar to turbulent flow.  
 
Assuming that a stable flow can be maintained, as the flow proceeds along the porous plate, the 
fluid injection results in further generation of positive vorticity, and the vorticity profile will 
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skew even further, with 0
0yz 


.  When 0

0yz 


, as shown in Figure 11.16b, the vorticity 

gradient at the bounding surface becomes zero, 0V
y

 
0y

z
0y

z 









, and the flux of vorticity 

across the boundary will cease.  Since  0
0yz 


, this means that the slope of the velocity at the 

surface will be zero, 0
y
u

0y








, such that the flow closely adjacent to the surface will become 

essentially stationary.  Since no new vorticity is generated, the flow again grows only through a 
redistribution of the vorticity within the vorticity bearing layer (assuming that it remains in a 
stable, laminar flow--which is unlikely).  Thus, as the flow moves along the boundary, and fluid 
injection continues, the vorticity-bearing layer will spread farther from the surface, but there will 
be no further addition of vorticity. 
 

11.5.5 Vorticity Generation by Baroclinic Effects 
 
As mentioned in Section 11.5, baroclinic effects [P ≠ P()] also can generate vorticity.  In 
Chapter 10 (Sections 10.2-10.5 in particular), we illustrated that when the gradients of pressure 
and density are not aligned, such as in buoyancy-induced flows, there will be temporal changes 
in circulation for a defined region of fluid.  In this section, we address the generation of vorticity 
that gives rise to circulation changes due to baroclinic behavior.  To assess this behavior, we 
reconsider Eq. 11.5, the equation we derived leading to the vorticity transport equation:  
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Identifying that  
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, and rearranging: 
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 (11.69) 

 

Here, we know that 
Dt
D  reflects the changes of the vorticity field due to material changes, 

 V


  models vorticity addition/removal due to stretching/compression effects, and 
2  

represents diffusion of existing vorticity due to viscous effects.  The P1
2 









 term is an 

interesting term, in that is does not deal with a modification or transport of existing vorticity 
since it requires no action on  , the vorticity field.  Thus, this is a term that can create vorticity 
where none existed, and without the assistance of viscosity.  For simplicity, consider a two-
dimensional (Cartesian, x-y plane), inviscid flow.  Eq. 11.69 then simplifies to: 
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 (11.70) 

 

Equation 11.70 illustrates that if the gradients of pressure and density do not align, the cross 
product of the gradients will be non-zero, and thus vorticity will be generated.  For example, in 

an x-y plane the component of vorticity is kz
ˆ

 , with j
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.  Thus, Eq. 11.70 reduces to a single component equation for z , given by: 
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While Eq. 11.71 looks a little daunting, it is really quite instructive as to how baroclinic flows 
generate vorticity.  Consider the sea breeze problem we examined previously in Section 10.2.3.  
For that example, we made the approximation that isobars of pressure would align with the earth, 
but the isopycnals of density would align vertically (due to the temperature differential between 
the air over land relative to the air over the ocean).  This is generically illustrated in Figure 11.17 
below. 
 
 
 
 
 
 
 

 
 
Figure 11.17 Idealized distributions of air density and pressure from land to sea.      
 

Figure 11.17 is highly idealized, but illustrates the most extreme case.  Here we assume P = P(y) 

and  =  (x), and 0
x





, and 0

y
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  (since pressure will decrease with altitude).   Since the 

gradients are orthogonal to each other, Eq. 11.71 reduces to: 
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Equation 11.72 indicates that the conditions shown in figure 11.17 will generate negative 
vorticity.  Recall in Section 10.2.3 that for these same types of conditions, we determined that the 
air would experience a negative change in circulation, reflecting a clockwise air flow, which is of 
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course consistent with the generation of negative vorticity.  One might think of this as the denser 
air over the sea, under the influence of the pressure gradient, moving inland (on shore) to 
displace the lighter air, which must move upward and seaward to satisfy continuity. 
 

Of course, in the evening, when the land cools faster than the sea, the density will be greater over 
the land than the sea, causing the generation of positive vorticity and a counter-clockwise 
circulation, such that the direction of the air flow will reverse to a seaward (off-shore) breeze. 
 

Notice that the conditions represented in figure 11.17 could also apply to vorticity generation 

within the ocean, where pressure increases with depth from the ocean surface ( P 0
y





 using the 

coordinates of figure 11.17).  If a spanwise variation in density (e.g. 0
x





due to salinity 

variations) is present, vorticity will again be generated, either negative or positive depending on 

the value of 
x



. 

 
Now, consider the movement of a variable density fluid through a duct due to a pressure 
difference, as shown in Figure 11.18.  Here, the density varies with y and the pressure with x.  If 
we assume that the flow is left to right, then the pressure must decrease in the positive x-

direction and 0
x
P





.   

 
 
 
 
 
 
 
Figure 11.18 The flow of a fluid with vertical density variations in a horizontal duct. 

 

Initially, we will assume that the density decreases in the positive y-direction, so 0
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 .  Thus, 

Eq. 11.71 then reduces to: 
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Equation 11.73 indicates that negative vorticity will be generated as the flow proceeds in the x-
direction.  Physically, we reason that the pressure gradient will accelerate the less dense material 
faster than the more dense material, thus a differential in cross-stream velocity will develop.  
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Since we assumed the flow to be inviscid, the flow would continue to accelerate differentially, 
and thus continually generate negative vorticity, such that the total vorticity will continually 
increase (since vorticity does not dissipate in an inviscid fluid).  Note that if the density increased 
in the y-direction (opposite to Figure 11.18), then positive vorticity would be generated. 
 
The present discussion illustrates how baroclinic processes are another source of vorticity within 
a flow field.  Here, the vorticity does not emanate from a boundary, nor is viscosity necessary.  
As pointed out in Chapter 10, such baroclinic processes are a key element in many atmospheric 
and oceanic flows.  The particular development of rotating flows, such as tornados and 
hurricanes, depends on strong thermal warming, and thus density variations, to generate 
vorticity.  Such density-generated vorticity can accumulate and concentrate into tornadic flow 
patterns.  Taken to an extreme, very strong temperature/density variations in wild fires have, 
under the right terrain and conditions, generated whirling flame concentrations termed 
“firenados”.  This link shows several images of such phenomena, as well as some scary videos. 
Strong density gradients within the oceans can also yield strong rotational behavior, which can 
create/modify ocean currents, which in turn can modify the local weather patterns (e.g. such 
processes contribute in complicated ways to the cyclical El Niño/La Niña weather patterns).  
 
An additional illustration of the global effects of baroclinic vorticity generation is the Gulfstream 
ocean current that flows north up the east coast of the United States, and then across the Atlantic 
ocean to Europe. The Gulfstream depends on temperature and salinity variations in sea water 
density to generate vorticity, and thus a large-scale circulation.  With the warming of Greenland 
by climate change, its ice covering is rapidly melting, introducing massive amounts of fresh 
water into the North Atlantic ocean, which reduces the salinity (and thus density) of the surface 
waters of the Gulfstream.  Consequently, vorticity and circulation generation are reduced, 
slowing the current of the Gulfstream.  If Greenland, and other associated ice bound regions, 
continue to melt at a high rate, climate scientists predict that the Gulf stream will continue to 
slow, which will severely impact the climate of Europe, as well as result in substantial sea level 
increases along the eastern seaboard of the United  States.  Continued melting of the ice pack 
through the next century could eventually result in a collapse of the Gulfstream, and a 
cataclysmic change in global weather patterns. 
 
11.6 Circulation Changes in a Fixed Reference Frame 
 
In Section 10.1, we examined how circulation can change for a region of fluid that moves within 
a viscous flow field.  In the present section, we examine the changes in circulation that can take 
place within a fixed region as the flow field moves through it.  While in Section 10.1 we focused 
on a defined material region, which was free to move and deform, here we focus on a defined 
spatial region, through which the flow will pass. Our concern is how the circulation within this 
fixed region changes as vorticity-bearing fluid passes into and out of the region. Here we 

http://www-das.uwyo.edu/~geerts/cwx/notes/chap07/tornado_form.html
http://curry.eas.gatech.edu/Courses/6140/ency/Chapter11/Ency_Atmos/Hurricanes.pdf
https://www.google.com/search?q=firenado&ie=utf-8&oe=utf-8&client=firefox-b-1
http://journals.ametsoc.org/doi/full/10.1175/JCLI4118.1
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consider a fixed curve in space, as shown in figure 11.19, for which the circulation is given by a 
line integral as   sdV 

. 

 
 
 
 
 
 

Figure 11.19 A fixed region in space, with circulation   sdV 
. 

 
Now, since we consider a fixed curve, and don’t follow a material region, we can write the 
change in  with time as a conventional, not a material, derivative: 
 

 







 sdV
tt


          (note: this is not 

Dt
D

) 

= sd
t
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  (11.74) 

 

Note that we can bring the time derivative inside the integral, because the region over which we 
integrate is of fixed dimensions (see Liebniz rule on integration limits). 
 
However, rearranging the Navier-Stokes equation (Eq. 5.44), we can solve for the time 
derivative of velocity, giving: 
 

  2V PV V g V
t

 
      

 
 (11.75) 

 

We now substitute Eq. 11.75 into 11.74, and simplify and consolidate the terms, using a vector 
identity from Chapter 2 [Eq. 2.16g ---prove to yourself how we get this relationship], and then 
Stokes' Theorem, section 2.4.4. 
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neglect 

A 

C 

= 0 
(if P = P() 
or constant) 

From Stokes’ Theorem 

0, since operating on a scalar, Eq.2.16a 

http://en.wikipedia.org/wiki/Leibniz_integral_rule
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Thus, for barotropic flows [P = P()], Eq. 11.76 reduces to: 
 

    




C

2

A

sdVAdV
t


 (11.77) 

 

Note that Eq. 11.77 is similar to Eq.10.10, with the exception of the additional first term on the 
right hand side of Eq. 11.77.  This term, as we will illustrate in the following, represents the 
transport of vorticity into and out of the spatial region C. 
 

 
 
 
 
 
 
 

Figure 11.20 The development of a boundary layer for a viscous fluid impinging on, and 
passing over, a stationary flat plate.  

 

As an illustration of how Eq. 11.77 can be employed, consider the boundary layer that develops 
when a viscous fluid flows over a stationary flat plate, as shown in figure 11.20.  We want to 
examine how and why the vorticity changes as the flow passes onto and over the plate surface.  
To do this, we consider an arbitrary rectangular region C, as shown by the dotted line in figure 
11.20, which is h high, and extends in a streamwise direction from x1 to x2.  Here, we assume 
that h is high enough that the upper extent of region C is in a region of uniform flow, such that 
any deformation of the passing fluid takes place only within the region C.  
 

If this is a steady flow, then 0
t





, which means that Eq. 11.77 reduces to: 
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 (11.78) 

Now, consider the viscous term on the right of Eq. 11.78.  Examining the flow in figure 11.20 

within a two-dimensional x-y plane for jviuV ˆˆ 


 and jvidxsd ˆˆ 
 , we have that: 
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  (11.79) 

Since this is a steady flow, 
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As we will show in Chapter 13, The only significant term in Eq. 11.79 is dx
y
u
2

2




 , since 

changes of u with respect to x are zero along the x-directed boundaries of region C, and  since v 
<< u, changes in v at the y-directed boundaries are either zero, or negligible.  Additionally, the 

remaining 2

2

y
u



  term will contribute to the integral in Eq. 11.79 only along the x-boundary on the 

plate surface at y = 0, since 0
y
u
2

2




  at the y = h boundary, where the velocity profile is uniform.  

Thus, we can reduce the viscous term of Eq. 11.79 to: 
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 (11.80) 

 

Now consider the x-direction Navier-Stokes equation at the plate surface, which reduces to (after 
dropping terms that are zero at y = 0): 
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Substituting Eq. 11.81 into Eq. 11.80 we get: 
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 (11.82) 

 

Here P1 and P2 are the pressures at the respective x locations on the plate surface.  Thus, the 
impact of viscosity on the circulation of region C is reflected by the change in pressure along the 
plate surface. 
 
The first term on the left of Eq. 11.78 is a bit harder to assess.  If we expand the integrand for a 

two-dimensional flow in the x-y plane, where jviuV ˆˆ 


, kz
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, we can 
write: 
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Now if we integrate this term over the area encompassed by the region C, 
hy0 and xxx 21  , we have: 
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 (11.84)
  

 
 

Here, we note that 0
hyz 


 (since we have uniform flow at y = h) and 0v

0y



(at the plate 

surface), which negates a contribution by the last two integrals of Eq. 11.84.  If we now 
substitute Eqs. 11.82 and 11.84 back into Eq. 11.78 we obtain: 
  

    dyudyuPP h

0
xxz

h

0
xxz

12
12  




  (11.85) 

 
 
 

 
Equation 11.85 indicates that if 12 PP  , there is no new vorticity created inside of region C.   
However, if 12 PP  , vorticity is created inside of region C. 
 
 
 

 
 
 
 
 

Figure 11.21 Illustration of two fixed regions encompassing the boundary layer (dotted 
line) created by a viscous fluid impinging on, and passing over, a stationary 
flat plate.  Region C encompasses the leading edge of the plate; region C' 
encompasses a region following the leading edge region.  Note that U and P 
are the free stream velocity and pressure. 

 
Now, consider two different fixed regions above the plate, C and C', as shown in figure 11.21.  
Region C encompasses only the immediate leading edge region of the plate, whereas region C' 
encompasses a region that begins just after the leading edge region, and extends downstream.  
Using Eq. 11.85, we can assess the pressure and vorticity behavior within each of these 
respective regions, and the impact of pressure changes on the generation of vorticity. 
 
For curve C, Eq. 11.85 gives, 
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    dyudyu
PP h

0
xxz

h

0
xxz

stag
12  







 (11.86) 

 
 
 
 

Here, we note that 
2

UPP 2
stag 





 comes from applying the Bernoulli equation from the 

impinging free stream to the leading edge of the plate (see figure 11.21), which we surmise is a 
stagnation point.  Since the flow undergoes little deformation prior to impacting the stagnation 
point, the use of the Bernoulli equation is a reasonable assumption.  Additionally, since the flow 
will be uniform until the point of impingement, we surmise that no vorticity is transported into 
region C, or 0

1xxz 


.  Thus, rewriting Eq. 11.86, we have: 
 

 
2

Udyu
2h

0
xxz 2




  (11.87) 

 

Equation 11.87 implies that there is a flux of vorticity out of region C, so vorticity must have 
been generated at or in the vicinity of the leading edge of the plate. 
 
Now, considering curve C', Eq. 11.85 yields: 
 

    0dyudyuPP h

0
xxz

h

0
xxz 12





 

  (11.88) 

  
 
 
In Eq. 11.88 we assume that the pressure at both x1' and x2' is P, since the streamlines along the 
plate will be essentially parallel, and the pressure of the outer region of uniform flow will be 
“impressed” across the thin boundary layer region (we confirm this at the end of section 13.2.1).  
Thus, rearranging Eq. 11.88, we have: 
 

    dyudyu
h

0
xxz

h

0
xxz 12  

  (11.89) 

 
 
 
 

Equation 11.89 indicates that the vorticity flux into and out of C' are identical.  Thus, the 
vorticity generated at the leading edge of the plate is the source of all the vorticity for a flat plate 
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flow (with a constant outer velocity, U).  Once the vorticity is generated at the leading edge, it 
will only redistribute laterally by viscous diffusion, as it is advected along the plate with the 
flow.  Of course, if the external flow accelerates or decelerates due to geometry changes, this 
will result in pressure changes within the uniform flow external to the boundary layer.  As we 
discussed in Chapter 9 on potential flows, these inviscid-like pressure changes within the outer 
flow will be impressed across the boundary layer, and reflected as changes in streamwise 
pressure along the plate surface.  As shown in Section 11.5.3, the presence of such streamwise 
pressure changes along the surface will give rise to additional vorticity generation (negative or 
positive, depending on the change in surface pressure), and thus modification of the development 
of the viscous boundary layer.   
 
In Chapter 13, we will examine how this additional vorticity is redistributed within a developing 
boundary layer, and how pressure gradients impact the development of boundary layers.  As we 
will see, additional vorticity generation by changing surface pressure can either minimize 
boundary layer growth, or cause very rapid growth, depending on whether the pressure decreases 
or increases in the direction of flow. 
 
 
 
 
11.7 Vorticity Transport Equations: Cartesian and Cylindrical Coordinates 
 

11.7.1 General Vector Equation 
 







 
2)V()V(
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11.7.2 Cartesian Equation Components (3-D in x,y) 
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11.7.3 Cartesian Equation (2-D) 
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11.7.4 Cylindrical Equation Components (3-D) 
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11.7.5 Cylindrical Equation (2-D in r, ) 
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Study Problems 
 
 
1.  Starting with Eq. 11.2, derive Eq. 11.6, showing all the vector simplifications required in detail. 
 
 
2.  An inviscid, three-dimensional flow is described by the velocity field:  
 

       kxz2jzy3iyx5V ˆˆˆ 


   
 
 Determine: 

a)   If this is an incompressible flow 
b) The vorticity field for this flow 
c)  The vortex stretching and tilting that is taking place, by calculating the value of  V


 . 

d)  Separate the  V


  value of part b into the stretching components and the tilting 
components. 

 
 
3.  An inviscid, three-dimensional flow is described by the velocity field:  
 

     2ˆ ˆ ˆV x i yx z j y zx k         
 

 Determine: 
a)  If this is an incompressible flow 
b) The vorticity field for this flow 
c) The advection of vorticity 
d)  The vortex stretching and tilting that is taking place, by calculating  V


 . 

e)  Separate the  V


  value of part b into the stretching components and the tilting 
components. 

 
 

4. In Chapter 9 the pressure and velocities were shown to be related by 2
2
12

2
1 UPVP  

for the invisicid, steady flow around a circular If one only considers flow along the  = 0 
streamline (θ = ) approaching the cylinder (y = 0, x < -R), the pressure coefficient can be 

determined as: p 2 2 41
2

P P 2 1C
U x x


  


, where s = U, and R = 1. Here, P is the local static 

pressure, V the local velocity, and P and U are the static pressure and uniform velocity well 
upstream of the cylinder.  If this was the pressure distribution for a flow of a real fluid adjacent 
to a flat plate, use Eq. 11.48 to determine the corresponding vorticity generation from the plate 

as a function of x, and plot pC and z
2

y 0

vs. x
U y






 from x = - 6 to x = -1 on the same graph.  

What does the graph tell you about pressure changes and vorticity generation? 
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5.   Two parallel flat plates space a distance h apart contain a fluid of kinematic viscosity .  The  
 lower plate is fixed, and the upper plate oscillates back and forth with a velocity given by 

 0U U tsin  .   
 
 
 
 
 
(a)  Determine the vorticity generation at both the lower plate, y = 0, and and the upper 

plate, y = h in terms of U0, , , and t. Explain what happens to the generated vorticity 
as the upper plate oscillates back and forth. 

 
(b)  Determine the circulation for a fixed box surrounding the fluid (shown by the dotted red 

lines) within the two parallel plates which is L length and h in height in terms of U0, , 
L and t.  Explain what is happening to the circulation, and why the distance between the 
plates does not enter into the calculation. 

 
(c) What happens to the vorticity generation and the circulation when the upper plate stops 

oscillating, and is fixed? 
 
 
6. In Chapter 9 the surface pressure on a cylinder for an invisicid, steady flow approching a circular 

cylinder was shown to be  2 21
2P P U 1 4sin     .  Here, P is the local static pressure, and 

P and U are the static pressure and uniform velocity well upstream of the cylinder.  If this was 
the pressure distribution for a real fluid, use Eq. 11.49 to determine the corresponding vorticity 

generation on the cylinder as a function of θ, and plot z

r R

vs.
r 





 from θ = 0 to θ = . 

 
 
7.  A circular tank filled with water rotates on its axis such that the water in the tank is in steady 

state rotation; the wall of the tank, of radius Ro, 
moves with a tangential velocity of Vo (see figure).  

 
Do the following:  

 
a)  Write an expression (do not derive) for the 

velocity profile of the water within the tank, 
v(r), for the steady state conditions;  

 
At t = to, the rotation of the tank is abruptly 
stopped.  Assume that the tank is deep enough  
such that the flow behaves two-dimensionally (r,  dimensions).  Do the following: 
 
b) When the tank is stopped, indicate: (1) where vorticity is generated and (2) what causes 

the vorticity generation. 
c) State the steady-state solution for the velocity, v(r), in the tank when t 
d) Determine the total amount of vorticity (i.e. "new" circulation) that is generated  for t > to.   
 

R0 

V0 î îr 

Tank 

r 

 

h 

U0sin(t) 
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8. In section 11.4.3, we considered the 2-D flow outside a circular rod of radius R, rotating at a constant 
angular velocity  in a fluid of infinite extent with kinematic viscosity  and density .  The solution 
for the steady-state velocity field in the fluid external to the rod using the vorticity equation was:   

 

r
Rv

2


. 
 

a) Determine the vorticity for r > R and provide a brief physical explanation of what this result 
implies in one or two sentences. 

b) Determine the circulation for r = 2R and r = .  Again, provide a physical explanation of what this 
result implies in one or two sentences.  

c) If I suddenly stop the rod rotating, assuming a viscous and laminar 2-D flow, which of the terms in 
the vorticity vector equation shown below would be relevant to the solution of the subsequent 
unsteady flow behavior?  Indicate the terms that would be non-zero by indicating the identifying 
number in the general equation below.  

 

     


 
2VV

t
 

 1 2 3 4 
  

d) Briefly explain why the terms you did not select are not relevant. 
e)  After the rod rotation is stopped, is there any vorticity in the fluid?  If so, where does it come 

from?  How much is generated? 
 

9. A circular tank of water of radius Ro rotates such that the 
velocity is Vo at Ro .  A stationary rod of radius Ri, located 
at the center of the tank.(see figure below).  Assume the rod 
and tank are infinite in the z-direction so the flow in the 
annulus between the rod and the tank wall is two-
dimensional. 

 
Do the following:  
 

a) Simplify the 2-D vorticity transport equation to 
allow you to calculate the vorticity distribution in 
the water, if the flow is at steady state conditions.  
Indicate the terms that can be neglected in the equation, and list the reasons that they 
are assumed/can be shown to be negligible.  

b) For one boundary condition, let the vorticity at r = Ri be z = o.  A second boundary 

condition is 0
dr

d z 


 at r = Ro.  Explain how this second boundary condition arises. 

c) Using the vorticity boundary conditions in (b), solve the simplified equation from (a) to 
determine an expression for  r .  

 
 
 
 
 

î îr 

Tank 

Vo 

Ri Ro 
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10. At a given instant of time, the vorticity, 
y
u

x
v

z








 , for a two-dimensional, inviscid 

(µ=0), constant density flow field is specified at each point in the field  
 (z  0).   
 

 Do the following: 
a) Using appropriate simplifications of the vorticity transport equation, give an argument 

that shows that if the particle path lines are known (i.e. the velocity field,  t,y,xV


, is 
known), one could determine z for each point in the flow field at a later time. 

b) Show that for this flow field an equation, z2

2

2

2

yx










  can be developed for the 

stream function, .    
c) The circulation within a marked circle of fluid in the flow field is 0 at time t = 0.  If the 

marked fluid moves within the flow field, such that at a later time t = 1 the circulation 
within the marked fluid is 1. What is the relationship between 0 and 1 and why? 
 
 
 

11. A circular tank of water of radius Ro rotates such 
that for t < to the velocity is Vo at Ro.  A stationary 
rod of radius Ri, located at the center of the 
tank.(see figure below).  Assume the rod and tank 
are infinite in the z-direction so the flow in the 
annulus between the rod and the tank wall is two-
dimensional. One can show (see problem 10), that 
at steady state, the vorticity within the annulus is 

oz  = constant. 
 
At t = to, the rotation of the tank is abruptly 
stopped (Vo = 0 for t > to).  Assume that the  
flow behaves two-dimensionally (r,  dimensions).  Do the following: 
 
a) Simplify, using appropriate assumptions, the 2-D vorticity transport equation to yield an 

equation that could be solved for the vorticity and velocity field inside the tank for t > 0  
(DO NOT ATTEMPT TO SOLVE THIS EQUATION!). 

b) Determine the total circulation within the tank (inside r = Ro ) for both t < to and t > to.  
Briefly explain your result for both cases.  

c) Using your result for t < to from part b) of this problem, determine the value of o in terms 
of Vo, Ri, and Ro. 
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Ro 

î îr 

Tank 
Ri 

r  

12. A circular rod of radius Ri rotates at an angular velocity, , inside of a stationary tank of water 
of radius Ro (see figure below).  Assume the rod and tank are infinite in the z-direction so the 
flow in the annulus between the rod and the tank wall is two-dimensional. 

 
 Do the following:  
 
 a) Simplify the two-dimensional vorticity transport equation 
  to allow you to calculate the vorticity distribution in the  
  water, if the flow is at steady state conditions.  Indicate  
  the terms that can be neglected in the equation, and list  
  the reasons that they are assumed/can be shown to be  
  negligible  

 
b)  For one boundary condition, let the vorticity at  

 r = (Ri+Ro)/2 be z = o.  A second boundary condition is 0
dr

d z 


 at either r = Ri or Ro.  

Explain how we get this second boundary condition from the concept of vorticity generation. 
c) Using the vorticity boundary conditions from b), solve the simplified equation from a) to 

determine an expression for  r .  
 
 

13. A circular rod of radius Ri rotates in steady state at an angular velocity, , inside of a 
stationary tank of water of radius Ro (see figure below).  Assume the rod and tank are infinite in 
the z-direction so the flow in the annulus between the rod and the tank wall is two-dimensional.  
One can show (see problem 12), that at steady state, the vorticity within the annulus is 

oz  = constant. 
 
 At t = to, the rotation of the rod is abruptly stopped.  Assume that the flow behaves two-

dimensionally (r,  dimensions).   
 

Do the following: 
 

a) Simplify, using appropriate assumptions, the 2-D vorticity transport equation to yield 
an equation that could be solved for the vorticity and velocity field inside the tank for t 
> to  (DO NOT ATTEMPT TO SOLVE THIS EQUATION!). 

 
b) Determine the total circulation within the tank (inside r = Ro ) for both t < to and  

t > to.  Briefly explain your result for both cases. 
 

 c) Using the steady state result for your part (b) circulation, when t < to, and that oz 

= constant, determine the value of o in terms of , Ri, and Ro. 
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14. A circular rod of radius Ri rotates at an angular 

velocity, , inside of a stationary tank of water of 
radius Ro (see figure below).  Assume the rod and tank 
are infinite in the z-direction so the flow in the annulus 
between the rod and the tank wall is two-dimensional. 

 
Do the following:  

 
 a) Simplify the two-dimensional vorticity transport 

equation to allow you to calculate the vorticity and 
velocity distributions in the water, if the flow is at steady state conditions.  Indicate the 
terms that can be neglected in the equation, and list the reasons that they are assumed/can 
be shown to be negligible 

 
b) Specify the necessary boundary conditions, for both z and v to allow you to solve this equation 

(you must specify at least one condition for the vorticity); 
 
c)  Solve the O.D.E. to obtain z(r) and v(r) in terms of , r, Ri and Ro; 
 
d) Determine the vorticity, and circulation for r = Ri and r = Ro.  Provide a physical explanation for 

these results in one or two sentences. 
 
 
15.  In Chapter 6, problem 6.16 considers the flow of a viscous fluid (viscosity = µ, density = ) similar to 

a Couette flow between two infinite, parallel, porous plates; fluid of the same properties is uniformly 
injected through the fixed, lower plate, and fluid is uniformly suctioned out through an upper plate, 
which moves at a velocity U, as shown below.   

 
 
 
 
 
 
 
 
  

Here, u = 0, v = Vo = const. at y = 0, and u = U = constant, and v = Vo at y = h, with no flow in the z-
direction. The velocity profile, u(y), for the fully-developed flow between the plates is given by: 
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Note that by the continuity equation, v = V0 = constant across the channel, and 
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(a)  Make a plot of the non-dimensional velocity profile for this flow, u yvs
U h

. ,  for 

3and10
hV

0V
0 ,,Re 


, all on one graph. 
 

(b) Determine the non-dimensional vorticity for this flow, zh
U
 .  Then Plot zh yvs

U h
.  for 

3and10
hV

0V
0 ,,Re 


, all on one graph. 
 

(c)  Calculate the non-dimensional vorticity generation at both y = 0 and y = h.  Calculate both
2

z

y 0

h
U y



  
 

 
and 

2
z

y h

h
U y



  
 

 
 for 3and10

hV
0V

0 ,,Re 


 

 

(d) Comment on what your results of part (c) show about the vorticity generation. 
 

 

16. A uniform viscous flow approaches a flat plate at uniform velocity, U.  After encountering the leading 

edge of the plate, the main outer flow velocity accelerates according to 







  L

x1UU , where U is 

the velocity approaching the plate, and P is the pressure of the approaching flow.  If the flow has no 
vorticity, and no vorticity is transported in the flow before it encounters the plate at x = 0, determine 
the vorticity transport across the plane at x = L. Assume a stagnation point at the leading edge of the 
plate. 

 
 
 
 
 
 
 
 

 
17. An infinite porous flat plate translates in the x-direction at a constant velocity U beneath a quiescent 

fluid of kinematic viscosity . The fluid covers the upper surface of the plate, and is of infinite depth. 
Fluid is suctioned uniformly through the plate at a velocity V, as shown. If the flow is steady and fully 
developed, starting from the vorticity transport equation (in 2-D) determine an expression for the 
velocity u(y) and vorticity (y) in terms of U, V, , and y.  Also, determine the shear stress at the 
surface in terms of U, V, and , the fluid density. If V = 0, what would the steady state velocity profile 
u(y) become? 

 
 
 
 
 
 
 

Since this is a steady flow, 
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18. Consider the 2-D flow outside a rotating circular cylinder, at the surface of which there is an inward 
radial velocity, V, at the cylinder surface (r = R) due to suction through the wall of the cylinder.  
Again, assume that the cylinder is in a fluid of infinite extent with kinematic viscosity  and density ; 
the cylinder is of radius R and rotates at a constant angular velocity .  Determine the solution for the 
steady-state velocity field in the fluid external to the cylinder using the vorticity transport equation for 
your solution: 

      2V V
t


      


 

 
 Let one boundary condition be 0v   at r  ; consider the other boundary conditions carefully, and 

perform your solution as follows: 
 

a) Simplify the vorticity transport equation to an ordinary differential equation for z using 
the continuity equation to assist the simplification (i.e. find vr first). 

b) Consider the appropriate boundary conditions for vorticity and solve the resulting O.D.E. 
to for  = (r, R, k, and A), where k = VR/ and A is an unknown constant. 

c) Using the results of b) solve for v = v(r, R, k, ), apply appropriate boundary 
conditions, and show that a solution exists over the flow field only if k = VR/>2. 

d) Determine the circulation,  = (r), and note its limit at k = 2; recalculate the value for 
vorticity, with A known from part c).  

e) If  = 2 and R = 1 (both dimensionless), plot z, v, and  for 1 < r < 10, for k = 3 and  
k = 6, and for the no suction case, V = 0, which is the solution determined in section 
11.4.3.  Plot separate graphs of z, v, and , with the three curves for k = 3, 6, and no 
suction on each plot. Interpret the results of these plots. 
 

f) Extra credit:  Explain why there is the limiting behavior indicated in part c) and d), and 
see if you can determine what the limit of k = 2 implies physically. 
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 Chapter 12 
 

More Complicated Navier-Stokes Solutions 

Contents 
 
12.1  Fully-Developed Flow in a Rectangular Duct  .............................................................. 388 

 
12.2  A Suddenly Accelerated, Infinite Plate  ....................................................................... 391 

 
12.3  Viscous Decay of a Two-Dimensional Vortex  .............................................................. 395 
 12.3.1  Decay of a Line Vortex (Oseen-Lamb Vortex)  ................................................. 395 
 12.3.2  The Taylor Dissipating Eddy  ........................................................................... 401 
 
12.4  Ekman Drift: A Wind Driven Flow  .............................................................................. 403 
 
12.5  A Laminar Jet Issuing from a Narrow Slot  ................................................................... 411 

 
 
In Chapter 6 we examined solutions of the Navier-Stokes equation where the equation was 
reduced to only one dependent velocity variable and one independent spatial variable [e.g. u = 
u(y)].  These solutions were all fully-developed flows within parallel constraining boundaries of 
either planar or radial symmetry.  In all cases, the Navier-Stokes equation reduced to an ordinary 
differential equation of a boundary value type.   
 
In this chapter, we consider several flows where the velocity field is a function of more than one 
space parameter, or one space parameter and time.  In some cases, such as fully-developed flow 
in a rectangular channel, the result is a Poisson-type equation, which is a boundary value 
problem for one velocity component as a function of two spatial variables [e.g. u = u(y,z) ].  
 
Other types of problems are initial value problems, which are unconstrained in one or more 
dimension.  These types of problems can involve one dependent velocity variable, one 
independent spatial variable, and time, such as the response of a bounding fluid to the temporal 
motion of a boundary in one dimension [e.g. u = u(y,t) ].  These problems can also involve the 
development of an unconstrained flow in two dimensions, such that u = u(x,y) and v = v(x,y).   
 
All of these problems require the solution of partial differential equations.  The Poisson type of 
equation has fairly standard solutions, which make the determination of the result relatively 
straight forward.  The unbounded initial value problems require some creativity to develop 
analytical solutions.  One approach that often proves very effective in solution of such problems 
is the use of a similarity solution.   Similarity solutions generally require that a flow be 
unconstrained by only one boundary, and that a variable can be determined that collectively 
collapses the two independent variables into one independent variable.  Another technique that is 

http://en.wikipedia.org/wiki/Poisson%27s_equation
http://en.wikipedia.org/wiki/Boundary_value_problem
http://en.wikipedia.org/wiki/Boundary_value_problem
http://en.wikipedia.org/wiki/Initial_value_problem
http://en.wikipedia.org/wiki/Similarity_solution
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employed for solution of flows in which both u and v vary, is the use of the stream function to 
reduce the Navier-Stokes equations to one independent variable, , with the penalty of 
increasing the order of the equation by one.  In this chapter, we will explore the use of all these 
approaches, which will prepare us for an examination of boundary layers flows in Chapter 13. 
 
12.1 Fully-Developed Flow in a Rectangular Duct 
 
Consider the fully developed, steady flow within a rectangular cross-section duct, as shown in 
figure 12.1 
 
 
 
 
 

Figure 12.1 Fully-developed flow in a rectangular duct. 
 

This is a Poiseuille type flow (Section 6.3.2) with two sets of constraining surfaces.  Here we 
select a Cartesian coordinate system with its origin on the symmetry axis of the duct.  We again 
invoke the assumptions of: 
 

1. Steady flow 
2. Fully developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 

 

Since the flow is assumed incompressible, the incompressible continuity equation in three 
dimensions is:  
 

0
z
w

y
v

x
u














      (12.1) 

If the flow is fully developed, this means that u does not change with x, thus 0
x
u




  , and Eq. 

12.1 becomes: 
 

0
z
w

y
v









  (12.2) 

 

Rearranging, Eq. 12.2, and integrating from y = -b/2 to y = +b/2, we have: 
 

dy
z
wdy

y
vvv

2/by

2/by

2/by

2/by
2/b2/b 


















  (12.3) 
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Now, since v = 0 at y = -b/2 and +b/2 (since both limits are solid boundaries), then Eq. 12.3 
becomes: 
 

0dy
z
w2/by

2/by










 (12.4) 

 

If we assume that  y,zf
z
w




 , then: 

0)y,z(g)y,z(gdy
z
w

2/by2/by

2/by

2/by











   

or 
 

2/by2/by
)y,z(g)y,z(g


  (12.5) 

 

Since the limits on y are arbitrary, g(z,y) = 0 is the only solution that consistently satisfies 

Eq.12.5, which in turn means that 0
z
w




  is the only value that will also consistently satisfy Eq. 

12.4.  Consequently, from Eq. 12.1, we have 0
z
w

y
v









 , or both v and w are constants.  Since 

v and w are both zero at solid boundaries, we conclude that: 
 

 v = 0, w = 0 everywhere. (12.6) 
 
Additionally, it follows that all derivatives of v and w are also zero everywhere. 
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  z-direction (12.7c) 

 

Thus, Eqs. 12.7 reduce to: 
 

0
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0
y
P




     (12.8b) 

0
z
P




  (12.8c) 

To assess the character of 
x
P


 , we again establish this functionality like we did in Section 6.3.2 

by taking the derivative of the x-direction differential equation, Eq. 12.8a, with respect to x, 
which yields: 
 

0
x
P1

xz
u

y
u

x 2

2

2

2







































      (12.9) 

 

since u and its derivatives must be a function of y and z only (for a fully-developed flow). 
 

Equation 12.9 again indicates that 
x
P



 must be a constant, and P=P(x) only.   This is reasonable, 

since the shear stress will be a function of the derivative of the velocity profile, which will also 
be invariant with streamwise position.  So, noting that u = f(y, z) only, the x-direction differential 
equation, with appropriate boundary conditions simplifies to: 
 

0
z
u

y
u

dx
dP

2

2

2

2










   

or 
 














dx
dP1

z
u

y
u

2

2

2

2

constant   

 (12.10)
  

  

The corresponding boundary conditions are: 
 

2
by   ,0u   

2
hz   ,0u    

 

Note that Eq. 12.10 and the corresponding boundary conditions result in a fairly standard 
solution via conventional analytical solution techniques, which are available in most graduate 
mathematics texts on partial differential equations. To see solutions for Eq.12.10, and for a 
number of other common duct geometries, see White (1991). 
 
  

Poisson type equation 
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12.2  A Suddenly Accelerated, Infinite Plate  
 
This example deals with a situation where an infinite plate is instantaneously accelerated from  
u = 0 to u = V. This is generally known as Stoke's first problem. We determine how the velocity 
adjacent to the plate develops as a function of time.  For this situation, there is no vertical (v) 
velocity.  Vorticity is generated instantaneously at the surface, which subsequently diffuses 
outward (y-direction) due to the fluid viscosity.  
 
 
 
 
 
  
For this flow, the Navier-Stokes equation simplifies to: 
 

""fluxvorticity
yy

u
t
u z

2

2















 (12.11) 

 

Thus, only the local x-direction acceleration and shear forces are non-zero.  Similar to a Couette 
flow, we can show that the pressure gradient for this flow is zero in both the x and y directions, 
since the plate is assumed to be infinite in x. 
 
The appropriate initial and boundary conditions for the flow are: 
 

Initial condition:    0)0t,y(u   (fluid is initially quiescent) 
 

Boundary conditions: V)0t,0y(u   (plate has velocity V after t = 0)
 0)0t,y(u   (fluid velocity remains quiescent far  
  from the plate, for all times t > 0)  

 

To solve this type of equation, we employ what is termed a “similarity” solution.  For this 
solution process, we assume that the velocity profile will expand in the y direction due to the 
viscous diffusion processes, and will scale on some yet to be determined universal parameter that 
is a function of y and t.  The approach is to introduce a similarity variable that reduces the 
governing equation from a partial differential equation (P.D.E.) to an ordinary differential 
equation (O.D.E.).  What we are assuming when we introduce a similarity variable is that the 
shape of the velocity profiles will be of the same “shape” as time progresses.  It is as if we 
“stretch” the velocity profile in the direction normal to the plate (y) with increasing time.  This 
approach is generally effective for flows that are unbounded, and thus have no characteristic 
length (unlike pipe or channel flow geometries, which have a characteristic diameter or width).  
 

y 

x V 

http://www.hindawi.com/journals/mpe/2008/754262/
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For the present solution approach, we assume a velocity form of )( f
V
u , where the non-

dimensional velocity is assumed to retain the same “shape” when scaled on .   Here,  is a 
similarity parameter, which we assume to be dependent on y and t, of the form: 
 

mntAy  where A, n, and m are all constants. (12.12)  

 

The procedure is to substitute f() and  into the original P.D.E., simplify the resulting equation, 
and by observation determine the appropriate values of n, m, and A that will reduce the P.D.E. of 
Eq. 12.11 to an O.D.E. (ordinary differential equation) in terms of  f and .  Thus, we first 
determine the u derivative terms of Eq. 12.11 in terms of  using the chain rule, and designating 

f
d
df




and f
d

fd
2

2




: 

 

Term 1:  
 

t
mf

t
mtAyfmtAyf

t
f

td
df

t
f

t
u

V
1 mn1mn 




















  )()(  (12.13a) 

 

Term 2: 
 

 
y
nf

y
ntAyftAnyf

y
f

yd
df

y
f

y
u

V
1 mnm1n 




















 )(  

 
 

    

       
22

2
2

2
mn

2

2
2mn

m2n2m1n

2

22

2

2

2

2

y
1nnf

y
nf

y
1nntAyf

y
ntAyf

ty1nAnftAnyf

y
f

y
f

yy
f

yy
f

y
f

yy
)(f

y
u

V
1
























































































  (12.13b) 

 
  

Substituting Eqs. 12.13 into Eq. 12.11gives: 
 

 
22

2
2

y
1nnf

y
nf

t
mf 

   

 

To simplify, we factor out  terms, and set n = 1, which eliminates one of the terms in the 
equation, giving: 
 

2y
1f

t
mf   

2  

0 if n=1 
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Rearranging gives: 
 

0
t

myff
2



  (12.14) 

 

We note that 0f2f   is a tractable equation, so we work toward that form by letting: 
 

1 1
12 2 2 2 22 2my my my m2 yt

t 2 t 2 t 2
   

              
     

 

 

Setting this relationship equal to our original assumption for the form of  from Eq. 12.12, we 
have: 

1
12n m 2mAy t yt

2
 

    
 

 (12.15) 

 

By equating the constants on the left hand and right-hand sides of Eq. 12.15, we have: 

  

1
21 1 1n 1 from previous assumption , m , which makes A

2 4 2
 

     
  

  

So, for this case, 
t2

y
2

1A  and  
2
1m  1n





 ,,  

 

Substituting these constant values into Eq. 12.12, reduces Eq. 12.14 to: 
 

0f2f   (12.16) 
 

Equation 12.16 is an O.D.E. for f as a function of the similarity (stretching) parameter,  
 

t2
y


 . 

 

For this similarity parameter, the initial and boundary conditions become: 
 

Initial condition: 0f00tyu  )(),(  
 

Boundary conditions: 1)0(fV)0t,0y(u    
  
  

 0)(f0)0t,y(u   (12.17) 
 
Thus, we have not only reduced the differential equation from a P.D.E  to an O.D.E., but we 
have reduced the limiting conditions from three to two as well (which we must, if we are to 
achieve a solution, since Eq. 12.16 is second order, only requiring two boundary conditions). 
 

Note that these 
conditions are 
identical, and thus 
represent one 
limiting condition 
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To solve Eq. 12.16, we let f  and substitute into Eq. 12.16, such that:  
 

d 2
d


    


 

 

Separating variables and integrating gives: 
 

2 2
1C Cln ln        

 2
1C

d
dff 


 exp  

Integrating  f ' gives:       212
0

2
1 Cerf

2
CCdCf 


 



)(exp  

 
  
  
 

 
 

Figure 12.2 Velocity profiles for a suddenly accelerated plate using both similarity scaling 
and physical scaling (non-dimensional y and t, with  = 1) 

 
The erf() is a tabulated function known as the error function.  Since this integral has no 
analytical solution, the function is solved numerically, and tabulated values of the function are 
available in most standard books of mathematical functions or from the Wolfram Alpha website.  
Applying the two limiting conditions from Eq. 12.17, we have: 
 












2C1erf
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C0f

1CC0erf
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=0 

 

=1 

https://en.wikipedia.org/wiki/Error_function#Taylor_series
http://www.wolframalpha.com/
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This gives a final solution for )( f
V
u , and thus )t,y(

V
u , of: 

 f ( ) 1 erf( )   
u y1 erf
V 2 t

 
     

 (12.18) 

 
Figure 12.2 shows plots of u/V as a function of both , and y and t.  Note how the use of  , the 
similarity variable, collapses the velocity profile to only one curve. 
 
Also, note that the velocity profiles plotted with respect to y migrate outward with time, but are 
“similar” in shape.  Thus, as time increases, the profiles are “stretched” in the y direction as the 
vorticity originally generated by the accelerated surface gradually diffuses outward. 
 
12.3 Viscous Decay of a Two-Dimensional Vortex 
 

12.3.1 Decay of a Line Vortex (Oseen-Lamb Vortex) 
 

The velocity of an inviscid line vortex, as shown in Section 9.7.3, is described in cylindrical 

coordinates by the equation
r2

  v, 0vr



  , where  is the total circulation, or strength, of the 

vortex.  The shape of this velocity profile is shown in figure 12.3. 
 

 
Figure 12.3 This graph shows the initial shape of an inviscid line vortex velocity profile 

(letting Velocity = 2v/) as a function of radius.   
 

Recall that this type of vortex is irrotational, except for a spike of vorticity at the origin, where 
the azimuthal velocity is infinite.  In a viscous fluid, such a concentration of vorticity would be 
quickly diffused away from the origin, strongly modifying the behavior of the velocity profile as 
time increases.   
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To assess the behavior of an initially inviscid line vortex in a viscous fluid, we assume that:  (1) 
all the initial circulation, , is retained within a radius of infinite extent for all time, (2) the initial 

velocity distribution at t = 0 is that of an irrotational line vortex, given by 
Av

2 r 


, where A is 

a constant, and (3) the azimuthal velocity is forced to be zero at r = 0, immediately after the 
initial time zero. 
 
To solve for the velocity of a decaying line vortex, a problem originally solved by Oseen, and 
subsequently improved by Lamb, we first determine the governing equation.  Since the flow will 
only be a function of the radius and time, the only relevant velocity component in this problem is 
the -component, v, such that the continuity equation becomes: 
 
 

   0v
r
1rv

rr
1

r 







     since v = f(r) only (12.19) 
 

This gives vr = 0, since vr = 0 at r = 0 will be a boundary condition. 
 
 Subsequently, since v = f(r) only, and vr = 0, only the -direction Navier-Stokes equation (Eq. 
5.47c) is relevant, and that reduces to: 
 

   






























 rv
rr

1
rt

v  (12.20) 

 

Thus, we have a balance between temporal changes and viscous diffusion.  There is no 
momentum transport—only diffusion of vorticity—and there is no pressure change in the 
azimuthal direction.   
 
Since this problem has no characteristic dimension, this is an ideal candidate for a similarity 
solution.   However, to simplify our similarity assessment, we assume a function: 
 

    rvF  (12.21) 
 

Where rv is called the reduced circulation (i.e. the circulation contained within any radius r), 

and  is an appropriate similarity parameter.  Here we assume that mn tar , where a, n, and m 
are constants to be determined.  We can determine the values of a, n, and m by substituting  F  
and  into equation 12.21, and judiciously selecting a, n, and m to develop a tractable ordinary 
differential equation.  However, noting that   ),,(   trrvF , we can apply dimensional 
analysis to determine the appropriate non-dimensional groups for this set of parameters. For this 

0 

http://en.wikipedia.org/wiki/Lamb%E2%80%93Oseen_vortex
https://en.wikipedia.org/wiki/Horace_Lamb
http://en.wikipedia.org/wiki/Similarity_solution
http://en.wikipedia.org/wiki/Similarity_solution
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case, we can show that 
t

r


 .  Thus, for our similarity parameter and velocity function we 

use: 
 

 
t

r


 , and  
r

Fv 


. (12.22) 

 

The initial condition for the velocity profile is that initially it is an irrotational vortex: 
 

 @ t = 0, r > 0    
Av

2 r 


  (12.23a) 

 

The two boundary conditions that apply here are: 
 

 for t > 0, r = 0    0v    (12.23b) 
and  
 for t > 0, r    = A = constant (12.23c) 
 

Boundary condition #2 implies that the circulation is fixed from the beginning of the decay 
process on, so we can calculate the circulation for t = 0 for any radii, as:  
 

   
Av 2 r 2 r A

2 r     


.   

 

Since the circulation will be fixed for an infinite radius (i.e. we assume the vorticity will diffuse 
radially, but never quite reach an infinite radius), we can solve for the velocity for r    as 

Av
2 r 


. 

Using the similarity parameters from Eq. 12.22, and designating dF F
d




and 
2

2

d F F
d




, we 

establish the terms for Eq. 12.20 as follows: 
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Substituting into Eq. 12.20, we have: 
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Multiplying Eq. 12.24 through by rt, and noting that 
t

r


 gives: 
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Solving for F  , we have: 
 

 F
2

1F 






 



   (12.25) 

 

Using the initial/boundary conditions from Eq. 12.23, the appropriate limiting conditions for Eq. 
12.25 are: 
 

 @ t = 0, r > 0        : Av
2 r 


       F= A
2

 (12.26a) 

 @ t > 0, r = 0       = 0: 0v        F=0  (12.26b) 

 @ t > 0, r       :  Av
2 r 


       F= A
2

 (12.26c) 

  

Since Eq. 12.26a and 12.26c are identical, we have reduced the limiting conditions on Eq. 12.25 
to two, which satisfies the order of Eq.12.25, thus yielding a tractable problem. 
 
To solve Eq. 12.25 for F, we let F , separate variables and integrate: 
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1 exp   (12.27) 

 

Integrating Eq. 12.27 for F, we get: 
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1 C
4
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 exp   (12.28) 

Same 
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Applying the limiting conditions of Eq. 12.26 to Eq. 12.28: 
 

    1 2
AF 2C C
2

     


exp         2
AC
2




 

 

     0C0C20F 21  exp          2
1

C AC
2 4

 


 

Substituting C1 and C2 into Eq. 12. 28 gives a final expression of: 
 

 
2AF 1 exp

2 4
  

    
   

 

  

And finally,  
 

 
2F A rv 1 exp

r 2 r 4 t

  
     

   
 (12.29) 

 

Note that the general circulation for this flow is given by: 
 

    
2 2A r rv 2 r 1 exp 2 r A 1 exp

2 r 4 t 4 t

      
               

        
 

 

For r  , we have that A  , so  
 

 
2 2r1 exp 1 exp

4 t 4 

      
              

      
 

 

This shows that the circulation asymptotes to  = A = constant at an infinite radius. 
 

Figure 12.4 shows the behavior of the velocity as a function of radius and time. Note the decay 
of the maximum velocity with time, and the movement of this maximum away from the origin 
due to viscous diffusion.  However, the “shape” of the profile is essentially the same, only 
“stretched” radially. 
 

The behavior of the vorticity is given by: 
 

 
  2

z

rv1 rexp
r r 4 t 4 t

 
  

    
   

 (12.30) 

 

The generic shape of the vorticity profiles (letting  = 1, and Vorticity = 4z/) is shown in 
Figure 12.5.  Note that the vorticity is all concentrated at the origin (an infinite spike) at t = 0.  
Subsequently, the vorticity diffuses away from the center due to viscosity. 

1 

0 
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Figure 12.4 The generic shape of the Oseen velocity profiles (letting  = 1, and  
 Velocity = 2v/) as a function of time and radius.   

 

 
Figure 12.5 The general behavior of the vorticity for a decaying Oseen vortex (letting  = 1, 

and Vorticity = 4z/) as a function of time and radius.   
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12.3.2  The Taylor Dissipating Eddy 
 
G.I. Taylor determined an additional solution to the decaying vortex problem, which he termed 
dissipation of eddies, by employing an assumption that the angular momentum of the vortex is a 
constant, finite value, M.  His velocity expression is: 
 

2

2 2

M r rv exp
16 t 4 t

 
  

   
 where   2

0

M 2 v r dr


   (12.31) 

 

Eq. 12.31 is similar to, but reasonably different from the Oseen expression of Eq. 12.29. Figure 
12.6 shows the behavior of the velocity of this Taylor decaying vortex as a function of radius and 
selected times.   
 

 
Figure 12.6 The generic shape of the Taylor vortex velocity profiles (letting  = 1, and 

Velocity = 162v/M) as a function of non-dimensional time and radius.   
 
Note that the velocity profiles for the Taylor vortex are not as skewed toward the origin, and 
asymptote to zero at a lower radius than the Oseen vortex, making the vortex more compact.  
 
The differences between the two vortex models are illustrated by figures 12.7a and 12.7b, which 
plot the dimensionless behavior of the velocity, vorticity, and circulation versus the similarity 

variable 
t

r


 .  Note that these plots have been normalized by factoring out any direct time 

dependence (other than what is incorporated into the similarity variable, ).  The resulting plots 
show the generic shape and behavior of the various properties.   

https://en.wikipedia.org/wiki/G._I._Taylor
http://naca.central.cranfield.ac.uk/reports/arc/rm/598.pdf
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Figure 12.7a The Oseen vortex velocity, vorticity, and circulation similarity profiles  

 (letting =1): Velocity = 2 tv



 


, Vorticity = 4 tv






, circulation =






 .  

 

 
Figure 12.7b The Taylor vortex velocity, vorticity, and circulation similarity profiles 

(letting =1): Velocity =  
3
216 t v

M
 

, Vorticity =  
28 t v

M
 

,  
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8 t
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What should be obvious from figures 12.7 is that the two vortex solutions display markedly 
different velocity behavior, with the Oseen extending to very high similarity limits, and the 
Taylor reflecting a much more compact vortex.  Because of these differences in velocity 
behavior, the circulation behavior is also remarkably different.  The circulation for Oseen, 
because of the imposed original boundary condition at   , reaches a constant, finite value at 
low  values.  In contrast, the circulation for the Taylor vortex initially increases with , reaches 
a peak at  = 2, and then decreases to essentially zero by   7.  The reason for this marked 
difference is demonstrated by the differences in vorticity behavior.  The Oseen vorticity is 
always positive, assymptoting to zero by   5, whereas the Taylor vorticity is initially positive 
from  = 0 to 2  , and then becomes negative for  > 2 , asymptoting to zero by   7. It is 
the cross-cancellation between these positive and negative vorticities that yields a zero 
circulation for the Taylor vortex at higher  values.  
 
When we consider the behavior of real vortices, it would appear that the Taylor model is the 
more characteristic, since it does not require the effect of the vortex to have an infinite influence, 
and it maintains a finite angular momentum. Note that if we calculate the angular momentum of 
the Oseen vortex using the equation given in Eq. 12.31, the angular momentum is infinite, which 
does not seem a realistic model of a practical flow.  However, because of its simplicity, the 
Oseen vortex has been widely used as a model of such things as the trailing vortices of a lifting 
body (Squire, 1965). 
 
12.4  Ekman Drift: A Wind-Driven Flow 
 
We know that much of the motion of the oceans and lakes are strongly influenced by the motion 
of the air above them.  Let us consider the temporal development of the velocity field of an 
initially quescent body of water, which is suddenly subjected to a constant surface wind shear 
stress of  o.  We know that the shear stress must be continuous at the air-water interface, as must 
the velocities.  We could try to solve the coupled problem where surface wind shear also varies 
with time, but that is a much more complicated problem, requiring a coupling of Navier-Stokes 
solutions within both the air and the water.  So, to simplify the problem, we will presume that o 

= constant, and solve this as a similarity problem, similar to how we solved the suddenly 
accelerated plate problem of section 12.2. 
 
For this wind driven flow, like the suddenly accelerated plate this is a viscous diffusion driven 
flow with v = 0, such that only the x-direction Navier-Stokes equation (Eq. 5.46b) is relevant, 
and within the water simplifies to: 
 

2

2

y
u

t
u








  (12.32) 

https://www.cambridge.org/core/journals/aeronautical-quarterly/article/growth-of-a-vortex-in-turbulent-flow/BA8DE6CAF8D3F86F6A757B350EF9011F
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Thus, only the local x-direction acceleration and shear forces are non-zero.  Note that we assume 
that our coordinate system is located at the water surface, with y oriented vertically upward from 
the surface, as shown. 

 
The appropriate initial and boundary conditions for the water are: 
 

Initial condition:    00t0yu  ),(   

Boundary conditions: constant0t0y
y
u

w

o 







 ),(  

 00ty
y
u




 ),(  

 00tyu  ),(   
 

Since we have a second-order boundary condition that is non-zero, this means that we need to 

perform a solution using  ty
y
u ,


  as the similarity profile variable, and then determine u(y,t) 

from that solution.  To do this, we take the derivative of our Eq. 12.32 with respect to y, and 
reconfigure the equation such that: 
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 (12.33) 

 

Note that Eq. 12.33 is an equation for  ty
y
u ,


 , which can be solved for using a  

“similarity” solution of the form )(


 f
y
u , where the similarity parameter is 

t2
y


 , using a 

process similar to what we used in solving for the velocity in section 12.2.   
 
To solve Eq. 12.33, we reduce the equation to an ODE in terms of f(), and solve to determine 

f(), and thus  ty
y
u ,


 .  Once we have a solution for f(), we can solve for u(y,t) by integrating 

 ty
y
u ,


 , and applying the two first-order initial and boundary conditions.  We first determine 

the derivative terms of Eq.12.33 in terms of , using the chain rule, and designating f
d
df




and 

y 

x o = constant Air 

Water 
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2

1 12
2 2

d f yf with
d 2 t

  




: 

 
Term 1:  

1 3 1 1
2 2 2 2

u f ( ) df y y 1f where
t y t d t t t 2t 2t4 t 2 t

ff
2t 2t

                   
           

  
    
 

  

Term 2: 

1 1 1 1
2 2 2 2

u f ( ) df 1 y 1f where
y y y d y y y y y2 t 2 t

f
y

                
           




 

 

 

22 2 2

2 2 2

2 2

1 12
2 2

2

2

u f ( ) f f f f f
y y y y y y y y y y y

1f f 0 where 0
y y y y y 2 t

f
y

                     
                  

                   

                   
         




  

Substituting the reduced Terms 1 and 2into Eq.12.33 gives: 
 

ff
t2

y

f
y

f
t2

2

2

2














 

   
   
 

0f2fff2   (12.34) 

Eq.12.34 is an O.D.E. for f as a function of the similarity (stretching) parameter, 
t2

y


 , and 

is the same equation (Eq. 12.16) we determined for the accelerated plate example, Section 12.2. 
For this similarity parameter, the two second-order boundary conditions shown previously 
become: 
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Boundary conditions: 












 o

w

o 0f0t0y
y
u )(),(

   

 0f00ty
y
u




 )(),(  

  

Thus, we have reduced the differential equation from a P.D.E  to an O.D.E., with two appropriate 
boundary conditions. Note that unlike the suddenly accelerated flow, we did not have to reduce 
three boundary conditions to two. 
 
To solve our O.D.E, we let f  and substitute into the O.D.E., such that  
 

 2  
 

Separating variables and integrating gives: 
 

2ln C     
or 

 2
1

dff C exp
d

    


 

 

Integrating  f ' gives:     
  

  212
0

2
1 Cerf

2
CCdCf 


 



)(exp  

  
  
 

Applying the two boundary conditions we have:  
 

o o
1 2 2

w w

f (0) C erf (0) C C
2

 
    
 

 

 

o
1 2 1 2

w

2 2f ( ) 0 C erf ( ) C C C
2

 
         

   
 

 

Substituting C1 and C2, gives a solution for )(


 f
y
u , and thus ),( tyf

y
u




 , of: 

 )erf(1)(f 
w

o 



   

 

=0 

=-1 
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t2
yerf1

y
u

w

o  (12.35) 

Figure 12.8 is a non-dimensional plot of 
y
u


  predicted by Eq. 12.35, showing the similarity 

shape of the shear profile in the water. Note that within the water, 0 . 
 

 

Figure 12.8 Similarity variable, 
t2

y


 ,  vs. the non-dimensional velocity gradient in 

water, w(u/y)/o, for a wind-driven flow with constant applied surface shear 
stress, o  . 

 

To obtain u(y,t), we integrate Eq.12.35 for 
y
u


 with respect to y (I used Wolfram Alpha to do the 

integration), and obtain the messy: 
 

)(exp),( tg
t2

yerf1y
t4

yt2tyu
2

w

o 































































  

 

Applying our original first-order initial and boundary conditions: 
Initial condition:         00t0yu  ),(  
 

        )(exp 0gerf1y0u
w

o 



 = 0 

 

   00g0g11y0u
w

o 



 )()(  

 
Boundary condition:   00tyu  ),(  
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The term 































t2
yerf1y will go to zero as y  -.  Prove this to yourself using L'Hospital's 

rule.  
 
Thus: 


































































t2
yerf1y

t4
yt2u

2

w

o exp  (12.36) 

 

Note that in Eq.12.36 the collection of terms 






 t2

w

o has the units of velocity, so letting: 










t2
u

w

o
0   (12.37) 

 

we can rewrite Eq.12.36 as: 
 
















































t2
yerf1

t2
y

t4
y

u
u 2

0

exp   (12.38) 

And substituting our similarity parameter, 
t2

y


 , into Eq. 12.38 gives: 

   2

0

u exp 1 erf
u

       (12.39) 

Thus, Eq. 12.39 is a "similarity" velocity profile for 
0u

u . 

Graphs 12.9 and 12.10 show the velocity behavior within the water, dimensionally for Eq. 12.38 
and non-dimensionally for Eq.12.39.  Figure 12.9 shows the dimensional effect of viscous 
diffusion of the applied shear within the water.  Note that the thickness of the affected layer of 
water (that where u > 0) grows relatively slowly, taking 1000 seconds for the effect of the 
applied wind stress to be felt at a depth of 10 cm (roughly 4 inches). Even after 1 hour, the extent 
of the affected fluid only reaches 19 cm (about 7.5 inches). 
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Figure 12.9 Water depth, y (cm), vs. the water velocity ratio, 0uu /  for a wind-driven flow 
with constant applied surface shear stress, o .  Velocity profiles are shown for 
four increasing time increments, t = 10, 100, 1000, and 3600 seconds, and 

2cm0 01
s

.  . 
 

Figure 

12.10Similarity variable, 
t2

y


 ,  vs. the water velocity ratio, 0uu /  for a 

wind-driven flow with constant applied surface shear stress, o . 
 
Figure 12.10 shows the shape of the velocity ratio relative to the similarity parameter, .  It is 
interesting that the shape of the velocity appears similar to that of the shear stress, but the 
functions for the shear stress and the velocity are quite different. Note that Eq. 12.38 and 12.39 
indicate that 0u  is the velocity at the water surface (y = 0 and 0 ), which according to Eq. 
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12.37 increases proportional to t .  To examine some numbers for the movement of the water at 
the surface, it was pointed out by White (1991) that Roll (1965), citing several empirical studies, 
estimates the wind stress for airflow over a water surface to be given by the relation: 
 

 20windair0 uV0020  . . (12.40) 

Assuming typical standard properties for water and air of 
sm

kg10 3
w


  ,  

s
m10

2
6

w
 , and 3air m

kg21. , we solve Eq. 12.37 for 0 , and substitute 0  into  

Eq. 12.40 to give an equation for 0u  in terms of windV  and t as: 
 

  0uV
t

u3369 2
0wind

0 .  (12.41) 

 

Note that t is in seconds, and velocities are in m/s. 
 
Assuming a wind velocity of 2 m/s (about 4.5 mph), we solve Eq. 12.41 using a root finding 
program for a series of times (we could also solve using the quadratic formula, but the 
expression is messy).  A graph of 0u  vs t is shown in Figure 12.11.  Note that the water surface 

velocity, 0u , initially grows quite quickly, but slows with time.   
 

 
Figure 12.11 Water surface velocity, 0u (m/s) vs. time (s) for a wind-driven flow with 

constant applied surface shear stress, 
w

o



 .  Assumed wind velocity Vwind=2 

m/s, and  20windair0 uV0020  . , from Roll (1965). 
 
In addition, the water velocities seem somewhat unrealistic, since the water surface velocity, 0u , 
is predicted to increase to 20% of the wind velocity after one hour of wind exposure.  As White 
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points out, the water surface velocity should only grow to about 3% after an hour of wind 
exposure. He also notes that for such flows at higher wind velocities, both the water and air 
flows will be turbulent, with much higher effective turbulent viscosities (known as eddy 
viscosities--see Chapter 17).  However, if the turbulent values of w are larger, this would 

suggest that laminar0turbulent0 uu   , which would result in even higher predicted values of 0u .   
 
So, what is the problem?  This inconsistency with empirical values is most likely due to the 
assumption of constant shear.  In reality, the shear will diminish as the water surface velocity 

increases.  Note that Eq. 12.37 indicates that 0u will continually increase proportional to t . In 

reality, as time increases 0u must reach some equilibrium value, such that 0u << Vwind.  Since we 
don't specify the wind velocity in the similarity model, and impose the actual boundary 
conditions that 0a0w ,,  , and 0a0w uu ,,  , our similarity model over simplifies, and thus over 

estimates the acceleration of the water.  As stated previously, solution of the actual physical 
problem would require that we collectively solve the Navier stokes equations for both the water 
and the airflows.  Thus, the Ekman drift problem is an interesting example of the use of 
similarity, but is limited in its practical applicability. 
 
12.5 A Laminar Jet Issuing from a Narrow Slot   
 

As was demonstrated in the examples of Sections 12.2, 12.3, and 12.4, the use of a similarity 
solution is an effective method of reducing a P.D.E. to a tractable O.D.E.  This process reduces 
the number of independent variables by one or more (e.g. from y and t to  for the suddenly 
accelerated plate of Section 12.2).  However, how do we approach a problem that involves more 
than one dependent variable?  Note that our three previous examples dealt with only one non-
zero velocity variable (u for the suddenly accelerated plate and Ekman drift, and v for the 
decaying line vortex). 
 
In the following example, we deal with a flow that requires the determination of two dependent 
velocity components, u and v, and thus we must develop a solution that simultaneously satisfies 
both the continuity and the Navier-Stokes equations.  Thus, we have u = u(x,y) and v = v(x,y).   
 
Here, we show how this is done making use of the stream function, as well as a similarity 
variable. 
 
The problem we address here is a two-dimensional laminar jet, which issues from a slot in a wall 
into a region of infinite extent and constant pressure.  This flow was originally solved by  
Schlichting (1933).  The solution we seek will only apply for a downstream region removed from 
the immediate vicinity of the slot. In this downstream region, the velocity profiles are expected 

https://www.revolvy.com/page/Schlichting-jet?cr=1
https://www.revolvy.com/page/Schlichting-jet?cr=1
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to exhibit similar behavior, with the velocity profile stretching laterally in the y-direction due to 
viscous diffusion, and correspondingly contracting in the x-direction, as illustrated below. 
 
 
 
 
   constant 
 Constant pressure  
 
 
 
An additional assumption will be that the total momentum flux in any x-plane of the jet will 
remain constant, and that no other external forces act on the flow.  In reality, this is not exactly 
the case (although the momentum will not change rapidly).  However, as we will see, we require 
four limiting conditions to solve the problem fully, and we can only identify three appropriate 
boundary conditions.  Therefore, we use the assumption of constant momentum flux as our 
fallback limiting condition. 
  
An assessment of the Navier-Stokes equation indicates that the y-direction component equation 
has negligible influence on the solution (we will demonstrate how we prove this for a boundary 
layer flow in Chapter 13), so the governing equations for this flow are the x-direction component 
of the Navier-Stokes equation and the continuity equation (2-D). 
 
 

 Navier-Stokes (x-direction):    





























2

2

2

2

x
u

y
u

dx
dP1

y
uv

x
uu  (12.42a) 

 Continuity equation:   
y
v

x
u








  (12.42b) 

 

We further assume that the pressure within the solution region is constant, which makes the 
pressure gradient within the flow region negligible.  Additionally, we assume the viscous 
changes in the x-direction are minimal in comparison to viscous changes relative to the normal 
(y) direction (we address this assumption more closely when we assess boundary layers in 
Ch.13). 
 
Finally, we identify three clear boundary conditions, all relative to y. 
 

 Boundary Conditions: @  0v   0y  :  (12.43a) 

  @ 0
y
u   0y 



 :  (12.43b) 

  @ 0u   y  :  (12.43c) 

0 Neglect relative to y-changes 

P = constant 

x 

y 
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Because Eqs. 12.42a and 12.42b contain a first-order derivative of u with respect to x, we 
technically require a bounding condition for u at an appropriate x location.  One possibility might 
be u = 0 as x  .  However, such a boundary condition does not prove useful in establishing 
the coefficients of integration (I will illustrate).  Thus, we use a fallback assumption of a constant 
momentum flux, which we employ after the fact to allow a (somewhat) complete solution. 
 

 To begin the solution, we note that we can reduce Eqs. 12.42a and 12.42b to one equation by the 
use of the stream function, (x,y). Recall that the stream function is an exact solution of the 
continuity equation (in two-dimensions; see section 9.2, Eq. 9.3).   The use of the stream 
function reduces the two partial differential equations (P.D.E.) to one P.D.E. equation with one 
dependent variable (), since it eliminates the continuity equation from the set of equations.   

 
Substituting the stream function into Eq. 12.42a, where: 
 

 
y

u



 , 

x
v




 , 

xyx
u 2








 , 2

2

yy
u








 ,      and   3

3

2

2

yy
u








  

yields: 
 

 3

3

2

22

yyxxyy 



















  (12.44) 

 

Thus, by using the stream function, we have reduced two P.D.Es to one P.D.E. for  yx, .  
We now search for an independent variable, , which will convert the partial differential 
equation of Eq. 12.44  to one ordinary differential equation for  = (). 
 
The determination of an appropriate similarity approach is not always straightforward, and 
requires a bit of insight, skill, and trial and error.  Many approaches that work seem reasonable 
after the fact, but are not exactly obvious initially.  For this problem, in addition to a similarity 
parameter, the stream function must be further scaled on the streamwise variable, x, such that we 
seek a functional relationship of the form: 
 

 )( fxba  and edc yxC  (12.45) 
 

Here, a, b, c, d, e, and C are all constants, to be determined.  As we will see, this form of scaling 
reduces Eq. 12.44 to a tractable O.D.E, but the form of the scaling was probably not obvious to 
Schlichting who first solved this problem, and probably evolved from several different attempts 
at an effective scaling.  Often, dimensional analysis of the governing equation may be helpful in 
the determination of an appropriate scaling approach, but not always. 
 
To seek a general similarity reduction of Eq. 12.44, we could employ the general functional 
forms of Eq. 12.45, substitute into Eq. 12.44, and manipulate a, b, c, d, e, and C to yield a 
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tractable ordinary differential equation.  However, this is a hard, tedious process, so we will short 
cut it by using the following previously established functional forms: 
 

 )(/  fx 31   and   32x
y

3
1

/


  (12.46) 

 

Thus, we first determine the various components of Eq. 12.44 as:  
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Now substituting these relationships back into Eq. 12.44 gives: 
 

    1 3 4 3 2 3 5 3

f 1 f ff 2 f f 2 f
3x 9x 3x 27 x9x

         
                        

, 

 

which simplifies to (trust me, or do it yourself—a good exercise). 
  

 0ffff 2   (12.47a) 
  
 
 

Using a few mathematical identifications give a final ODE for  f  as: 
 

     0fff0fff 




       (12.47b) 

 
 
 

 

 ff
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The modified boundary conditions from Eqs. 12.43 are: 
  

 Boundary Conditions:       

1) y 0 0  :  v 0 f 0

u2) y 0 0  :     0 f 0
y

3) y  : u 0 f 0

      


      



     

 (12.48) 

 

Integrating Eq.12.47b for f gives: 
  

 1 1f ff C From Eqs.12.48 for 0 0 0 C 0          
 

Therefore, 
 

 0fff   (12.49) 
 

Note that we can write, ff2f 2 )( .  This will help simplify Eq.12.49, but the coefficients are 
wrong to allow a closed form integration.  So, we substitute further, letting:  
  

 F2fF2fF2f   (12.50) 
 

Thus, substituting Eqs.12.50 into Eq. 12.49, with a few more mathematical identifications gives: 
  

 2F (2F)(2F ) 0    
F 2FF 0    

   0FFFF 22 


 )(  (12.51) 
 

Integrating Eq. 12.51 gives: 
 

  2FF constant = 2    choose for convenience 
 

 or   22 F
d
dF




 (12.52 

Separating variables, and integrating Eq.12.52 gives: 
  

    


d
F

dF
22  

 

  2 2 2F C for boundary condition1 0 F 0 0 C C 0tanh , @ ( ) tanh( )           

Thus,  
 

   tanh2F2f  (12.53) 
 
Now, using f to solve for the velocity components gives: 

0 0 
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2 2

2 2
1 1 1

3 3 3

f 2 2u sech ( ) 1 tanh
y 33x 3x x

  
      


         (12.54a) 

 where 32x
y

3
1

/


  

and 

       









 tanhsech2

3232 2
x3

2f2f
x3x

v  (12.54b) 
 

Note that we never used our third boundary condition to arrive at these expressions.  However, 
we note that Eq.12.54a reflects u = 0 (f '= 0) for   , thus our third boundary condition is 
satisfied.   
 
To determine the undetermined constant , since we have no other appropriate boundary 
condition, Schlicting invoked the physical condition that the momentum flux for the jet must 
remain constant (within a reasonable distance of the orifice).  Thus, if J is the momentum flux, 
defined by: 
 

  




 dyuJ 2  (12.55) 

 

We determine J by substituting Eq. 12.54a for the x-direction velocity, u, into Eq. 12.55, and 
solving for  in terms of J, which gives: 
 

 
3

1
J82550 












 .  (12.56) 

 

Figures 12.12a and 12.12b show the u velocity predicted by Eqs. 12.54a, illustrating the 
"similar" shape of the velocity profile, when scaled on  (figure 12.12a), and the spread of the 
velocity profile, when scaled on y (figure 12.12b), as a function of streamwise distance, x.  Note 
that figure 12.12b also demonstrates the decrease in umax (the center line velocity, at y =  = 0) 
with increasing distance, x. 
 
Figure 12.12c shows the behavior of the transverse v velocity, which appears a bit unusual.  
However, there is an explanation for the pattern shown.  Note the change in the transverse 
dependence of the velocity behavior on y: when the jet is close to the wall slot (x = 1.0), near the 
centerline (|y| < 4) the transverse velocity, v, is away from the centerline, but well away from the 
centerline (|y| > 10), the velocity is very strongly toward the centerline. This reflects an induced 
flow created by the jet, which causes fluid away from the centerline to flow toward the jet.  
However, as the jet moves further in the x direction, this flow pattern mediates; the same 
outward/inward pattern is present, but much less pronounced.   
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 (a)  u vs.  (similarity parameter) (b)  u vs. y (physical distance) 

 

 
(c)  v vs. y (physical distance) 

 
Figure 12.12 Streamwise and spanwise velocities for a laminar jet.  Here we let , , and J 

= 1, at three progressive x distances, x =1.0, 2.0, and 3.0.  
(a) u vs. , (b) u vs. y, (c) v vs. y 

 
To better illustrate the jet flow pattern, Figure 12.13 shows a plot of the velocity vectors for u 
and v calculated for the region 1 < x < 6 and -10 < y < 10; overlaid on these velocity vectors are 
selected streamlines for the flow.  These vectors and streamlines illustrate the strong inflows near 
the wall, the decreasing u-velocity with increasing distance from the wall, and the slow spreading 
of the jet as it proceeds downstream. 
 
Equations 12.54 reflect an idealized solution, since under normal flow conditions the jet would 
break down due to the rapid generation of turbulence.   However, Eqs. 12.54 will be a reasonable 
model of a low density or very viscous jet flow, at very low Reynolds number. 
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Figure 12.13 Velocity vector/streamline plot for a laminar wall jet.  Here we let , , and J = 

1. Velocity vectors are shown in black, and streamlines in blue.  Jet enters 
from left at x,y =0,0. 

 
Note that if we tried to use the boundary condition u = 0 as x  , this would be indeterminate 
in establishing .  When x  ,   0, and Eq. 12.54a will become: 
 

  
)(

)(tanh
)( 









2
2

2

3
201

3
20u  

 

This result is indeterminate for , so  cannot be determined from an assumption of u = 0 as x  
.  However, equation 12.54a does give the correct result or u = 0 as x  . 
 
This approach of using similarity variables and solutions permeates fluid mechanics (as well as 
other scientific/engineering fields).  In the next chapter, we address a very common flow 
behavior that again yields a similarity solution:  the development of laminar boundary layers for 
flows over external surfaces. 
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Study Problems 
 
 

1.  Consider the solution for a decaying Oseen-Lamb vortex solved in section 12.3.1.  Using the solution 
for the velocity (Eq. 12.29), determine the shear stress for the vortex, and create a graph showing 

r vs r.



 


from 0 < r < 6 cm for water ( = 10-2 cm2/s).  On one graph, show 3 plots for t = 1, 5, and 

10 seconds.  Briefly explain what is happening as time increases. 
 
 

2.  Consider the solution for a dissipating Taylor eddy examined in section 12.3.2.  Using the solution for 
the velocity (Eq. 12.31), determine the shear stress for the vortex, and create a graph showing 

r32 vs r
M

.



from 0 < r < 6.  Let =1, and r and t be dimensionless.  On one graph, show 3 plots for t 

= 1, 2, and 3.  Briefly explain what is happening as time increases. 
 
 
3.  Consider the situation where an infinite plate and the flow above it are both moving at a constant 

velocity U.  At t = 0, the plate is suddenly stopped, decelerating from u = U to u = 0 instantaneously.  
 
 
 
 
   
 

 
 
For this flow, the Navier-Stokes equation simplifies to: 

 

 2

2

y
u

t
u









  

 
Thus, only the local x-direction acceleration and shear forces are non-zero.  Solve this equation for 

u(y,t) using a “similarity” solution of the form )( f
U
u

, where the similarity parameter is 

t2
y


 .  Indicate clearly the appropriate boundary and initial conditions, reduce the equation to 

an ODE in terms of f(), and solve to determine f(), and thus u(y,t). 
 
Create two graphs:  One of u/U vs.  for 0 <  < 2; another showing three plots of u/U vs. y between 
0 cm < y < 2 cm, for t = 1 s, 10 s, and 100 s.  Assume the fluid to be water with  = 10-2 cm2/s. 
 
 

4.  For the Ekman Drift problem done in section 12.4, using equation 12.41, determine the value of Vwind 
(in m/s) for which 0u will be 3% of Vwind after one hour of exposure. 

 

y 

x V 
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5.  For the Ekman Drift problem done in section 12.4, using equation 12.41, determine the value 
of  Vwind (in m/s) required for which 0u will be 0.5 m/s after (a) 5 minutes of exposure and 
(b) one hour of exposure. 

 
 
6.  For the Ekman Drift problem done in section 12.4, make graphs for 10y0  cm of: 
 

a.  yvs
y
u

0

w .







 , and  

b.  yvsu

0

w .



 (let 

s
cm10

2
2 , which will give 

0

wu



units of cm) 

 
Comment on what these show about the flow. 

 
 

7.  For the Ekman Drift problem done in section 12.4, use a similarity method similar to that used for the 
water to derive the behavior of the shear stress and velocity for the air flow above the water.  You will 
use the same reduced equation and similarity parameter,  (only for the kinematic viscosity in air), 
and will determine solutions for the region 0y  .  Also, your initial condition will be 

U0t0yu  ),( = constant, and the boundary conditions will be

constant0t0y
y
u o 








 ),( , 00ty
y
u




 ),(  and U0tyu  ),( .   

 

From your solutions, plot (let 
2cm0 15

s
  . , which will give 

 

0

Uu



 units of cm) 

A.  
y
uvs

0

a








 .  , from 0 <  < 2 

B.  
0u
Uuvs 

 .  , from 0 <  < 2, where 









t2u o
0   

(note that 
0u
Uu 

 is termed a velocity "deficit") 

C.  
 

o

Uuvsy


. , from 0 < y < 10 cm 

Comment on the behavior of your graphs, and what they show about this flow. 
 
 
8. Substitute Eq. 12.54a for the x-direction velocity, u, into Eq. 12.55, and solve for  in terms of J to 

show that Eq. 12.56 is correct. I would suggest you do the integration using Wolfram Alpha. 
 
 
9. Using Eq. 12.54a for the x-direction velocity, u, into Eq. 12.55, determine the x-direction 

mass flowrate per unit depth, m, as a function of x. Let , , and J = 1.  Use your resulting 

equation to plot 
x 1

m
m 

from x = 1 to x =10.  What does this show is happening in the flow? 
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10.   Consider the velocity given by Eq. 12.31, derived by G.I. Taylor.  For this velocity, the momentum 
is a constant, given by M. 

 
a) Show that M is a constant by integrating for the angular momentum (massless), given by 

2

0

M 2 v r dr


  .  Hint, rewrite Eq. 12.31 in terms of 
t

r


 . 

b) Calculate the vorticity for this flow, and plot 
2

z8 vs. r
M

 
 for 0 < r < 8, at t = 1, 2, and 3.  

 Let  = 1. 

c) Calculate the circulation, , and plot 
28 vs. r

M
 

 for for 0 < r < 8, at t = 1, 2 and 3. Let  = 1. 

What is the value of   when r  ?  How do you explain that? 
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Chapter 13 
 

Introduction to Boundary Layer Theory 
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13.1 Motivation 
 
Almost all practical fluid systems, from water pumps to airplanes, have fluid interacting with 
solid surfaces.  In such real fluid flows, as opposed to “ideal” potential flows, the “no slip” 
condition due to the fluid viscosity constrains the fluid to adhere to, and not slip, when in contact 
with a solid surface.  The interaction of a real fluid with a solid surface can also generate 
vorticity, due to the processes we discussed in sections 11.5 and 11.6.  When vorticity is 
generated, it will diffuse away from the surface, but very slowly in comparison to its rate of 
transport parallel to the surface. Consequently, the interaction of a fluid with a solid boundary 
results in the creation of a thin layer of vorticity-bearing fluid adjacent to the solid surface.  This 
thin region provides a transition zone from the no-slip solid boundary to the outer region fluid, 
where the fluid behaves in a relatively inviscid manner, like a potential flow.  This transitional 
region is correspondingly termed the “boundary layer”, and is the region where fluid shear 
stresses are dominant. Consequently, we generally think of a real fluid flow in proximity to a 
solid surface as comprised of a thin, viscously-dominated boundary layer, with an adjoining 
outer region that behaves in a relatively inviscid manner.  While this model is a little 
oversimplified, this two-region approach is a practical way to model such flows, from which to 

https://en.wikipedia.org/wiki/No-slip_condition
https://en.wikipedia.org/wiki/No-slip_condition
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seek practical engineering solutions.  To familiarize yourself with the physical characteristics of 
a boundary layer, I recommend you view a video of visualized boundary layers, which can be 
accessed here.  This is a YouTube video of an old educational film (circa 1961), but one that is 
still quite relevant, showing the development and physical behavior of real boundary layers. 
 
Boundary layers, as we will discuss, are subject to both viscous diffusion and to pressure 
gradients imposed by the outer-region flow.  While viscous diffusion will cause the spread of 
vorticity, the presence of a pressure gradient will cause the generation of vorticity at an adjacent 
surface.  As discussed in Section 11.5.3, depending on the direction of the pressure gradient 
(positive or negative), the additional vorticity generated by a pressure gradient can cause the 
cumulative vorticity comprising the boundary layer to either increase or decrease.  For 
complicated geometries, the generation of vorticity, and the development of boundary layers, can 
be quite complex and difficult to model mathematically.  However, to begin our assessment of 
boundary layers, we will first confine ourselves to the most elementary type of boundary layer 
flow—one that develops over a thin flat plate with no pressure gradient.  This flow, first assessed 
by Prandtl, and first solved mathematically by Blasius, is the simplest example of a broad field of 
fluid mechanics known as boundary layer theory.   
 
In the present chapter, we first examine the development of what are termed the boundary layer 
equations, and then apply these equations to assess the behavior of the laminar boundary layer 
for a flat plate flow, both without and with a pressure gradient.  In the following Chapter 14, we 
will illustrate some approximate solution techniques that allow the rapid assessment of more 
complicated laminar boundary layers with pressure gradients.  Later, in Chapter 17, we will 
address some simple models and solutions for boundary layers when turbulence is present. 
  
It should be recognized that we will only scratch the surface of this very expansive topic of 
boundary layer theory.  We will also only address two-dimensional flows for which semi-
analytical solutions are possible.  In reality, most practical flows are sufficiently complicated that 
one must resort to numerical solutions of the complete boundary layer equations.  In this text, we 
will not cover numerical solution techniques, which is a topic unto itself.  However, upon 
completion of the present material, a student should be well prepared to take advanced graduate 
courses on numerical techniques that should allow one to solve, or at least understand the 
solution procedures, for more complicated boundary layer flows.  
 
13.2 Development of the Boundary Layer Equations 
 
As shown in the following figure 13.1, we choose the variable delta, , to characterize the 
thickness of the boundary layer.  We take this thickness to be the distance away from a solid 
boundary where the velocity approaches that of the outer region.  Since we can envision that the 
velocity may very slowly asymptote to the outer region streamwise velocity, U, we arbitrarily 
designate the boundary layer thickness as that point where u = 0.99U.  As we will see, this is 

https://www.youtube.com/watch?v=wMxK2GtFFq0&list=PL0EC6527BE871ABA3&index=11&feature=plpp_video
http://en.wikipedia.org/wiki/Ludwig_Prandtl
http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius
http://en.wikipedia.org/wiki/Boundary_layer
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not a particularly good designation, since if we use this criterion to determine the boundary layer 
thickness from experimental velocity measurements, the result will be highly dependent upon the 
accuracy of the measurement instrument employed.  For example, a  1% accurate instrument 
might yield values of  with  10% accuracy or worse, depending on how the velocity profile 
within the boundary layer asymptotes to U.  We will discuss alternative ways to characterize the 
effects and scale of the boundary layer later in section 13.4. 
 
 
 
 
 
 
 
  

Figure 13.1 A generic model of boundary layer development (not to scale) 
 

As figure 13.1 shows, we consider the thickness of the boundary layer, , to grow slowly as a 
function of the streamwise distance, x, such that (x) << x.  Note that the boundary layer growth 
in figure 13.1 is exaggerated for illustration purposes.  In reality, a boundary layer will generally 
measure in height less than 1/100th of the streamwise distance from its point of origin.  In figure 
13.1, we assume that the boundary layer will start at zero thickness at x = 0, and grow from that 
point onward.  However, that is not necessarily the case, since  could have some non-zero initial 
value, due to vorticity generated on a previous surface.  Additionally, we must assume that U, 
the velocity of the outer region (generally known as the free stream), may also be a function of 
the streamwise distance. 
 
Generally, laminar boundary layers are computed using either a combination of analysis and 
numerical computation, for simple flows, or purely computational techniques for more 
complicated flows.  In contrast, calculation of turbulent boundary layer behavior, because of the 
tremendous complexity of turbulent flows, is done by employing significant simplifications and 
substantial numerical computations.  As we will discuss in Chapter 17, most practical 
engineering solutions of turbulent boundary layer characteristics are essentially empirically-
derived, requiring significant use of approximations or empirical curve fits. We will discuss the 
approaches for assessment of turbulent boundary layers later in Chapter 17.  Here, we develop 
the appropriate equations to determine the characteristics of laminar boundary layers.  
 
We first consider a model of the boundary layer, as shown in figure 13.2, which shows the 
relevant parameters at a point L in the direction of flow over a solid surface.   
 
 
 
 

x 

y 

(x) = boundary layer 

u = 0.99U U(x) 
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Figure 13.2 A parametric representation of boundary layer growth. 
 
At any given distance along the surface, the relevant parameters are: 
 

L, the position along the surface; 
U, the local outer region velocity; 
, the kinematic viscosity of the fluid (the ratio of absolute viscosity to density); and 
, the local boundary layer thickness. 

 

If we apply a process of dimensional analysis to this set of parameters, we can determine a set of 
two non-dimensional parameters: 
 

 
L
    (13.1a) 

and    

 L
LU Re



   or  
 


 ReU  (13.1b) 
 

The first parameter, Eq.13.1a, is the thickness of the boundary layer relative to the local 
streamwise position, L (which represents a characteristic dimension of the flow at that point).  
The second parameter, Eq.13.1b, is a Reynolds number (after Osborn Reynolds, who first 
characterized turbulence), which represents the ratio of the local inertia forces to viscous forces.  
The Reynolds number is based on either the local position or the local boundary layer thickness, 
depending upon what one chooses as the repeating parameter in the non-dimensionalization 
process.  Using the parameters of Eq. 13.1, we assume a functionality of the form: 
 

 











 LUf
L

  or   













 Uf
L

 (13.2) 

 

Equation 13.2 indicates that the growth and behavior of the boundary layer is dependent upon the 
magnitude of the local Reynolds number.    
 
Note that we can expand the definition of the Reynolds number, based on the boundary layer 
thickness, as follows: 
 

U(x) 

(x) 

U 

L 

100
1

L



*

x 

y 



  

https://en.wikipedia.org/wiki/Dimensional_analysis
http://en.wikipedia.org/wiki/Reynolds_number
http://en.wikipedia.org/wiki/Osborne_Reynolds
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Re  (13.3) 

 

As Eq. 13.3 illustrates, the Reynolds number represents the relative magnitude of inertia forces 
within the boundary layer to the comparable viscous forces (i.e. shear stresses).  As we will see, 
when the Reynolds number is quite large this allows us to simplify the governing equations 
significantly, and makes the computation of boundary layers more tractable (although the 
solution of the resulting equations still requires the use of sophisticated analytical and numerical 
procedures). 
 

13.2.1 An Order of Magnitude Reduction of the N-S Equations 
 
To begin our assessment of the governing equations, we model the flow situation as shown in 
figure 13.2, and use this model to appropriately non-dimensionalize the Navier-Stokes equations.  
We then simplify the equations using an order-of-magnitude assessment; this lets us establish 
which terms within the governing equations can be considered negligible or at least very small 
relative to the dominant terms, and thus to a good approximation can be neglected . 
 
Note that the terms comprising the governing equations will be non-dimensionalized and 

compared relative to the non-dimensional boundary layer thickness, 
L


* , which we pointed 

out is of the order (size) of 1/100.  Using this scaling on * allows us to establish the order of 
magnitude of each term within the equations (i.e. how dominant each term is).  This order of 
magnitude hierarchy is given by: 
 

 
*

*



11   , etc. 

 
We begin the non-dimensionalization process by defining the following non-dimensional ratios, 
 

 2U
PP  

U
vv  

U
uu  

L
yy  

L
xx

 
 *,*,*,*,*  (13.4) 

 

as our non-dimensional variables.   Considering our model of the boundary layer in figure 13.2, 
we use physical reasoning to establish the order (size) of the dimensionless variables in Eq.13.4 
as: 
 

 x 0 1   y 0   u 0 1   v 0   P 0 1* ( ), * ( *), * ( ), * ( *), * ( )        (13.5) 
 

Here, 0(1) means a variable is, or could be, a dominant variable, and 0(*) indicates a variable 
which is an order of magnitude less dominant (roughly 100 times smaller).  The rationale for this 
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ordering is that large changes can take place in the streamwise (x) direction and the (u) velocity 
component, whereas much smaller changes take place in the normal (y) direction and (v) 
velocity component.  Since the pressure may or may not change significantly, we assume that 
pressure could be a potentially dominant term of 0(1).  
 
The starting governing equations are the continuity and the steady-state Navier-Stokes equations 
in two dimensions (Note that the same process is also applied for the more complicated, three-
dimensional case), which for an incompressible flow are: 
 

 0
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  continuity (13.6a) 
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To see how this order of magnitude analysis works, consider the continuity equation, Eq.13.6a. 
Using the definitions in Eq. 13.4, we can write: 
 

 *vUv  *,uUu  *,Lyy  *,Lxx    (13.7) 
 

 Substituting the variables in Eq.13.7 into Eq.13.6a and simplifying, we have: 
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*  (13.8) 

 

Now, assessing the order of magnitude of each term in Eq. 13.8, using the relative magnitudes of 
each variable that were assumed in Eq. 13.5 (we assign the magnitude of each term as the ratio of 
the magnitude of the variables comprising the derivative), we have: 
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*
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*
*  (13.9) 
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)( 1010
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The order of magnitude assessment of Eq.13.9 indicates that both terms in the continuity 
equation can be of comparable magnitude, and thus both must be retained.  At first this may 
seem a bit strange, since both the v* and y* terms are small.  However, the ratio of these terms 
indicates that while the values of v* and y* may be small, the ratio of the changes could be 
comparable to the ratio of the streamwise changes.  This is logical, since for two-dimensional 
incompressible flow any changes in the velocity in one dimension must be balanced by 
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comparable changes in the velocity in the other dimension.   As we will see in the following 
assessment of the Navier-Stokes equation, all terms in the Navier-Stokes equations are not 
comparable, which allows us to neglect selected terms as essentially non-contributory.  
 
Next, we non-dimensionalize the x-direction Navier-Stokes equation, Eq.13.6b.  For example, 
since u = Uu* and x = Lx*, then for the first term of Eq.13.6b we can write, 
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Performing similar non-dimensionalization of each term of Eq. 13.6b, and substituting those 
back into Eq.13.6b yields: 
 

 
















































































2

2

2

2

2

222

y
u

x
u

L
U

x
P

L
U

y
uv

L
U

x
uu

L
U

*
*

*
*

*
*

*
**

*
**  

 

Dividing through by 
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, and simplifying yields: 
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Applying an order of magnitude analysis to Eq. 13.10 using Eq. 13.5 yields: 
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On the right side of Eq. 13.10, our order of magnitude analysis indicates that the two derivative 
terms arising from the viscous shear are of 0(1) and 0(1/*2).  Now, since *<<1, this means that 

0(1) << 0(1/*2), and we can effectively neglect the 2

2

*x
*u



  term relative to the 2

2

*y
*u



  term.  Note 

that we do not initially know the order of the reduced term, 











2

2

y
u1
*

*
Re

, relative to the other 

terms in the equation.  However, we reason that the viscous term must play an important role in 
the development of the boundary layer (it cannot be negligible, or we would have basically an 
inviscid flow).  Thus, we further reason that the right-hand viscous term must be of 0(1), or of 

Both terms 0(1) 
neglect 
relative to 0(1) also     Re     

Must be because viscous terms can’t be zero! 
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the same magnitude as the momentum terms on the left-hand side of Eq.13.10.  In order for this 
to be the case, requires that the Reynolds number of the flow must be very large, or ReL  










 2
10
*

.  That the Reynolds number must be large was one of the key assumptions made by 

Prandtl, who derived the original boundary layer equations.   Thus, neglecting the 2

2

x
u



 term, the 

x-direction Navier-Stokes equation reduces to: 
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Now, non-dimensionalizing the y-direction N-S equation, Eq. 13.6c, and assessing the order of 
magnitude of the terms gives: 
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Our order of magnitude analysis indicates that all terms in Eq. 13.12 must be of 0(*) or less, 
with the possible exception of the pressure term.  This is particularly interesting, since it implies 
that all the inertia and viscous terms in the y-direction Eq.13.12 are much, much smaller than any 

of the terms (except the 2

2

x
u



  term) in the x-direction Eq. 13.10.  This suggests that we can 

neglect all the terms in Eq.13.12 relative to the terms in Eq. 13.10.  But this also means that the 

y-direction pressure gradient term,
*
*

y
P


 , must also be of order 0(*) as well (since it must be in 

balance with all the other terms of Eq. 13.12).   
 
Comparison of the order of magnitude results for Eq.13.10 to Eq.13.12 indicates that

)(
*
* *



 0
y
P  relative to )(

*
* 10

x
P




 .  Thus, to a good approximation we can say that at any 

streamwise location the pressure change across the boundary layer is essentially negligible, or
)(xPP  .  This means that the pressure at the edge of the boundary layer is impressed across the 

boundary (i.e. the pressure within the boundary layer must be P(x), the pressure at the interface 
of the boundary layer with the outer region flow).   
 

All 0(*) or less 

http://en.wikipedia.org/wiki/Ludwig_Prandtl
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13.2.2 The Boundary Layer Equations 
 
Since all the terms comprising the y-direction equation are of 0(*) or less, this means that to a 
good approximation we need only consider the solution of the reduced x-direction boundary 
layer equation (Eq.13.11) and the continuity equation (Eq.13.9) in order to determine a 
mathematical solution for the velocity field. Thus, the governing equations for a two-dimensional 
boundary layer are: 
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  (13.13a) 

and 

 0
y
v

x
u









  (13.13b) 

 
 
 
 
 

Note that Eqs.13.13 require specification of four boundary conditions to allow a complete 
solution:  Three for u (two on y, and one on x), and one for v (one on y).  These are respectively 
(see figure 13.3): 
 
Boundary Conditions: 1) u = 0   @  y = 0  
 2) v = 0   @  y = 0 
 3) )x(Uu   @  y   or  
 4) u = u(y)  @  x = 0 
 
 
 
 
 
 
 
 
 

Figure 13.3 Locations of the four boundary conditions required for solution of the 
boundary layer equations. 

 
Note that the boundary layer equations are parabolic.  This means that the fluid can only evolve 
based on the imposed boundary conditions as it moves downstream, and is not influenced by 
downstream conditions (similar to a rock falling toward the ground; the rock doesn’t know the 

The Two-Dimensional  
Boundary Layer Equations 

U(x) 

4 

x 

y 
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1 2 
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ground is approaching until it hits).  Here, the only way that the downstream geometry can affect 
the boundary layer development is through changes in the external pressure gradient, which will 
change with geometric conditions. 
 
Now that we have derived the governing boundary layer equations, these can be solved exactly 
for a few cases (the solutions, however, are not exactly simple).  In addition, we can obtain some 
approximate solutions for other cases (we will discuss how this is done in Chapter 14).  
Additionally, the boundary layer equations can be solved numerically, using relatively standard 
numerical integration techniques.  However, one caveat on numerical solutions is that under 
extreme changes in geometry, and thus pressure gradient behavior, the assumptions that were 
invoked in the order of magnitude analysis may break down (e.g. that *)(*  0v ), which 
requires that one revert to the solution of the full Navier-Stokes solution, which makes solution 
procedures much more complicated. 
 
13.3 Solution of the Boundary Layer Equations for a Flat Plate Flow 
 
Let’s now use the boundary layer equations (Eqs.13.13) to examine the simplest flow 
application:  a steady, laminar flow over a flat plate with a uniform approach flow (i.e. U
constant) to the plate.  This is essentially the type of flow shown in figure 13.3. 
 
To establish the pressure gradient for this flow, we employ the Bernoulli equation for an inviscid 
flow, and apply it to the flow just outside of the boundary layer.  We assume this external flow 
will be uniform (the flows outside the boundary layer are generally relatively uniform, and thus 

behave basically like an inviscid flow).   Applying the Bernoulli equation, we have  

2U
2
1P

constant along a streamline external to the boundary layer.  If we differentiate this equation with 
respect to x, we get: 
 

 0
dx
dP0

dx
dUU
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   (13.14) 

 
 

Since U constant, there is no pressure gradient along the flat plate.  Thus, substituting Eq. 
13.14 into Eq.13.13a eliminates the pressure gradient term, such that the boundary layer 
equations for this flat plate flow become: 
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With the corresponding boundary conditions: 
  

 @ 0y   @ y  @ 0x   (13.16) 

 0u    Uu   Uu  

 0v   
 

Since we have no characteristic dimension for this flow, we will assume a similarity-type 
solution (like that we explored in Chapter 12), with  assumed as a similarity (i.e. “stretching”) 
variable that scales all the boundary layer velocity profiles along the plate, or: 
 

 i.e. 













yf
U
u  

 

Using physical reasoning, we assume that  will be a function of (i.e. depends on) the free stream 
velocity, U, the distance along the plate, x, and the kinematic viscosity, : 
  

 i.e.  = f (U, x, ) 
 

Applying dimensional analysis, we can show that an appropriate functional relationship should 
be: 
 

  











 xUf
x

 

 

Blasius showed that the appropriate dimensional relationship that preserves dimensional 
correctness, and appropriately reduces the Eqs.13.15 is: 
 

 





U
x  

 

To scale changes in the y direction on changes in , we define a similarity variable, , where: 

 
x

Uyletwesoy





 ,      (13.17) 

 

This gives a velocity function of the form:      
 

 )(


f
U
u

 (13.18) 

 

However, before we can apply our similarity variable, we must reduce the two partial differential 
boundary layer equations to one partial differential equation.  To do this, we make use of the 
stream function, like we did in section 12.5 for the laminar wall jet. Why?  Remember that the 
steam function is already an exact solution of the continuity equation, and that the 2-D velocity 
components (in the Cartesian system) that satisfy continuity are given by: 
 

http://en.wikipedia.org/wiki/Paul_Richard_Heinrich_Blasius
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Substituting the functional relations of Eq.13.19 into the boundary layer equations of Eqs.13.15 
gives: 
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  x-direction momentum (13.20a) 

and 
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  continuity (13.20b) 

 

Thus, Eq.13.20b is satisfied exactly, leaving us with only Eq.13.20a, which is a non-linear, 
partial differential equation for only one dependent variable (), rather than u and v in the 
original Eqs.13.15.  
 
While we now must solve only Eq.13.20a, the equation is a bit daunting since we have raised the 
order of the equation from second order to third order.  To obtain a similarity solution that will 
reduce Eq.13.20a to an ordinary differential equation, we must relate our dependent variable in 
Eq.13.20a, , to the velocity function, f(), and thus the similarity variable, ,  from Eq.13.17 

and 13.18.   To do this, we note from Eq.13.19 that 
y

u



 .   We use this relationship to 

integrate the stream function with respect to y at a fixed streamwise (x) location, i.e.: 
  

 












y

0
ofixedxfixedx udyudydy

y
dx

x
d  (13.21) 

 
 

Equation 13.21 represents the planar volumetric flow rate of fluid over the indefinite region 
between the surface (y = 0) and an indefinite height y.  Substituting 13.18 into Eq. 13.21 and 
utilizing Eq. 13.17, we obtain: 
 

 




 



0

y

0

y

0

d
U

xfU dyfUudy  )()(      (note that 
y

0

udy  reflects the planar flow rate)  

or 

 )()(  



  FxUdfxU
0

 where 
x

Uy


   (13.22) 
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Note that in Eq.13.22 we set the integral of f() equal to F(), which is just another indefinite 
function of , since  is an indefinite integration limit. 
 
Now, using the expression for from Eq. 13.22, we determine the respective terms in Eq. 
13.20a, and substitute these to obtain an ordinary differential equation for )(F  
 

 e.g.  
x
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x

U
2
1

x 












  
x2x

1
x

Uy
2
1

x








   

 

and thus,  
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Likewise, we obtain: 
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Substituting these relationships into Eq. 13.21a, 
 

 3

3

2

22

yyxyxy 



















  

gives, 

     F
x

UF
x

UUFF
x

U
2
1F

x2
UFU

22
1

2
1

















































 









 




 ,  

or 

 F
x

UFF
x2

UFF
x

U
2
1FF

x2
U 2222

  , 
   

which simplifies to what is known as the Blasius boundary layer equation: 
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we can derive the boundary conditions for F that apply for the Blasius equation as follows: 
 
  0F00u0y  ::   
  0F00v  :  

  y : u U : F 1
      

  1FUu0x   ::  
 

Table 13.1:  Blasius table for F, F'and F'' vs.  
 

 F F' F'' 

0 0.0000 0.0000 0.3321 

0.2 0.0066 0.0664 0.3320 

0.4 0.0266 0.1328 0.3315 

0.6 0.0597 0.1989 0.3301 

0.8 0.1061 0.2647 0.3274 

1 0.1656 0.3298 0.3230 

1.2 0.2380 0.3938 0.3166 

1.4 0.3230 0.4563 0.3079 

1.6 0.4203 0.5168 0.2967 

1.8 0.5295 0.5748 0.2829 

2 0.6500 0.6298 0.2668 

2.2 0.7812 0.6813 0.2484 

2.4 0.9223 0.7290 0.2281 

2.6 1.0725 0.7725 0.2065 

2.8 1.2310 0.8115 0.1840 

3 1.3968 0.8461 0.1614 

4 2.3058 0.9555 0.0642 

5 3.2833 0.9916 0.0159 

6 4.2797 0.9990 0.0024 

7 5.2793 0.9999 0.0002 

8 6.2793 1.0000 0.0000 

9 7.2793 1.0000 0.0000 

 
Note that the last two of the four boundary conditions for u and v in x and y reduce to one 
common bounding condition for F' with respect to .  Thus, we reduce the third order P.D.E. 
with four boundary conditions for (x,y) to a third order O.D.E. for F() with three boundary 
conditions.  Equation 13.23 is non-linear, and without a closed form solution.  The solution of 
this equation is obtained using standard numerical solution techniques, generally a Runge-Kutta 
numerical technique. I chose to solve the equation using the MATLAB function bvp4C, which 
works quite quickly. The result is a set of tabulated data for Fand,F ,F  , as shown in Table 
13.1. 
 

same 

3  B.C. 

http://en.wikipedia.org/wiki/Blasius_boundary_layer
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
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Figure 13.4  The behavior of the velocity components u and v within a Blasius flat plate 

boundary layer, as a function of 
x

Uy


  . 

 

Figure 13.4 shows the shape of the respective u and v velocity profiles, non-dimensionalized 
appropriately, as a function of .  Some key observations from the results of table 13.1 and 
figure 13.4 are as follows.  
 
For the Blasius velocity components, note that: 
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 at  = 0, the streamwise velocity profile is inflectional at the solid surface, which 

makes the profile barely stable. As we will discuss in Chapter 17, destabilization of a laminar 
boundary layer leads to transition from a well-behaved laminar flow (i.e. that moves in laminas, 
or layers) to a much more chaotically mixed flow, which is termed turbulence.  Additionally, the 
above result shows that for a Reynolds number of 104, the normal velocity, v, at the edge of the 
boundary layer and beyond is on the order of 1/100 of the magnitude of the mean outer flow. 
This supports our previous assumption in Section 13.2 that streamwise velocity changes are the 
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this indicates an inflection 
point occurs at the surface 
(this means the velocity 

profile is just stable) 

From Eq. 13.23 

 
Satisfies assumption employed in 

simplifying the boundary layer equations. 
i.e. that u >> v 
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only significant velocity changes within the boundary layer.  Clearly, for larger Reynolds 
numbers, this v U

 
ratio will be even smaller.  However, at lower Reynolds numbers the terms 

we neglected in Eqs. 13.6 will play a more significant role, requiring the solution of the entire 
Navier-Stokes equation.  The good news is that the region within which a full Navier-Stokes 
solution is warranted is confined to very near the initiation of the boundary layer, and neglecting 
this region has a minimal effect on our Blasius solution. For example, for water flow over a flat 
plate at 1 m/s, a Reynolds number of 104 will be reached after only 1cm. 
 

13.4  Boundary Layer Parameters 
  

As we pointed out in section 13.2, the boundary layer thickness, , which characterizes the 
thickness of the boundary layer, is a rather arbitrary parameter.  It is defined as the location 
above the surface where the velocity reaches 99% of the free stream velocity, which may be 
difficult to establish with precision.  We now examine several parameters that can be derived 
based on more physical properties, and can more reliably characterize the physical characteristics 
of the boundary layer. 
 

13.4.1 Displacement Thickness, * 
 

The displacement thickness, illustrated in figure 13.5, represents an imaginary displacement of 
fluid from the surface to account for the mass flow “lost” by the formation of the boundary layer, 
when compared to the mass flow that would exist without the boundary layer present (i.e. if the 
flow all the way to the boundary moved uniformly at the free stream velocity, U). 
 

 
   
 
 
 
 

Figure 13.5  The characterization of the displacement thickness as the lost mass displaced 
from the surface by a distance *, modeled as the displacement of a flow of 
uniform outer region velocity from the surface by a thickness *. 

 

To establish an equation for the displacement thickness, we use our model in figure 13.5 and 
equate the mass flow within the actual boundary layer to an equivalent, displaced mass moving 
at U as: 
 

 


















*

* 000
tot dyUdyUdyUudym  (13.24) 

 
 

 
Equivalent 
flowrate 
within  a 
displaced 
uniform 

flow 

-U* Total 
flowrate 
within  

boundary 
layer 

Uniform Flow Boundary Layer Flow 

* 

“lost” mass flow 
U U 
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Reorganizing Eq. 13.24 gives:  
  

  dyudyUU
00



  *  

 

and solving for * gives: 
 

 













0

dy
U
u1*  for  = constant (13.25) 

 

Note that Eq. 13.25 is a very reliable measure of the degree to which the outer flow is 
"displaced" from the proximity of the bounding surface.  In practice, such a displacement will 
make the effective geometry of the solid boundary appear slightly "thicker" to the outer flow, 
which results in a modification of the outer flow field, and consequently the associated pressure 
gradient.  Comprehensive solution techniques generally take this boundary layer displacement 
into account by using an iterative procedure to converge on a combined boundary layer and outer 
region solution.  
 

13.4.2 Momentum Thickness,   
 

Another useful physical characterization of the boundary layer is termed the momentum 
thickness.  The momentum thickness is a hypothetical displacement of fluid of uniform velocity,

U , away from a bounding surface to account for the momentum “lost” due to the formation of 
the boundary layer velocity profile (and dissipated by the action of the applied shear stress).  
Figure 13.6 illustrates this hypothetical displacement of momentum, .  
 

To establish an equation to calculate the momentum thickness, we multiply the momentum flux 
of a uniform flow by the lost momentum “thickness,” represented by .  We then equate this lost 
momentum to the difference between the maximum possible momentum (reflected by U) that  
 

 
Figure 13.6  The characterization of the momentum thickness, , as a thickness of fluid 

moving at the uniform outer region velocity, U , that would have to be 
removed to account for the momentum “lost” due to the formation of the 
boundary layer.   

Displaced 
Uniform Flow 

Boundary Layer Flow 

 

U 
U 
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could be carried by the actual boundary layer mass flow, less the actual momentum within the 
boundary layer, i.e.: 
 

 


 
00

2 uudyUudyU )()(   (13.26) 

  
 
 
 
 
 

Solving Eq. 13.26 for , and assuming an incompressible flow, we have: 
 

 dy
U
u1

U
u

0















  (13.27) 

 

As we will see, because the momentum thickness reflects the momentum “lost” by the formation 
of the boundary layer due to viscous effects, it is directly related to the shear stress and the 
cumulative shear forces (i.e. drag) exerted by the fluid on a solid boundary.  
 

13.4.3 Friction Coefficient, cf 
 
The friction coefficient is a convenient, non-dimensional parameter reflecting the shear stress at 
the surface divided by the dynamic pressure equivalent of the free stream flow outside the 
boundary layer, defined as: 
 

 
2

0y

2

wall
f

U
2
1
dy
du

U
2
1

c




 








  (13.28) 

 

The friction coefficient characterizes the non-dimensional shear stress acting on the bounding 
wall at a specified location along the wall, and as such allows the determination of engineering 
shear stress data for any similar laminar flow, regardless of the flow conditions.  As we will see, 

for a flat plate flow this coefficient is only a function of the local Reynolds number, 


 xU
xRe , 

which allows effective analytical and empirical engineering correlations to be developed where 
)(Rexf fc  .  As we will discuss in Chapter 17, this functional dependence of cf on Reynolds 

number also applies to turbulent flows. 
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13.5  Boundary Layer Characteristics for a Flat Plate Flow 
 
Using our solution for the velocity behavior that we developed in section 13.3, we can now 
assess the various boundary layer properties for a laminar, flat plate flow.  Examining Table 
13.1, we note that u/U  0.99 when  ≈ 5, so we choose  = 5 as the hypothetical edge of the 
boundary layer, in similarity units.  Thus, letting y =  and  = 5 in Eq. 13.17, we obtain: 
 

 @ x
U U xu5   F 5 0 992 5 5

U x x x
, ( ) . @ Re 



 
           

 
 

 
x

5
x

   
Re




  (13.29) 

 

Note that Eq.13.29 indicates that the ratio of the boundary layer to its streamwise location is only 
a function of the local Reynolds number.  The use of the approximately equal symbol () in 
Eq.13.29 reflects the arbitrary selection of u/U  0.99 as the edge of the boundary layer, 
although Eq.13.29 is generally taken as a hard value in practice. 
 
To solve for the displacement thickness, we use Eq.13.17 to allow the integration of Eq.13.25 as 
a function of  (at a fixed x location): 
   

 dy
U
u1

0












*       note:  



 








U
xddy

x
Udyd

x
Uy  

 

Substituting for dy, u U F

 , integrating from 0    5, anddetermining F from Table 13.1 

gives: 
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5

0

5

0

F
xU

xdF1
U

xd
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x
U
u1 
























 )(*    

    
x x

x 1 7175 3 283 0 0 x ..
Re Re

        

 

Solving for the ratio of displacement thickness to the streamwise location, we have: 
 

 
x

7171
x Re

.*


  (13.30) 

 

Similarly, we can solve for the momentum thickness to give: 
 

 
0 x x

u u x 0 6601 dy 0 660
U U x

..
Re Re



 

  
      

 
         (13.31) 
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Note that the solution for Eq.13.31 is a bit tricky, and requires the use of the original boundary 
layer equation, Eq.13.13, and Table 13.1 to determine the integral. This is left as an exercise for 
the reader in the end of chapter study problems. 
 
One might wonder what the impact is of selecting  = 5 as the “edge” of the boundary layer 
when integrating for the coefficients in Eq.13.30 and 13.31.  To illustrate this, we can calculate 
that the coefficient in Eq.13.30 changes from 1.7167 for integration over  0 <  < 5, to 1.7207 for 
integration over 0 <  < 9, or a 0.23% change.  Correspondingly, the coefficient in Eq.13.31 
changes from 0.6600 for 0 <  < 5, to 0.6642  for 0 <  < 9, or a 0.63% change. Clearly, the 
extension of the integration beyond  = 5 has only a minimal effect on the displacement and 
momentum thickness results. 
 

 
 
 
 
 
 
 

Figure 13.7 The generic behavior of the boundary layer, displacement thickness, and 
momentum thickness relative to the streamwise development distance, x. 

 
The above analysis illustrates that the boundary layer, the displacement, and the momentum 
thicknesses all demonstrate the same functional relationship with regard to the streamwise 
Reynolds number.  As figure 13.7 shows, each of these properties increase proportional to the 
square root of the streamwise distance.  When considered as a ratio of each boundary layer 
property to the streamwise distance, x, these ratios all scale with the inverse square root of the 
streamwise Reynolds number.   
 

Note that Eqns. 13.29, 13.30, and 13.31 all suggest that 
x

and
xx

 

,,  become infinite for small 

Reynolds numbers.  As discussed previously in Section 13.3, within the region very near the 
leading edge of the flat plate, the assumptions employed to develop the boundary layer equations 
fail, since the changes in y and x will become comparable.  This leading-edge region requires the 
use of the full Navier-Stokes equations to develop a properly exact solution.  However, the 
amount of correction is so small, that the Blasius solution is considered essentially exact for 
regions immediately removed from the leading edge. 
 

To calculate the shear stress for the flat plate boundary layer, we substitute into the wall shear 
stress equation, and use Table 13.1 to determine the shear stress as: 
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 (13.32) 

 

Substituting Eq. 13.32 into Eq. 13.28 for the friction coefficient, cf, we obtain: 
 

 
x

2
2
1

w
f Re

664.0
U

c 







 (13.33) 

 
 
 
 
 
 
 

Figure 13.8 The generic behavior of the friction coefficient vs. streamwise distance, x, for a 
laminar, flat plate flow. 

 
Equation 13.33 indicates that the friction coefficient behaves similar to the ratios of the boundary 
layer parameters (Eqns. 13.29, 13.30, and 13.31) with streamwise distance, i.e. decreasing with 
increasing Reynolds number.  This behavior illustrates that as the Reynolds number increases, 
due to either increased outer region velocity or streamwise distance, or decreased kinematic 
viscosity, viscous forces will decrease relative to inertia forces, resulting in a consequent 
decrease in the friction coefficient.  This behavior of cf as a function of streamwise distance is 
illustrated in figure 13.8.  Note that this decrease in cf, does not mean that the actual shear stress 

will decrease, since if U increases, this will also increase the dynamic pressure  2
2
1 U , such 

that the shear stress will actually increase (proportional to 2
3

U  if x and  remain constant). 
 
We should also note that a comparison of Eq. 13.33 for the friction coefficient and Eq. 13.31 for 
the momentum thickness shows that: 
 

 
xRe
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 (13.34) 

  

Notice that in establishing Eq. 13.34, we have used the value of 0.664 for the constant in 
Eq.13.31, which is the constant one gets for an upper limit of  = 9. This is where U = U∞, which 

0.332 

cf 

x 
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sets the equivalency between Eqs. 13.33 and 13.31. What Eq. 13.34 illustrates is that the friction 
coefficient, cf, is directly proportional to the momentum thickness, θ.   
 
This direct relationship of the momentum thickness to shear stress is even more clearly 
illustrated by the calculation of the total plate drag due to shear stress. To calculate the total drag 
on a flat plate due to a developing laminar boundary layer, we integrate the shear stress, w(x), 
over the total streamwise length of the plate, L (and width, W, although the two-dimensional 
boundary layer doesn’t vary with width):   
 

  

L

0
wWdxDrag  (13.35) 

 
Substituting Eq.13.32 into Eq.13.35, and simplifying yields: 
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  (13.36) 

 

To non-dimensionalize the drag force of Eq.13.36, we divide through by the dynamic force,
)(WLU2

2
1

 , yielding: 
 

 D 21
2 L

Drag 1.328C
U WL Re

 


  (13.37) 

 

In Eq.13.37, CD is termed the drag coefficient, indicating the relative amount of viscous drag due 
to the formation of a laminar boundary layer on a flat plate.  By referencing the drag to the outer 
region dynamic pressure ( 2

2
1 U ), and the area of the plate over which the drag is generated 

(WL), Eq. 13.37 indicates that the relative drag decreases with increasing Reynolds number 
(based on the total streamwise plate length).  This behavior is similar to the dependence of the 
friction coefficient, defined by Eq.13.33, on the local Reynolds number.  However, the friction 

L 
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x 
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coefficient is a local property, whereas the drag coefficient is a cumulative property, which takes 
into account the integrated effect of friction over the entire area of boundary layer development.   
   
  
   
 
 
 

 
Figure 13.9 The generic behavior of the drag coefficient as a function of total plate length, 

L, for a laminar, flat plate flow. 
 

Figure 13.9 shows the generic behavior for the drag coefficient as a function of total streamwise 
plate length.  It is instructive that increasing the length of the plate results in a decrease in the 
drag coefficient.  However, because CD is based on the total plate area, the actual drag will 
increase proportional to the square root of the plate length, as illustrated by Eq. 13.36. 
 
As discussed above, the friction coefficient, cf, is proportionally related to the momentum 
thickness along the plate.  However, if we compare Eq. 13.37 for the drag coefficient and Eq. 
13.31 for the momentum thickness at the end of the plate, x = L (again using a constant of 0.664 
for an upper limit of   = 9), we have: 
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Where Lx  is the value of θ at x = L.  Thus, we can write: 
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2
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DragC Lx
2

2
1D









  

or 
   Lx

2 WUDrag    (13.38) 
 

Equation 13.38 shows is that the total drag on the plate is directly proportional to the momentum 
thickness at the end of the plate. This reflects the characterization of the momentum thickness as 
the momentum “lost” due to the viscous shear stresses acting on the fluid as it passes over the 
plate. This is important, since this means that if the velocity profile at the trailing edge of the 
plate is known, the integrated momentum thickness for that profile is directly proportional to the 
viscous drag on the plate.  And by extension, if the velocity profile is known at any x location 
along the plate, Eq. 13.34 can be used to determine the shear stress at that location. 
 
 

CD 

L 
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13.5.1  An Example of Boundary Layer Parameters 
 

Consider a thin flat plate 1 meter wide and 2 meters long that is towed through 20 °C water at 
0.25 m/s.  We will compute the boundary layer thickness, displacement thickness, and 
momentum thickness at the trailing edge of the plate in cm, and then compute the total drag due 
to surface shear stress on the two surfaces (top and bottom surfaces) in Newtons.   

 
We assume that the flow is a Blasius-type flow and uniform in width.  The kinematic viscosity of 

water at 20 °C is roughly 
sec

2
6 m10 , and L = 2 m. 

Thus, the Reynolds number based on the plate length is: 
 

   

 

5
L 2

6

m0 25 2 mU L 5x10
m10

.
secRe

sec





  


  

 

Note that flat plate Reynolds numbers less than 5x105 are generally considered laminar, so this 
flow at the extremes of that range.  As we will discuss in Chapter 17, on smooth surfaces with 
little external flow disturbance, a laminar boundary layer can often be sustained for Reynolds 
numbers up to and slightly in excess of 106.   
  
The boundary layer, displacement, and momentum thicknesses for this flow are: 
 

 x L
x L 5

L L

5 2 m5 5L 0 0141m 1 41cm
L 5x10

. .
Re Re





        

 

 
x L 5

L

1 717 2 m1 717L 0 00486 m 0 486 cm
5x10

* .. . .
Re

      

 

 
x L 5

L

0 660 2 m0 660L 0 00187 m 0 187 cm
5x10

.. . .
Re

      

 

At this moderate Reynolds number, these thicknesses are quite small. Note that  
 

x L 0 0071 0 71%
L

. .


  . 
 

The total drag on one surface is given by Eq. 13.36: 
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Here, W = 1 meter, U = 0.25 m/sec, and the density is roughly 3m
kg1000 .  Equation 

13.36 predicts a drag of: 
 

       
2

3 2 25

0 664 kg m kg mDrag 1000 0 0625 1 m 2 m 0 1174 0 1174 N
m s s5x10

. . . .
    

 

The drag is really quite small. However, this is characteristic of laminar drag, since it inevitably 
is at low velocities and Reynolds numbers.  Note that if the plate length was 0.5 m and the 
velocity was 1 m/s, that would also give a ReL = 5x105, but the parameter thicknesses would be 
¼ the thickness calculated above, and the drag would be 4 times the above drag value, but still 
quite small. 
 

Alternatively, we could use Eq. 13.38 to calculate the drag using the momentum thickness, 
which gives drag value: 
 

         
2

2
x L 3 2 2

kg m kg mDrag U W 1000 0 0625 1 m 0 00295 m 0 1169 0 1169N
m s s

. . . .
 


       

 

Note that this latter value is slightly less than the calculation obtained using Eq.13.36.  This is 
due to the different coefficient value used in calculating the momentum thickness (0.66 vs. 
0.664, as discussed previously in Section 13.5). 
 

Using our first calculated values of drag, the total drag for both sides of the plate is: 
 

Total Drag 2x0.1174N 0.2348N  . 
 

It would not take much effort to restrain this plate. 
 
13.6 Falkner-Skan Solutions for Non-Zero Pressure Gradients 
 
One might ask, what happens when the pressure gradient is non-zero for a laminar boundary 
layer?  Well, an external pressure gradient can have quite an effect on the behavior of the 
boundary layer.  As we will discuss qualitatively in section 14.5, a favorable pressure gradient 
(an accelerating flow, with a decreasing streamwise pressure) will result in a boundary layer that 
grows slowly and remains quite stable.  However, the presence of an adverse pressure gradient (a 
decelerating flow, with increasing stream-wise pressure) will cause a rapid growth of the 
boundary layer, often leading to flow separation (i.e. stagnation of the flow very near the surface, 
causing the boundary-layer fluid to detach and move away from the bounding surface) or rapid 
degeneration of the boundary layer to turbulence.  In this section, we will address the simplest 
boundary layer flow with a pressure gradient, known as a Falkner-Skan solution.  We will again 
assume that the boundary layer velocity profile has a similarity solution, and assess what type of 
pressure gradient will still allow a similarity approach to be feasible. 
 

http://en.wikipedia.org/wiki/Blasius_boundary_layer
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To start our solution, we expand the solution of the boundary layer equations to flows which 
have a free stream velocity that varies as a function of x, or U∞ = U∞(x).  Using the same 
similarity assumption that was employed by Blasius, we again assume a stream function and 
similarity variable as defined by Eq. 13.22: 
 

 )(  FxU  where 
x

Uy


    

 

However, we now assume the free stream velocity to be of the form )x(UU   such that 
dP 0
dx

 .  In the free stream, the pressure is given by the Bernoulli equation as  

2U
2
1P

constant, and thus the pressure gradient is given by dUdP U
dx dx




  . 
 

Since the pressure gradient for these flows is non-zero, the boundary layer equations to be 
addressed are Eqs. 13.13: 
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Here, we have again assumed that the pressure gradient within the boundary layer is again 
equivalent to that imposed by the adjacent free stream flow (since )0dy

dP  . 
 

Using the stream function relations for u and v developed in section 13.3, Eqs. 13.13 can again 
be reduced to a single partial differential equation (since Eq. 13.13b, continuity, is identically 
satisfied by the stream function) of the form: 
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   (13.39) 

 

Now, using the similarity variables  and  from Eq. 13.22, we again determine the respective 
derivative terms in Eq. 13.39 and simplify the resulting equation.  The result is an ordinary 

differential equation for )(F  and 
dx

dUU 
 .  Note that this substitution process is a bit messier 

than the Blasius formulation, since U∞(x).  Thus, we must consider the x-derivatives of U∞ in 
calculating the terms in Eq. 13.39.  The respective derivatives of  are: 
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where 
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Substituting Eq.13.41 into Eq.13.40 and simplifying, we obtain: 
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Likewise, we can show: 
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Substituting these relationships into Eq. 13.39: 
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Gives the very messy equation, 
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Expanding and simplifying gives: 
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Rearranging, we finally have: 
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 (13.42) 

   

Equation 13.42 is a generalized equation for an assumed similarity velocity profile within the 
boundary layer, which takes into account the effect of the pressure gradient on boundary layer 
development. Note that if U∞ = constant, Eq. 13.42 reduces to Eq. 13.23, the Blasius equation, as 
it should.  In order to be able to solve Eq. 13.42, all terms in the equation must either be 
derivatives of F, functions of , or constants.  Thus, Falkner and Skan realized that to be 

tractable, the pressure gradient term, 









 dx
dU

U
x ,  in Eq. 13.42 must be a constant.  Thus, we set:  
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dx
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 (13.43) 

 

Assuming a relationship according to Eq. 13.43, we separate variables and integrate, which 
gives:   
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While it is not initially obvious, this velocity function represents the velocity behavior for 
inviscid flow over a wedge or corner.  Recall from Section 9.7.5 that the complex potential 
function for a wedge/corner flow could be represented by (Eq. 9.41 and 9.42): 
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From which we could determine the velocity along a radius r (Eq. 9.46) as: 
 

  



  ncosrA

r
1v 1n

r  (13.45) 
 

The generic configurations of the bounding shapes giving such an inviscid flow are shown below 
for n >1 and n <1. 
 

 
 
 
  
 
 
 

 
 
Here, we consider that the boundary develops along a surface in the r-direction, which we equate 
with the x-direction in the boundary layer equations.  Thus, we can rewrite equation 13.43, in 
terms of x, as: 
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Where   0
1n

0 UncosAx  , and m = n -1.  While the types of free stream velocities that Eq. 
13.44 can represent are limited, it can represent the general behavior for an accelerated flow (m > 
0) and a decelerated flow (m < 0) for a flow satisfying our similarity constraints. 
 

Thus, for a free stream velocity described by Eq.13.44, Eq. 13.42 becomes: 
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Equation 13.46 is similar to the classic Falkner-Skan equation, first derived by Falkner and Skan 
(1930,31).  In their derivation, they used a modified similarity variable: 
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n > 1 (concave corner flow) 

 

r  & x 
U 

u = 0 
(a) Concave corner 

n < 1 (convex corner flow) 

 

r  & x 
U 

u =  
(b) Convex corner 

https://en.wikipedia.org/wiki/Falkner%E2%80%93Skan_boundary_layer
https://en.wikipedia.org/wiki/Falkner%E2%80%93Skan_boundary_layer
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This makes the reduced equation, like 13.44, a little bit simpler (but not much), and it makes the 
boundary layer merge with the outer region for 5FS  , like the Blasius boundary layer does.  
However, by retaining the Blasius similarity variable, this shows the reflective variation of the 
outer boundary layer  limit.  As we will see, as m varies, not only will the shape of the velocity 
profile change, but also the extent of the boundary layer in  units.  The choice of  does not 
change the results [since (m+1)/2 is a constant for any selected flow], but only how they scale in 
 units. 
 

To set the boundary conditions, we again note that: 
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Although the velocity expressions are a bit more complicated, the boundary conditions on F and 
 for the Falkner-Skan equation are the same as for the Blasius equation, as follows: 
 

  0FF00vu0y  :,:   
  1FUuy   ::  
   

Note that we do not include an initial condition at x = 0, since this would over-determine the 
problem.  Unlike the flat plate flow, the initial flow field at x = 0 is unrealistic, since for m > 0 
the velocity must be zero, and for m < 0 the velocity is undetermined at x = 0.  So, the free 
stream velocity behavior defined by Eq. 13.44 can only apply for values of  x > 0.  And for x > 0, 
the three boundary conditions listed above suffice.  Thus, we have again reduced the third-order 
P.D.E. with four boundary conditions for (x,y) to a third-order O.D.E. for F() with three 
boundary conditions.   
 

Like the Blasius equation, Eq. 13.46 is non-linear, and doesn’t lend itself to a closed-form 
solution.  The solution of this equation is obtained numerically using a Runge-Kutta differential 
equation solver (I again used the MATLAB function bvp4C).  Note that while solutions for 
accelerating flows exist for all values of m > 0, the corresponding solutions for decelerating 
flows can only be obtained for -0.0905 < m < 0.  This latter result suggests how sensitive laminar 
boundary layers are to positive (adverse) pressure gradients.  Figures illustrating u (streamwise) 
and v (normal) velocities and shear stress profiles for select m values from 1 to -0.0905 are 
shown in figure 13.10a and 13.10b. 
 

For m > 0, the u-velocity profiles are much flatter, with a thinner boundary layer than the Blasius 
flat plate flow (represented by m = 0).  This is a result of the assistance of the decresing pressure 
gradient, which acts in the direction of flow, and helps counter the viscous forces.    
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(a) Nondimensional x and y-direction velocities, u and v, vs.  
 

 
(b) Nondimensional shear stress, , vs.  
 

Figure 13.10 Falkner-Skan similarity (a) velocity and (b) shear-stress profiles vs. the 

similarity parameter, , for a free-stream velocity 
m

0
0 x

xUU 











. 

 

Correspondingly, the v-velocity profiles for m > 0 show the development of  an increasingly 
negative velocity normal to the wall (i.e. toward the wall) as m increases.  Note that for m = 1, 
the v-veloctiy moves very strongly toward the surface.  To understand what is happening, notice 
that m = 1 defines a free-stream flow that is impinging normal to the bounding surface (i.e. a 
“stagnation” flow), as represented for an inviscid flow in section 9.7.5.1, where n = 2  m = 1 in 
Eq. 13.44.  For a stagnation flow, the v velocity will actually be the velocity of the inviscid free 
stream toward the surface, and thus the reason that v increases so rapidly away from the surface.   
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As illustrated by figure 13.10b, the shear stress within an accelerated boundary layer flow 
increases quite rapidly with increasing m, which is a reflection of the increased streamwise 
velocity gradient at the wall, as reflected in figure 13.10a.  Additionally, the slope of the shear 
stress (the second derivative of u) is positive for m > 0 flows, which is indicative of greater flow 
stability (we will discuss this further in Section 14.5.1).  Note that solutions to the Falkner-Skan 
equation exist for m > 1.  However , these flows would represent flows into a strongly concave 
corner (reversing the flow back on itself), which is physically unrealistic, and so of little practical 
interest. 

 
If we consider the boundary layer behavior for decelerating flows, m < 0, the range over which 
flow solutions are available is limited to -0.0905 < m < 0.  The u-velocity and shear profiles of 
figures 13.10a and 13.10b show that as m becomes more negative the u-velocity profile develops 
an obvious inflection, indicated by a maximum in the shear stress developing away from the 
wall.  When m = -0.0905, the velocity near the wall essentially comes to a stop, and the wall 
shear stress becomes essentially zero.  While zero shear stress might seem like a good thing, 
since this would indicate no boundary drag, this condition is problematic. Zero shear stress 
implies that a layer of stagnant fluid develops adjacent to the wall, around which the flow 
moving downstream along the wall must divert, causing what is termed a flow separation (a 
separation of the boundary layer from the surface).  This also means that the scaling assumptions 
that were employed to derive the boundary layer equations will no longer be be valid.  Thus, 
beyond a point of separation, the boundary layer equations become invalid, and the flow must be 
assessed using the full Navier- Stokes equations---making the solution procedure much more 
complicated.  We will discuss the onset and consequences of flow separation in detail in Section 
14.6 and in Chapter 15. 

 
For the Falkner-Skan solutions we can derive appropriate boundary layer parameters for 
displacement and momentum thickness.  The displacement thickness is: 
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In Eq. 13.47, mF indicates the function of F() as determined from integrating Eq. 13.46 for a 

specified m value, and *
m  is the corresponding displacement thickness for the specified m value.  
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Note that we take  = 8 as the outer integration limit, since when m < 0 the point at which  

 Uu  will be beyond the  = 5 value we assumed for the Blasius solution (m = 0). 
 

The momentum thickness takes a bit more work to determine, but is: 
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   (13.48) 

 

To show the relative changes in the displacement and momentum thickness, we normalize Eqs. 
13.47 and 13.48 on the respective Blasius expressions for a zero pressure gradient from Eqs. 
13.30 and 13.31 to give: 
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Figure 13.11 The behavior of normalized (*)’ and ()’ (as per Eqs. 13.49 and 13.50), and 
shape factor H *   , as a function of the power law exponent m in Eq. 
13.44.   
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The normalized displacement thickness and momentum thickness from Eqs. 13.49 and 13.50 are 
plotted for a range -0.0905 < m < 1 in figure 13.11.  In addition, the ratio of these properties, 






*H , known as the "shape factor" of the boundary layer is also plotted in figure 13.11.  This 

latter property is a quantitative indication of how broadly the boundary layer extends, relative to 
the momentum lost to viscous friction.   As figure 13.11 shows, for accelerating flows (m > 0), 
the normalized displacement and momentum thicknesses, and the shape factor, all decrease with 
increasing m.  However, the shape factor decreases markedly slower, since the relative changes 
in the displacement and momentum thicknesses are quite similar.  For decelerating flows (m < 
0), all three properties grow quite rapidly with decreasing m, and essentially terminate for  
m = -0.0905, where the boundary layer essentially reaches separation. 
 
It should be noted that the when H grows beyond the Blasius value of 2.6 at m = 0, the boundary 
layer becomes quite unstable, and will usually breakdown into turbulence before it would 
undergo laminar separation.  The process of breakdown to turbulence and the role of instabilities 
on fluid behavior are discussed in detail in Chapter 17. 
 
13.7  Conclusion 
 
In the present chapter, we developed the equations governing boundary layer development, and 
touched on the basics of boundary layer theory.  The boundary layer equations developed in 
Section 13.2 can be applied to a broad variety of flow geometries, as long as the flow remains 
laminar, and the order of magnitude assumptions employed in Section 13.2 remain valid (/x  
1/100).  The laminar flat-plate solution of Blasius, developed in Section 13.3, is accepted as 
essentially an exact solution, and widely used to reference laminar flat-plate boundary layer 
growth, along with the boundary layer parameters developed in Section 13.5.   
 
However, for more complicated flows, the solution of the boundary layer equations can be much 
more involved, requiring significant numerical computations, as illustrated by the Falkner-Skan 
solutions of section 13.6.  However, as we will demonstrate in the following chapter, we can 
often obtain good engineering results for somewhat complicated laminar flows using 
approximate solution techniques, which are much more tractable than the solution of the full 
equations, and provide results of acceptable engineering accuracy. 
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Study Problems 
 
 
1. A thin flat plate 0.4 m. wide and 2 m. long is towed through 20 °F water at 0.5 m/s 
 Compute the drag due to surface resistance on the two surfaces (in Newtons) 
 
2.  For the flow described in problem 1, determine the boundary layer, displacement, and momentum 

thicknesses at the end of the plate. 
 
3. A laminar, uniform air flow at 20 °C passes over a thin flat plate 1 meter wide and 4 meters long.  If 

the Reynolds number based on the plate length is 5x105, determine the flow velocity, and the 
boundary layer, displacement, and momentum thicknesses at the end of the plate, compute the drag 
due to surface resistance on the two surfaces (in Newtons.) 

 
4. Use the tabular data from table 13.1 to calculate the shear stress, yx, vs.  in the Blasius boundary 

layer for water ( = 10-3 N-s/m2,  = 10-2 cm2/s) for a flat plate flow with U = 10 cm/s, at a location x 
= 100 cm.  Plot a graph of yx vs.  for 0 <  < 8.  Hint: copy the table from this chapter to an Excel 

sheet to do the plotting.  Note that 


















x
v

y
u

yx , and you will have to determine 
x
v



from 

U xF( )    , similar to how 
y
u



 is determined on page 13 in section 13.3.  How much does 

the 
x
v



term contribute to the shear stress? 

 
5. Using the Blasius results from section13.3 and table 13.1, determine if the boundary layer equations 

should give reasonable results for 1000xU
x 


 Re .  If not, what is the minimum value for  

xRe  that would satisfy our initial assumption for using the boundary layer equations?  Hint: consider 

the ratio of  
u
v

 and 
x


  at the edge of the boundary layer. 

 
6. Determine how much vorticity is generated at the flat plate surface (y = 0) for the boundary layer.  

Show this using Eq. 11.48 in Chapter 11, and then confirm this by calculating 
y 0y





directly from 

the Blasius solution.  Note that z
u v
y x

  
   

  
, and you may have to determine 

x
v



from 

U xF( )    , similar to how 
y
u



 is determined in section 13.3. 
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7. Consider a uniform flow, u = U
 entering a 2-D duct with sharp leading edges as shown below.  The 

duct height is h and the flow remains laminar at all times through the duct.  Assume the flow may be 
broken into viscous and inviscid regions as shown.  Make use of the Blasius solution and determine: 

 
a) h = h(x) such that dP/dx = 0  (let ho be the initial duct height). This requires that  

u = U

 throughout the inviscid region. 

b) the length, L, where your expression for h(x) ceases to be valid. 
 

 
 

8. For the Blasius solution, prove that /x = 0.664/(Rex)0.5   5   [hint: make use of the original ODE  

 ( FF 2F   ), and the identity that   2FF F FF
     to assist the integration]. 

 

9. For the Falkner-Skan solution, prove that  
    














m31
88Fm0Fx2 mm

x
m Re

, where m is the 

momentum thickness, and mF  and mF   are functions at a specified value of m.  Make use of the 

original ODE,    21F 1 m FF m 1 F 0
2

       , and the identity   2
m m m m mF F F F F
     to assist 

the integration.  Take the upper limit of the boundary layer where @  = 8 (where  Uu ).  Note 
that the values of the mF function, and its derivative value are: 
 

   
0F1Fmon  dependingconstant aF8at

m;on  dependingconstant aF0F0F0at

mmm

mmm





,,,

,,,
 

 
10. The following table (next page) is a Falkner-Skan solution for m = -0.05, a moderate adverse pressure 

gradient.  Copy this table to an Excel sheet, and determine and plot y vs. u (y vertical axis, u 
horizontal axis) at x = 10, 20, and 30 cm.  Assume Uo = 10 cm/s at x = 10 cm, and  = 10-2 cm2/s. All 
three plots should be on one graph. Hint: use the expression for u following Eq. 13.41, and note that 

)(xfU  given by Eq. 13.44. 
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 Falkner-Skan table  

 for m = - 0.05  
 F F' F" 

0 0 0 0.2135 

0.2 0.0043 0.0437 0.2235 

0.4 0.0176 0.0894 0.2332 

0.6 0.0402 0.137 0.2424 

0.8 0.0725 0.1863 0.2509 

1 0.1148 0.2372 0.2582 

1.2 0.1675 0.2895 0.264 

1.4 0.2307 0.3427 0.268 

1.6 0.3046 0.3965 0.2698 

1.8 0.3893 0.4504 0.2691 

2 0.4848 0.504 0.2658 

2.2 0.5908 0.5566 0.2595 

2.4 0.7073 0.6076 0.2504 

2.6 0.8337 0.6566 0.2386 

2.8 0.9697 0.7029 0.2241 

3 1.1147 0.7461 0.2075 

3.2 1.2679 0.7858 0.1892 

3.4 1.4287 0.8217 0.1698 

3.6 1.5963 0.8536 0.1498 

3.8 1.7699 0.8816 0.13 

4 1.9487 0.9057 0.1108 

4.2 2.1319 0.926 0.0927 

4.4 2.3189 0.9429 0.0762 

4.6 2.5089 0.9566 0.0614 

4.8 2.7013 0.9676 0.0486 

5 2.8957 0.9762 0.0377 

5.2 3.0916 0.9828 0.0287 

5.4 3.2887 0.9878 0.0215 

5.6 3.4867 0.9915 0.0157 

5.8 3.6852 0.9942 0.0113 

6 3.8843 0.9961 0.008 

6.2 4.0836 0.9974 0.0055 

6.4 4.2832 0.9983 0.0037 

6.6 4.4829 0.9989 0.0025 

6.8 4.6828 0.9993 0.0016 

7 4.8827 0.9996 0.001 

7.2 5.0826 0.9998 0.0007 

7.4 5.2826 0.9999 0.0004 

7.6 5.4826 0.9999 0.0002 

7.8 5.6826 1 0.0001 

8 5.8826 1 0.0001 
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11. The table shown in Problem 10 is a Falkner-Skan solution for m = -0.05, a moderate adverse 
pressure gradient. Using appropriate information from that table, determine general expressions 
for *, , and shape factor H = */.  On a single graph, plot U ,  * ,and  vs. x (all on one 
graph) from x = 10 to 100 cm.  Let Uo = 10 cm/s and  = 10-2 cm2/s. Note that )(xfU 

(given by Eq. 13.44) and must be taken into account when calculating xRe .  Plot * and  on 
the primary vertical axis, and U using a secondary vertical axis. 

 
12. The generation of vorticity for a steady, pressure gradient flow with solid boundaries, like the 

Falkner-Skan flow, is given by equation 11.48 as: 
 

2
z

2
y 0 y 0
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For the Falkner-Skan flow, 
dU1 dP U

dx dx



 


 from Bernoulli, 
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,and 
2

2
y 0

u
y






can 

be determined in terms of F  from page 447. Note that for all values of m, F = 0 and F’= 0 at 
y = 0. Show that the velocity derivative term and the pressure derivative term in the above 
equation are identical.  Note that you will need to use Eq. 13.46 to determine F  at y = 0. 

 
13. The generation of vorticity for a steady, pressure gradient flow with solid boundaries, like the 

Falkner-Skan flow, is given by: 
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2
y 0 y 0
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 For the Falkner-Skan flow, 
2

2
y 0

u
y






can be determined directly in terms of F  from page 447. 

For the table shown below, determine, the vorticity generation in terms of  U0, x, x0, , and m  
 For the m values shown in the table, plot (on the same graph) the vorticity generation 

0 z
2
0 y 0

x
U y



 


vs  x/xo, from 1 < x/xo < 5.  Note that you will need to use Eq. 13.46 to 

determine F  at  = 0 (y = 0). 
 

Values of F, F', and F'' at =0 (y=0) 
 

 
 
 
 
 
 
 
 

 
What do your results indicate about the generation of vorticity for a Falkner-Skan flow? 

m F F' F" 

0.3 0 0 0.726 

0.1 0 0 0.497 

0 0 0 0.332 

-0.05 0 0 0.214 

-0.0905 0 0 0.0145 
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Chapter 14 
 

Approximate Solutions of the Boundary Layer Equations 
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14.1 The Approximation Concept 
 
The exact solution of the boundary layer equations, as we saw in Chapter 13, can be 
mathematically quite complicated.  Because of this complexity, exact solutions are possible for 
only a selected number of cases, such as the Blasius flat plate and Falkner-Skan solutions we 
covered in Sections 13.3 and 13.6.  However, by relaxing the need for exactness, and using some 
creative approximations, we can develop some rather useful approaches that will yield 
approximate (but relatively accurate) solutions of the boundary layer equations.  These 
approximation approaches are reasonably versatile, and allow consideration of a much broader 
variety of flow geometries and conditions. 
 

In this chapter, we illustrate two ways to do an approximate solution: 
 

1) Solve the exact equations using an approximate solution technique, or 
 

2) Solve the approximate equations exactly. 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 14 
 

 461 

Both of the approaches we discuss are relatively old techniques, but they illustrate the kind of 
creative thinking that can be employed to simplify the solution of the boundary layer equations, 
and develop relatively accurate results.  As discussed previously, we will not be covering 
numerical solution techniques in this book, but an understanding of these approximate solution 
approaches can give an appreciation of how more complicated numerical approaches can be 
applied to either the full equations or the approximate approaches we develop in this chapter. 
 
14.2  The Momentum Integral Equation for a Boundary Layer 
 

This first approach was originated by Theodore von Karman, and is often called the von Karman 
Integral Equation.  This approach is based on a similarity concept, assuming that most boundary 
layer velocity profiles will look more or less similar at any position along a boundary (e.g. the 
Falkner-Skan solutions of section 13.6).  Thus, we might be able to assume a mathematically 
simple similarity velocity profile, which satisfies the main boundary conditions, and then use this 
assumed velocity profile to derive the boundary layer parameters for a particular flow through 
the use of the integrated boundary layer equations.  
 

The Idea: 
 

Develop an equation that can accept “approximate” velocity profiles as input and yield 
accurate (close, but approximate) shear stress, ,, *    , and cf as outputs. 

 

The Approach: 
 

Integrate the boundary layer equations across the boundary layer, between  y0 , and 
use assumed similarity velocity profiles to solve the resulting integral equation, and 
establish the resultant boundary layer properties. 

 

We start with the two-dimensional, steady boundary layer equations, and the appropriate 
boundary conditions from Eqs. 13.13. We let U be the velocity at the edge of the boundary 
layer, which is assumed to be a function of x and behave in an essentially inviscid manner.  
Thus, to a good approximation the pressure gradient is given by the Bernoulli equation as 

dx
dUU

dx
dP 

 .  Substituting for 
dx
dP

 in Eq. 13.13a, we have: 
 

  
y
u

dx
dUU

y
uv

x
uu 2

2













 
  (14.1a) 

 

 0 
y
v

x
u









  (14.1b) 

 

 B.C.   0v u   0y  ,:  (14.1c) 
   xUu  y  :  

https://en.wikipedia.org/wiki/Theodore_von_K%C3%A1rm%C3%A1n
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Note that in Eq. 14.1c we do not include the initial condition [u(y) at x = 0], since this condition 
will be incorporated into the integral equation that will be derived here.  For our purposes of 
integration, all we require are the three spatial boundary conditions listed. 
 
To begin our integration process, we first separate the v-momentum transport term (second term 
on left) in Eq. 14.1a by parts, and use the boundary layer continuity equation, Eq. 14.1b, to 
rewrite one of the resulting terms, to give: 
 

 








































x
uu

y
uv

y
vuuv

yy
uv )()(  (14.2) 

 
 
 
 

We now substitute Eq. 14.2 into Eq. 14.1a, collect like terms, and integrate across the boundary 
layer from the wall (y = 0) to the edge of the boundary layer (y = ): 
 

  
 




















0 0
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00

dy
y
u dy

dx
dUUdy

y
uvdy

x
uu2 )(  (14.3) 

 
 
 

To facilitate the integration of Eq. 14.3, we have labeled each term of the integrated equation 
with a number.  We now consider each of these terms in the following, and determine what they 
reduce to when integrated. 
 

Consider term (2) of Eq. 14.3 first: 
 

 00
0 0 0

uv v udy uv U v 0 Note   dy v v dy
y y x

( ) :
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00

dy
x
uU dy

y
uv)(  (14.4) 

 

To obtain Eq. 14.4, we again make use of the continuity equation, Eq. 14.1b.  By integrating the 
v-derivative across the boundary layer, and noting that v = 0 at y = 0, we develop a term for v  in 
terms of the integrated u-derivative, which is substituted to yield Eq. 14.4. 
  
Term (4) in Eq. 14.3 can be integrated easily, yielding first derivative limits at the wall and the 
edge of the boundary layer.  Since the u velocity asymptotes to the outer region velocity at the 

   (from continuity) 

1 2 3 4 

0  (at y=0) 

   (from continuity) 
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edge of the boundary layer, this means that the derivative 






yy
u asymptotes to zero, leaving only 

the 
0yy

u




 term. 

 

 
2

2
0 0 y y 0 y 00

u u u u u udy dy
y y y y y y y

 

  

       
      

       
   (14.5) 

 

Finally, we can rewrite term (1) as: 
 

  dy
x
udy

x
uu2

0

2

0










 )(  (14.6) 

 

Substituting Eqs. 14.4, 14.5, and 14.6 back into Eq. 14.3 gives: 
 

 
0y0 00

2

y
udy

dx
dUUdy

x
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 )(  (14.7) 

 

Since U is not a function of y, we can move U in the second term of Eq. 14.7 inside the 
integral, and then expand the resulting integral using integration by parts: 
 

   dy
dx

dUu
x

uUdy
x
uUdy

x
uU

0 00
 
 






 





















  (14.8) 

 

Substituting Eq. 14.8 into Eq. 14.7, and rearranging terms, we get: 
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Note that to simplify Eq. 14.9, we invoke Leibnitz rule, which considers the functional change in 
the limits of the integration.  As the above generic Leibnitz relationship shows, while the upper 

0  (because u = U  f(y) at  y = ) 
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Note that here, 
f((x)) = 0 and f(0) = 0 
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integration limit, , will change with x, the value of the integrand  2u uU


 at both the limits (y 

=  and y = 0) will be zero, thus negating any effect of moving the derivative function from 
outside to inside the integral.  We also identify the last integrated term in Eq. 14.9 as 
proportional to the wall shear stress, w , which illustrates its relationship to the momentum and 
pressure gradient changes reflected by the terms on the left side of Eq. 14.9. 
 
Rearranging the terms on the left side of Eq. 14.9, we can rewrite the equation as: 
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00
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2
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 (14.10) 

 

To simplify further, we multiply Eq. 14.10 by –1 and factor the U terms out of the integrals, 
since  xU  does not depend on y.  We then identify a set of terms in the resulting equation that 
represent the boundary layer properties of displacement thickness (*) and momentum thickness 
(), which we defined previously in Section 13.4 (Eqs. 13.25 and 13.27): 
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Rewriting Eq.14.10 in terms of these boundary layer properties, we have: 
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dx
dUUU
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Dividing through by 2U  yields, 
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 )( *  (14.11) 

 
 
 
 
In Eq. 14.11, we have identified the physical process that each term represents.  Changes in the 
momentum thickness obviously reflect changes in the total x-direction momentum (i.e. the 
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integrated momentum within the boundary layer).  The last term reflects the non-dimensional 
shear stress on the bounding surface.  The middle term is a bit trickier, since it reflects both 
pressure gradient effects and momentum changes. You will notice that back in Eq. 14.9 we 
combined a momentum term and the pressure gradient term, which mixes the effects.  However, 
this mixed property term is only significant when the outer flow varies with x, which results in 
both pressure gradient effects, and acceleration/deceleration of the boundary layer.  This results 
in a change in the boundary layer momentum, since the outer region velocity constitutes the 
outer boundary condition for u.  We will discuss the physical interrelationship of the terms in Eq. 
14.11 later in Section 14.4. 
 

14.2.1  The Simplified Momentum Integral Equation 
 
We now define another boundary layer property, H, termed the boundary layer “shape factor”, 

defined as 





*

H , which we discussed at the end of section 13.6.  This shape factor indicates 

the degree of distortion of the boundary layer velocity profile, and is a good indicator of the type 
of behavior reflected by the boundary layer.  For example, laminar boundary layer shape factors 
are typically larger than 2.2, whereas shape factors for turbulent boundary layers (which we will 
discuss in Chapter 17), are generally less than 1.6.  Variations of H also reflect whether a flow is 
accelerating or decelerating: for laminar flows, values of H greater than 2.6 are indicative of a 
decelerating outer flow (dU/dx < 0); H values less than 2.6 are indicative of an accelerating 
outer flow (dU/dx > 0).  The Blasius flat plate boundary layer (dU/dx = 0) has an H value of 
2.6. 

Including the shape factor, and noting that 2
2
1

w
f U

c



 , allows Eq. 14.11 to be written as: 

 

 
2
c

dx
dU

U
2H

dx
d f




 



)(    (14.12)  

 

The final result of the integration of the boundary layer equations across the boundary layer is a 
differential equation for )(x .  This classic equation is called the von Karman Momentum 
Integral Equation, after Theodore von Karman, who first derived it. 
 
Note that the integral equation (i.e. Eqs. 14.11 and 14.12) is exact.  That is, we have not made 
any approximations to bring it to its present form.  However, the approximation now comes from 
the assumption of a particular similarity function for the velocity profile within the boundary 
layer.  The approach is to assume a simple profile that has the proper velocity “shape” and 
satisfies the proper boundary conditions.  We do this by writing possible similarity velocity 
profiles in terms of a stretching (i.e. similarity) variable,  /y .  We then apply the 
appropriate boundary conditions to the assumed general velocity profile in order to determine the 
particular form for the assumed profile.  We can do this effectively for laminar flows, which we 
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demonstrate in the following section.  We can also apply this integral approach for turbulent flow 
behavior, although this requires the use of some additional assumptions and empirical curve fits, 
as we will demonstrate in Section 17.7. 

 
14.2.2  Using Similarity Velocity Profiles with the Momentum Integral Equation 

 
For an approximate boundary layer velocity profile, we could choose any number of possible 
velocity profile shapes, such as a linear profile, a sinusoidal profile, high-order polynomials, etc.  
Interestingly, almost any assumed velocity profile works reasonably well, as long it matches the 
boundary conditions.  For our first example, we consider a second-order polynomial velocity 
profile, where: 
 

 2cba
U
u




   (14.13a)  

 

In Eq.14.13a,  = y/ and a, b, c are undetermined constants.  
 
The applicable boundary conditions for the flow are: 
 

 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu    (14.13b) 

 3) 1  @  0  
d
du1)( y  @  0 


  
 

Note that we only require as many boundary conditions for the assumed profile as there are 
undetermined constants in the profile.  For Eq. 14.13a, we require three: (1) no slip at the 
surface, (2) matching the outer region velocity at the boundary layer edge, and (3) zero shear 
stress at the boundary layer edge.  If we assumed a higher-order polynomial, we would have to 
match higher order derivatives (e.g. d2u/dy2 = 0 at  = 1, etc.).  Solving for the undetermined 
coefficients in Eq. 14.13a using the Eq. 14.13b boundary conditions:  
 

 B.C. #1 0a00a0   
 B.C. #2 cb1    

 B.C. #3 c2b0    

Thus, the particular form of this polynomial velocity profile is: 
 

 
2

2 yy22
U
u


























 (14.14) 

 

Figure 14.1 shows the shape of this assumed polynomial velocity profile from Eq. 14.14. 
 

b = 2 
c = -1 
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Figure 14.1 The shape of a second-order polynomial similarity velocity profile for a laminar 

boundary layer.  
 

Next, we use this approximate velocity profile described by Eq. 14.14 to determine the 
functional relationship of the boundary layer parameters *, , and w in terms of the boundary 
layer thickness, . 
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and, 
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We now substitute the boundary layer parameters from Eqs. 14.15 back into the momentum 
integral equation, Eq. 14.11, to obtain a differential equation for  (x): 
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However, recall that for a flat plate flow, 0
dx

dUconstU  
 .  
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15
2    for a flat plate flow 

 

To solve for ),(x  we separate variables and integrate, 
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U
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 (14.17) 

 

To determine C1 in Eq. 14.17, we need a bounding condition on  and x for the flow.  For a flat 
plate flow, with the boundary layer initiating at the leading edge, we have: 
 

  0C0x    0 1  @  
 

Note that if the boundary layer had some prior initial value (e.g. 0  at x0), we would have used 
those values as our starting conditions, and then determine the constant C1 in Eq. 14.17.  
However, for C1 = 0 in Eq. 14.17, we establish the relationship for boundary layer growth with 
streamwise distance as: 
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  where  


 xU
xRe  (14.18) 

 

Now using Eq. 14.18, and our previous Eqs. 14.15 -- the relationship of wand  ,*,  as 
functions of  -- we can write: 
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Comparing the results of the integral solution, Eqs. 14.18 and 14.19, to the Blasius solution of 
section 13.5 (Eqs. 13.29, 13.30, 13.31, and 13.32), we have: 
 

 0951
5
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Therefore, the results from using our “approximate” velocity profile end up being approximately 
10% high.  Note that these results, although higher, are still relatively close to the exact Blasius 
solution (and a lot easier to obtain).  Such results are generally quite adequate for most 
engineering applications. 
 

In general, one can obtain better comparisons to the Blasius' solution by employing velocity 
profiles that better approximate the Blasius velocity profile.  Table 14.1 shows the results 
obtained for the second-order polynomial profile of Eq.14.14, compared with results for six other 
approximate velocity profiles, and the Blasius profile (Table 13.1).  Fig. 14.2 is a graphical 
comparison of these approximate profiles to the Blasius profile.  As Fig. 14.2 shows, the 
variation of the approximate profiles from the Blasius can be quite significant.  However, several 
of the results of Table 14.1 show remarkable similarity to the Blasius results.   
 

Table 14.1 illustrates that increasing the order of the polynomial profile does not necessarily 
assure a closer match to the Blasius result; for example, the four-term, fourth-order profile gives 
the worst results of all the approximate velocity profiles shown—even worse than the linear 
profile. One might also assume that a velocity profile that most closely compares to the Blasius 
profile would yield the best comparative boundary layer parameters.  However, this is also not 
necessarily the case, since a comparison of the results of table 14.1 with the shape of the profiles 
in Fig. 14.2 illustrates that the closest approximate profile shape is the second-order polynomial 

(i.e. 22
U
u




), but this profile does not give boundary layer parameters that are the closest 

to the Blasius results.  
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Table 14.1 
Comparison of predicted boundary layer characteristics  

for selected approximate velocity profiles: 
Flat plate flow with no pressure gradient  

 
Assumed Velocity Profile 
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  f  3.464 1.732 0.577 3.00 0.577 

  22f   5.447 1.826 0.730 2.50 0.730 

  35051f  ..  4.641 1.740 0.646 2.69 0.646 

  3233f   7.483 1.871 0.801 2.34 0.801 

  432 464f   9.486 1.897 0.843 2.25 0.843 

  4322f   5.836 1.751 0.685 2.55 0.686 
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  f  0.693 1.009 0.874 1.154 0.874 

  22f   1.089 1.063 1.106 0.962 1.106 

  35051f  ..  0.928 1.013 0.979 1.035 0.979 

  3233f   1.497 1.090 1.214 0.900 1.214 

  432 464f   1.897 1.105 1.277 0.865 1.277 

  4322f   1.167 1.020 1.039 0.981 1.039 
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Blasius Solution 5 1.717 0.660 2.60 0.660 
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Figure 14.2   Comparison of six different approximate velocity profiles with the Blasius 

solution. 
 
The best comparisons of boundary layer parameters are given by the three-term, fourth-order 
polynomial and the sine-shaped profile, both of which diverge further from the Blasius velocity 
profile than the second-order profile. Thus, while establishing the precise “shape” of the velocity 
profile is desirable, it is not essential in order to obtain good results for boundary layer 
parameters, and in particular the friction factor, cf.  
 
Note that Table 14.1 lists two different fourth-order velocity profiles.  These are the result of 
using a different fifth boundary condition when developing the assumed profile.  For the four-

term profile, the fifth boundary condition was 1)( y  @  0
dy

ud
3

3

 .  For the three-term 

profile, the fifth boundary condition was 0)( 0y  @  0
dy

ud
2

2

 .  See problem number 5 at 

the end of this chapter to see how this latter boundary condition is determined using the original 
boundary layer equations. 
 
As we stated above, if the boundary layer had some prior initial value (e.g. 0  at x0), we would 
have used those values as our starting conditions. Reassessing our Eq. 14.17 (for a second-order 
polynomial), we have: 
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2 2
0 0 0 0

1 1
15 x 15 xC C

2 U 2 U 

   
      

 

Substituting C1 back into Eq.14.17 and solving for  gives: 
 

 
 0 2

0

30 x x
U

 
     

  

So,  will grow from the original boundary layer thickness, but (show this for yourself), more 
slowly than it would have if it initiated at  = 0.  The other boundary layer parameters will also 
grow more slowly. 
 
14.3 Approximate Solution with a Pressure Gradient:  Thwaites’ Method 
 
The use of similarity velocity profiles, as was done in Section 14.2, is one method of solving the 
momentum integral equation exactly, using approximate velocity profiles.  However, the 
resulting equation can only be solved analytically for selected functional variations of the free 
stream velocity with x.  Additionally, the assumed velocity profile may not be appropriate for 
modeling various types of free stream flows where the velocity profiles are not "similar".  In this 
section, we will present another approximate method, which does not require an assumed 
velocity profile, and can be used for any type of free stream velocity, whether accelerating or 
decelerating.  
 
We now consider the development of an exact solution of the approximated integral equation 
using curve fits of existing analytical and experimental data.  This technique has no restrictions, 
and yields good, approximate answers within roughly 10%.  The method is based on the 
evaluation of all existing solutions of laminar flows available at the time it was developed, and 
employs some judicious tabulation and curve fitting of the data to create a method that 
establishes key boundary layer parameters by reducing the boundary layer equations to a one-
dimensional integral of the free-steam velocity behavior.  Other boundary layer characteristics 
are then obtained by correlation with a set of tabulated data.   The limitation of the method is that 
it is only useful for laminar flows.  In honor of the gentleman who developed this technique, 
Thwaites (1949), this approach is termed Thwaites’ Method. 
 
As our starting point, consider again the momentum integral equation, Eq. 14.12.  Rather than 
employ an approximate velocity profile, let us see how we can further manipulate the terms in 
the equation, to yield terms that can be related to physical aspects of the flow, and which we 
might be able to model approximately. 
 
Starting with the momentum integral equation, Eq. 14.12, 
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Simplifying and rearranging Eq. 14.20 yields, 
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Now, we introduce the following dimensionless variables, 
 

 
y 0
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U y 
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  (14.22c) 

 

Note that Eq. 14.22a reflects a shear stress parameter, Eq. 14.22b is the “shape” parameter 
discussed in Section 4.2.1 (reflecting the degree of deformation of the boundary layer velocity 
profile), and Eq. 14.22c characterizes a pressure gradient parameter.  Substituting Eqs. 14.22 into 
Eq. 14.21 and rearranging a bit yields (prove this yourself): 
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2Hn2
dxdU

n
dx
dU  (14.23) 

 

Since U(x) is assumed known, Eq. 14.23 is a single equation for the three unknowns n,  , and 
H.   
 
Thwaites collected all available analytical and experimental results for laminar boundary layers, 
and computed the corresponding values of the n,  , and H parameters for each set of data.  For 
example, for a flat plate (using the Blasius solution of Section 13.5): 
 

  
22

0 x x

0 664Uu 0 664x 1 0 664 0 220
U y 2 2U

.. . .
Re Re



 

  
    

  
 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 14 
 

 474 

 602
x6640

x7261H x

x

.
.
Re

Re
.

  

 

 0
dx

dUn
2





   

 
 Table 14.2 
Parametric boundary layer  
data developed by Thwaites 
 

 n   H 
0.090 0.000 3.70

0.088 0.015 3.62

0.086 0.027 3.54

0.084 0.038 3.47

0.080 0.056 3.35

0.076 0.072 3.24

0.072 0.085 3.16

0.068 0.095 3.09

0.064 0.104 3.04

0.060 0.113 2.99

0.056 0.122 2.94

0.048 0.138 2.87

0.040 0.153 2.81

0.032 0.168 2.75

0.016 0.195 2.67

0.000 0.220 2.60

-0.016 0.244 2.55

-0.032 0.268 2.49

-0.048 0.291 2.44

-0.064 0.313 2.39

-0.080 0.333 2.34

-0.100 0.359 2.28

-0.120 0.382 2.23

-0.140 0.404 2.18

-0.200 0.463 2.07

-0.25 0.5 2.00  
 
In this way, Thwaites was able to develop a comprehensive table of n,  , and H for all the 
available laminar boundary layer data, which is shown in Table 14.2.  Using this collected data, 
he determined that a linear curve fit, shown in Fig. 14.3, could be developed for the parameter 
function F n 2 n H 2( ) [ ( ) ]   , the right side of Eq. 14.23.  Thwaites determined that the 
parametric fit, Eq. 14.24, is essentially only a function of the parameter n (However, it did take 
Thwaites a number of tries to determine this proper collection of terms for F(n)).   
 

 n64702Hn2nF  .])([)(   (14.24) 
 

F(n)= 6.00n + 0.47
R² = 1.00

-1.5

-1

-0.5

0

0.5

1

1.5

-0.3 -0.2 -0.1 0 0.1 0.2

F(n)

n

F(n) = 2[n(H+2)+L] vs. n

Figure 14.3   Linear regression of F(n) vs. n, 
reflected in Eq. 14.24. 
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Note that Eq. 14.24 is an Excel curve fit I did of Thwaites data, which yields a slightly different 
equation than Thwaites determined, who utilized a regression analysis that forced the curve fit to 
match the Blasius data exactly (his fit was F(n) 0.45 6n  ). I will discuss my rationale for this 
variance later.  
 
Substituting Eq.14.24 into Eq. 14.23, we obtain: 
 

 d nU 0 47 6n F n
dx dU dx

. ( )
/



 
    

 
 (14.25) 

Further, substituting back 
dx

dUn
2






  from Eq. 14.22c into Eq.14.25 gives: 

 

 
dx

dU6470
dx
dU
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 .  

or 

 
 

 470
dx

dU6
dx

dU 2
2

.)(  (14.26) 
 

We make the left-hand side of Eq. 14.26 a total differential by multiplying through by mU , and 
establish an integrating factor, m: 
 

mm2
2

1m U470
dx

dUU6
dx

dU 






 
 .)(  (14.27) 

 

Noting that we can write, 
 

 
dx

dUU1m
dx

dU
dx

Ud m2
2

1m
21m










 



 )()()( , 

  

we choose m+1 = 6, or m = 5, which allows us to rewrite the left side of Eq. 14.27 as: 
 

 5
26

52
2

6 U470
dx

Ud
dx

dUU6
dx

dU 


 



 .)()(  (14.28) 

 

Integrating Eq. 14.28 gives: 
 

  




 

x

x

526

0
0

dxU470U .  (14.29) 

If we assume a starting value of 00  at 0x0  , Eq. 14.29 becomes: 
 

   

x

0

526 dxU470U .  (14.30)  
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Rearranging Eq. 14.30 gives an expression for the momentum thickness, : 
 

 dxUU470
x

0

56
2

 






 .  (14.31) 

 

Substituting Eq. 14.31 into Eq. 14.22c gives an expression for n: 
 

 dxU
dx

dUU47.0n
x

0

56
 



  (14.32) 

 

Thus, for a known U(x), we can compute the momentum thickness, , from Eq. 14.31, and the 
pressure gradient parameter, n, from Eq. 14.32.  Knowing n, the values of   and H are obtained 
either by interpolation from Table 14.2, or from a curve fit of H vs. n and  vs. n.   And knowing  
n,  , and H, all the boundary layer parameters  (and w) can be computed.  
 
However, be careful using Eqs. 14.31 and 14.32.  As we point out above, these are derived 
assuming an initial value of  = 0 at x = 0.  If the boundary layer has had some initial 
development (e.g. development over a flat plate followed by an acceleration), then you will need 
to integrate Eq.14.29 using an initial value of o = init at xo = 0, with the corresponding initial 
velocity, U = Uinit at xo = 0.   
 
Thus, reintegrating Eq.14.29 with  = init and U  = Uinit at xo = 0, will give: 
 

  




 

x
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52
init

6
init

2626 dxU470UUU
init

.  (14.33) 

or 
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56
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6
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U
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 (14.34) 

 

with the value of n being given by: 
 

 













  









x

0

562
init6

6
init dxUU470

U
U

dx
dUn .  (14.35) 

 

Equations 14.34 and 14.35 will then yield results for the behavior of a boundary layer that had 
some prior development.  If we have o = init at xo = xinit, then the computation gets a bit 
messier, but is still a straight forward integration, starting from x = xinit, not x = 0. 
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Note that Thwaite's technique is essentially a curve fit of available data via the boundary layer 
equation.  This is not truly a predictive technique in that all the data shown in Table 14.2 was 
either measured experimentally or developed from analytical data, so what we really have is a 
sophisticated curve fit of parametric data.  That being said, Thwaites’ method is a very effective 
technique for prediction of a wide range of laminar flows, and is still the technique of choice for 
engineering prediction of laminar flows, giving results that are good to 10% or better.   
 
14.4  Predicting Laminar Boundary Layer Characteristics Using Thwaites’ Method  
 
To illustrate the use of Thwaites’ method, we will examine three different flows: the 
conventional flat plate flow, an accelerating flow, and a decelerating flow. 
 

14.4.1  Flat Plate Flow 
 
A flat plate flow has a constant velocity outer region flow such that

U = constant.  Thus, 

0
dx

dU
 , and the pressure gradient parameter, n , is calculated from Eq. 14.32 as: 

  

  




x

0

56 dxU
dx

dUU470n .   

 0n   
 

 Note that n = 0 for all x locations, which also fixes the values of   and H, as obtained from 
Table 14.2. 
 

x n   H 
 0 0.220 2.60 

 

The value of the momentum thickness, , is obtained from Eq. 14.31 as: 
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dxUU470.   
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 (14.36) 
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Note that the value of  determined from Eq. 14.36 is about 3% greater than that determined 
from the Blasius solution, Eq. 13.31.  This may seem curious, since the Blasius values were 
incorporated into the data used to determine the function F(n) in Eq.14.25.  However, F(n) was a 
linear curve fit of the cumulative data, and as one can see in Fig. 14.3, the curve fit is slightly 
higher than the actual data for n = 0, the flat plate flow.  Other versions of Thwaites' method 
have employed linear curve fits of the data in Table 14.2 that force the curve fit to pass through 
the flat plate data exactly, since it is the most reliable data value in Table 14.2.  However, the 
present curve fit is really a more accurate reflection of the cumulative data.  And a 3% variation 
is well within the accuracy one might expect for this technique (roughly  10%). 
 

 Now, if the boundary layer had some previous development, such that  = i at x = 0, we would 
use Eqs. 14.34 and 14.35 to determine the boundary layer characteristics.  So, for the momentum 
thickness, we would have from Eq. 14.34: 
 

 dxUU470
x
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56
2
i
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Or solving for : 
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And since 0
dx

dU
 , n is still 0.  Note that if this was an accelerating or decelerating flow, 

0
dx

dU
 , and n would also be non-zero. 

 
14.4.2 Linearly Accelerating Flow 

 
Here we examine a linearly accelerating flow given by

)( x1UU 0  , where xx
a

  , and a is a constant.  

Thus, 0UdU
dx a

  , and n is determined using Eq. 14.32 

(where we note that dx adx ): 
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 6

6
6 x1

1107801x1
x1
0780n

)(
..  (14.37) 

 

Equation 14.37 indicates that n varies significantly with x', which requires that one interpolate 
the corresponding values of  and H at any x' location from Table 14.2, or by means of a curve 
fit of  and H vs. n.  The following table shows the respective values of n,  , and H at x' = 0 and 
x' = 1.  As the flow accelerates, the shear (reflected by  ) increases, and the shape factor, H, 
decreases.  A decrease in H means that the velocity profile displays a stronger gradient near the 
wall (and thus a higher shear stress). 
 

x' n   H 
0 0 0.220 2.60 
1 -0.077 0.329 2.35 

 

Using Eq. 14.31, the momentum thickness for this accelerating flow is determined as: 
 

 
2

6
0

0 078a 11
U 1 x

 
    

.
( )

 

 

 
1

2

6
0

a 10 279   1
U 1 x

 
    

.
( )

 (14.38)  

  

Equation 14.38 also shows a strong initial dependence on x'.  However, note that for 
x' > 1,  becomes essentially constant.  Additionally, Eq. 14.37 indicates that for  
x' > 1, n is also constant, which in turn means that  and H also become constants. This means 
that the boundary layer basically stops growing and maintains a constant shape!   
  
If  and H become constant, this means that o is a result of pressure gradient effects only.  This 
can be shown from the original integral equation, Eq. 14.12, as follows: 
   

 2
0*

U
)2(

dx
dU

U
1

dx
d





 




  (14.39)  

 
 
 

Equation 14.38 indicates that after roughly x' = 1, as the flow continues to accelerate, no further 

momentum is lost from the flow (since  ceases growing) and d 0
dx

 .  Thus, as shown by Eq. 

14.39, the changes in the pressure exactly balance the shear stress.  If we rewrite Eq. 14.39 (for 

0
dx
d


 ), noting that from Bernoulli,  

 

0 

Pressure Gradient Shear Stress 
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 0
dx

dUU
dx

dP
 


 , and 






*H , we get: 
 

 0
dU dP dPU 2 2 H 2 H
dx dx dx

*( ) ( ) ( )  


             (14.40) 
 

Thus, since  and H will be constants, Eq. 14.40 indicates that the shear will be directly 
proportional to the pressure gradient (note that since this is an accelerating flow, the pressure is 

decreasing, and 0
dx

dP
 , such that 00  ).  For this particular flow, with )( x1UU 0  , Eq. 

14.40 becomes: 
 

 2
0 0U 2 H 1 x( ) ( )       

 

Which indicates that when  and H become constant, the shear stress will increase linearly with 
x’. 
 

14.4.3  Decelerating Flow 
 

Now let's examine a decelerating flow given by
)( x1

U
U 0


 , where again xx

a
  , and a is a 

constant. Here, we first determine  using Eq. 14.31: 
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To get n, we note that  
 

0
2

UdU
dx a 1 x

  
 '

, and using Eq. 14.22c we have:   
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  1x111750
dx

dUn 4
2





  )'(.  (14.42) 

 

Equations 14.41 and 14.42 suggest that   and n will grow quite rapidly with x'.  However, for a 
boundary layer type flow, the limiting condition will be where the shear stress becomes zero, 
since at that point the flow near the wall will cease to move downstream, and the boundary layer 
assumptions fail.  For the present decelerating flow the solution will fail when:   
 

 0
0 0

u u0 0
y U y



  
      

 
 

 

When  0 n = 0.090  (from Table 14.2).  Thus, the limiting condition for Eq. 14.42 is: 
 

  
4n 0.1175 1 x ' 1 0.090    

 
 

 

Solving for x' gives: 
 

   15280x11x 4
1

11750
0900 .'' .
.   

 

The following table shows the initial and limiting conditions for this decelerating flow. 
 

x' n   H 
0 0 0.220 2.60 

0.1528 0.090 0 3.70 
 

Using this limiting value of x', we calculate the corresponding limiting value of  from Eq. 
14.41: 
 

    
6 2

0 0 0

a a 0.346a0.1175 1.1528 1.1528 0.346
U U U a
      

 



 

 

As an example, consider an air flow for which a = 1 meter, U0 = 1 m/s,  = 1.6x10-5 m2/s 
 Separation starts at 0.1528 meters 
 

 The corresponding momentum thickness:  = 1.38 mm 
  
Thus, when n = 0.090, H = 3.70        * = 5.11mm  
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14.5  The Relationship of shear stress, drag, and momentum thickness when dP 0
dx

   
 

A boundary layer flow for which the external velocity, U , remains a constant can be used to 
illustrate a unique relationship between shear stress and drag on a plate and the momentum 
thickness,  .  Consider the momentum integral equation, Eq. 14.11. 
 

2
w

Udx
dU

U
12

dx
d





 




 )( *  

If the external flow is constant, that means that dU 0
dx

  , and the momentum integral equation 

reduces to: 
 

w
2

d
dx U





 

  

Which can be rewritten as: 
 

2
w

dU
dx


    14.43 

 

Equation 14.43 is remarkable, since it indicates that the wall shear stress is a direct function of 
the change in the momentum thickness. Additionally, if we assume a plate of length L, and 
arbitrary width W, we can calculate the drag on that plate as: 
 

L

0

x L x L
2 2

w
x 0 x 0

dDrag Wdx U W dx U W d
dx

 

 

  


          

 

 2
L 0Drag U W    14.44 

 

Here, 0  and L  are the values of the momentum thickness at x = 0 and x = L respectively.  
Equation 14.44 is again remarkable, since it shows that the drag on a given plate of a length L is 
directly proportional to the difference in the momentum thickness at the end of the plate less the 
momentum thickness at the beginning of the plate. This does not just apply to a laminar flow, but 
also to (1) a turbulent boundary layer as well, as we will discuss in Chapter 17, and/or (2) any 
type of boundary layer conditions, such as transition from laminar to turbulent flow, or the 
effects of surface roughness and irregularities. 

Thus, as long as the external flow is a constant (i.e. dP 0
dx

 ), a measure of the drag over a 

specified length of a surface (usually a flat surface) can be established using Eq. 14.44 by 
measurement of the velocity profiles and calculation of   at the beginning and end locations.  
And if x = 0 is the leading edge of a plate where the boundary layer initiates (where   is zero), 
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measurement of   at any downstream location will establish the total drag up to that location.  
Pretty nifty. 
 

14.6  The Effect of a Pressure Gradient on Boundary Layers 
 

As the Thwaites solutions shown in Section14.4 illustrate, the external pressure gradient has a 
strong imfluence on the boundary layer.  Since shear effects are always working against fluid 
inertia (particularly near the bounding surface), the effect of the pressure gradient can either 
work (1) with inertia and against shear effects (for an accelerating flow, and a decreasing 
pressure gradient), or (2) it can work against inertia, and with the shear effects (for a decelerating 
flow, and an increasing pressure gradient).   This latter situation, called an adverse pressure 
gradient, leads quickly to the termination of forward flow near the surface, resulting in reverse 
flow near the wall. As we have discussed before, this flow reversal causes a “separation” of the 
boundary layer from the surface, and the development of large energy losses in the flow.  The 
Thwaites example done in section 14.4.3 is a particularly good illustration of the problem created 
by an adverse pressure gradient.  For that example, the shear stress went to zero (the precursor to 
a flow reversal at the surface) by 15.3 cm (roughly 6 inches) from the initiation of the pressure 
gradient—a relatively short distance along the boundary! 
 
This interplay between shear, inertia, and pressure is illustrated by a further manipulation of the 
integral equation to separate out the effects of inertia and pressure changes.  Recall that Eq. 
14.11 is written as: 
 

 2
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Udx
dU
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dx
d
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Multiplying Eq. 14.11 by 2U  and rearranging yields: 
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dx
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Combining the two left most terms, we have: 
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dx
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And noting that  
dx

dUU
dx
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 , and substituting, we get: 
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Equation 14.45 now clearly illustrates the interplay between shear, pressure gradient, and 
momentum changes.  The interesting aspect of Eq. 14.45 is the impact of the pressure gradient.   
 

Recall that for an accelerating flow, 0
dx

dU
  and thus 0

dx
dP

 .  Thus, for an accelerating flow, 

the changes in pressure and in momentum both contribute to an increased wall shear stress.  
Interestingly, even if the momentum thickness ceases growing (as was illustrated in the example 
in Section 14.4.2), the outer region velocity (U) will continue to increase, such there will still be 
a positive momentum change in the boundary layer.  Thus, for an accelerating flow the absolute 
shear will continue to increase, with the velocity profile "stretching" in the streamwise direction, 
since our boundary conditions require that u = U at the edge of the boundary layer. 
 

Conversely, for a decelerating flow 0
dx

dU
  and thus 0

dx
dP

 .  Consequently, the increasing 

pressure for a decelerating flow works in opposition to the momentum changes, and the shear 
will decrease.  And, since U is decreasing, the momentum changes will also decrease (even as 
the momentum thickness grows rapidly), which further reduces the shear.  As Eq. 14.45 
illustrates, despite continued growth in the momentum thickness, the momentum will grow more 
slowly (since 2U  is decreasing), and the pressure gradient will act more strongly in opposition 
to the flow as the displacement thickness grows.  Ultimately, the momentum cannot withstand 
the opposing pressure force within the boundary layer, and the flow nearest the boundary will 
cease to move downstream, causing the boundary layer flow to separate from the surface (more 
on this in section 14.7). 
 
To qualitatively examine the effect of a pressure gradient, dP/dx, on the boundary layer velocity 
profile, consider the two-dimensional boundary layer equation (Eq. 13.13a) evaluated at the 
bounding surface (i.e. at y = 0).  By the no slip condition we have u = 0 at y = 0; and for a solid 
surface, we must have v = 0 at y = 0, thus: 
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y
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dx
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y
uv
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           at y = 0. 

 

Thus, at the bounding surface we have: 
 

 
dx
dP1

y
u

0y
2

2










 (14.46) 

 

Equation 14.46 indicates that the pressure gradient imposes a second-order boundary condition 
on the velocity profile at y = 0.  Recall that in sections 11.5.1 and 11.5.3 we showed that a 

0 0 
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streamwise pressure gradient is the source of vorticity at a bounding surface (for a steady flow).  

Since at the bounding wall we have 
y
u

z



 , then Eq. 14.46 can be rewritten as: 

 
ydx

dP1
y
u z

0y
2

2















 (14.47) 

 

Equation 14.47 indicates that the second order boundary condition is a vorticity source term, 
controlled by the pressure gradient, which will show in the following sections has a significant 
modifying effect on the boundary layer velocity profile. 
 

To illustrate the impact of this pressure gradient boundary condition on the behavior of the 
boundary layer velocity profile, we qualitatively examine three different generic pressure 
gradient cases:  a favorable pressure gradient (dP/dx < 0), no pressure gradient (dP/dx = 0), and 
an adverse pressure gradient (dP/dx > 0). 
 

14.6.1  Favorable pressure gradient   accelerating flow ( 0
dx
dP

 ) 
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Figure 14.4 Effect of a favorable pressure gradient (dP/dx < 0) on the shape of the boundary 
layer velocity profile. 

 
A favorable pressure gradient, as discussed above, acts in concert with the boundary layer 
momentum, and thus aids the flow very near the boundary to continue moving downstream.  
This is like having the wind at your back when running.  As Fig. 14.4 illustrates, the second-
order boundary condition is negative at the bounding surface (y = 0), and will, of course, be zero 
at the edge of the boundary layer (y = ).  Since the second-order boundary conditions reflect the 
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local slope of the shear stress, the shear has a positive value, but with a negative slope at y = 0, 
and asymptotes to zero shear at y = , with zero slope.  The resulting velocity profile will 
maintain a full, non-inflectional shape while the pressure gradient remains favorable.  Such flows 
are quite stable, with the boundary layer remaining attached to the surface (no reversed surface 
flow).  Because this is a very stable type of flow, a favorable pressure gradient will help a 
boundary layer maintain laminar behavior, and resist transition to turbulence (we will discuss 
this further in Chapter 17) 
 

14.6.2 Zero pressure gradient   constant velocity flow ( 0
dx
dP

 ) 
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Figure 14.5 Effect of a zero pressure gradient (dP/dx = 0) on the shape of the boundary layer 
velocity profile. 

 
For a zero pressure gradient flow, or flat plate flow, the pressure gradient has no impact on the 
boundary layer development.  Such a flow, as was shown in the Blasius solution of Section 13.3, 
is a balance between inertia effects and shear effects.  As is shown in Fig. 14.5, the second-order 
boundary condition is zero at the bounding surface (y = 0), and must also be zero at the edge of 
the boundary layer (y = ).  Since the second-order boundary conditions reflect the respective 
local slope of the shear stress, the shear will have a positive value at y = 0, but with a zero slope.  
The shear must again asymptote to zero at y =  with zero slope.  Since the shear must 
experience a negative slope to connect between y = 0 and y = , the shape of the shear profile 

will be as shown in Figure 14.5, and 2
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 must be negative between y = 0 and y = , as shown.  

The resulting velocity profile will be less full than for a favorable pressure gradient, and will 
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experience a point of inflection at y = 0.  Because a functional inflection signals the possibility of 
unstable behavior, a flat plate laminar boundary layer is just barely stable.  As such, small 
perturbations, such as velocity or pressure fluctuations, or surface irregularities, can cause a 
breakdown of the boundary layer to turbulence.  In general, beyond a Reynolds number of 
roughly 5x105, very good flow conditions (i.e. smooth surface and minimal pressure/velocity 
fluctuations in the outer flow) are required to maintain a laminar boundary layer over a flat plate 
with a zero pressure gradient.  However, with ideal flow conditions laminar flows can be 
maintained in excess of Rex = 106.  
 

14.6.3 Adverse pressure gradient   decelerating flow ( 0
dx
dP

 ) 
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Figure 14.6 Effect of an adverse pressure gradient (dP/dx > 0) on the shape of the 
boundary layer velocity profile. 

 
An adverse pressure gradient, as opposed to a favorable pressure gradient, will act in opposition 
to the boundary layer momentum, and thus further restrain the flow very near the boundary.  This 
is like having the wind in your face while running, which makes moving forward that much 
harder, for both you and the boundary layer fluid  As Fig. 14.6 illustrates, the second-order 
boundary condition is now positive at the bounding surface (y = 0), while it still asymptotes to 
zero at the edge of the boundary layer (y = ).  The shear stress still (up to a point) has a positive 
value, but with a positive slope at y = 0, and again must asymptote to zero at y = , with zero 
slope.  Thus, as shown in Figure 14.6, the shear stress must reach a maximum above the surface, 
and then develop a negative slope, which will allow it to decrease to zero at y = .  To do that, 
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 must pass through zero, which indicates that a point of inflection must occur above the 

boundary surface.  As discussed in section 14.6.2, a point of inflection reflects a point of 
potential instability, which makes these adverse pressure gradient flows highly likely to a break 
down to turbulence.  Additionally, the dual penalty of the shear stress and the pressure gradient 
acting in opposition to the fluid inertia can quickly reduce the velocity of the fluid very near the 
surface, strongly distorting the velocity profile (as shown in Fig. 14.6), which can rapidly lead to 
boundary layer separation, as described in the following Section 14.7. 
 
14.7 Boundary layer separation 
 

 
Figure 14.7 Illustration of the development of a separation point of zero shear stress, and 

subsequent flow separation, due to an adverse pressure gradient (dP/dx > 0). 
 

When a boundary undergoes a sustained adverse pressure gradient, the flow very near the 
bounding surface can quickly be slowed to a halt, such that the wall shear stress becomes zero.  
Note that zero wall shear stress was the condition limiting the flow development for the 
Thwaite's method decelerating flow example in section 14.4.3.  As shown in Fig. 14.7, 
downstream of this point of zero wall shear stress, the flow adjacent to the bounding surface will 
actually reverse direction, forming a stagnant or recirculating region of fluid.  This recirculating 
fluid region will cause the impinging boundary layer flow to divert away from the surface and 
around this reversed flow region.   
 
The formation of a reversed flow region, and the subsequent diversion of the impinging flow 
around this region of reversed flow, is termed a "flow separation."  When flow separation occurs, 
the boundary layer ceases to be a boundary layer, and becomes a much more complicated flow, 
which can no longer be properly modeled using the boundary layer equations.  Such separated 
flows must be addressed using the full Navier-Stokes equations and sophisticated numerical 
solution techniques.  
 
Physically, the consequence of boundary layer separation is that the displacement thickness, 
which we envisioned and defined in section 13.4.1, becomes quite large, effectively displacing 
the outer free stream flow around the region of stagnant or reversed flow.  This diversion of the 
outer flow will result in a significant modification of the pressure distribution within the flow.  
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As we will discuss in Chapter 15, the creation of these separated flow regions, and the associated 
modified pressure field, result in a significant net pressure force acting in the flow direction, 
which is termed pressure drag. 
 
As we discussed in section 14.4.3, an additional effect of a sustained adverse pressure gradient is 
to move the point of inflection in the boundary layer velocity profile away from the surface, 
which makes the boundary layer much more sensitive to a transition to turbulence.  When this 
happens, the inertia forces overwhelm the viscous forces in the boundary layer, and the velocity 
profile cannot keep its shape, subsequently breaking down into rapid, local mixing behavior 
known as turbulence, which in turn causes increased surface shear stress.  The good news is that 
the mixing caused by the turbulence will feed more energy from the outer region flow into the 
flow very near the bounding surface, which helps maintain the downstream movement of the 
boundary layer.  However, while a transition to turbulence may initially keep the flow attached 
to the bounding surface, under a continued adverse pressure gradient the now turbulent boundary 
layer can eventually undergo flow separation as well.   
 
In general, adverse pressure gradients, if strong or sustained, will always lead to flow separation, 
and increased drag or flow resistance.  In the following Chapter 15, we will examine the impact 
of flow separation on both the drag on external bodies, and the development of large temporal 
pressure fluctuations on the bodies.  In addition, in Chapter 17 we will examine the basics of 
turbulence, and its effect on flow separation. 
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Study Problems 
 

1.  Using the momentum integral equation, assume a velocity profile of the form 


ba
U
u

, where 




y
. Determine the constants a and b, and then the boundary layer parameters fcand,*,,   for 

a flat plate flow.  Compare you results to table 14.1 in section 14.2.2. 
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2.  Using the momentum integral equation, assume a velocity profile of the form 
32 dcba

U
u




, where 



y

.  Determine the constants a, b, c, and d, and then the 

boundary layer parameters fcand,*,,   for a flat plate flow.  Assume that all derivatives are zero 
at 1 .  Compare you results to table 14.1 in section 14.2.2. 

 
3.  Using the momentum integral equation, assume a velocity profile of the form 

32 dcba
U
u




, where 



y

.  Determine the constants a, b, c, and d, and then the 

boundary layer parameters fcand,*,,  for a flat plate flow.  Assume that the shear stress is zero 

at 1 , but for a fourth boundary condition, assume that 0
dy

ud
2

2

 at  0 .  Note that this 

boundary condition is obtained from the original boundary layer equation when 0 , assuming that 
U = constant (see section 14.5, Eq. 14.42).  Compare you results to table 14.1 in section 14.2.2. 

 
4.  Using the momentum integral equation, assume a velocity profile of the form 

432 edcba
U
u




, where 



y

.  Determine the constants a, b, c, d and e, and then 

the boundary layer parameters fcand,*,,   for a flat plate flow.  Assume that all derivatives are 
zero at 1 .  Compare you results to table 14.1 in section 14.2.2. 

 
5.  Using the momentum integral equation, assume a velocity profile of the form 

432 edcba
U
u




, where 



y

.  Determine the constants a, b, c, d and e,  and then 

the boundary layer parameters fcand,*,,   for a flat plate flow.  Assume that the shear stress and 

2

2

dy
ud

 are zero at 1 , but for a fifth boundary condition, assume that 0
dy

ud
2

2

 at  0 .  Note that 

this boundary condition is obtained from the original boundary layer equation when 0 , assuming 
that U = constant (see section 14.5, Eq. 14.42).  Compare you results to table 14.1 in section 14.2.2 

 

6.  Using the momentum integral equation, assume a velocity profile of the form )bsin(a
U
u




, 

where 



y

.  Determine constants a and b, and then the boundary layer parameters fcand,*,, 

for a flat plate flow.  Note that you cannot use u = 0 at  0  , because the result is indeterminate in 
calculating the constants.  Instead, use the first and second derivatives at 1  as boundary 
conditions.  Compare you results to table 14.1 in section 14.2.2.  What are the problems with this 

assumed velocity profile? [hint: consider the boundary condition for 1at
dy

ud
2

2

 ] 
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7. Using the momentum integral equation, assume a velocity profile of the form  2u a 1 e
U

 



  , 

where 



y

, determine the constant a using u = U


 at  1  , and then the boundary layer 

parameters fcand,*,,  for a flat plate flow.  Note that this function already satisfies u = 0 at  
0  , but does not satisfy any of the other higher order boundary conditions.  

 How well do the results compare with the Blasius solution?  What are the problems with this assumed 
velocity profile?  

 
8. Water enters a two-dimensional nozzle at free-stream velocity U0.  The free-stream velocity 

accelerates exponentially according to the relationship, U(x) = U0 exp(kx), where x is the distance 
from the start of the nozzle, and k is a constant.  Assume that the kinematic viscosity, , is constant 
and the boundary layer thickness is 00  at x = 0.  Assuming a boundary layer profile of the 
form, u/U(x)=A+By+Cy2+Dy3, use the momentum integral equation and, for a bounding surface of 
the nozzle, determine: 
 

a) The approximate velocity profile using appropriate no slip at y = 0, and appropriate other boundary 
conditions at y =  to establish the values for A, B, C, D. 

b) Expressions for *, , and 0 as functions of . 
c) A differential equation for  as a function of x, with U0, , and k as constants. 
d) A solution for  in terms of U0, 0, , k, and x 
e) A plot of (x) (in inches) for 0  x  2 m, for both 0 = 0 cm and 0 = 1 cm, letting k = 0.1 m-1,  = 

10-6 m2/sec., and U0 = 25 cm/sec. 
f) For the same values of k, , and U0 as in part d, determine the x location (in meters) and the free-

stream velocity U (in m/sec.), where  becomes a maximum.  Determine the location of the 
maximum for both 0 = 0 cm and 0 = 1 cm.  Physically explain what is happening to give such 
significantly different maxima. 

 
9. Assuming the same conditions as problem 8, where U(x) = U0exp(kx), determine an expression for (x) 

using Thwaites method, and plot (x) vs. x for 0  x  2 ft, for 0 = 0 inches, letting k = 0.4 m-1,  = 10-6 
m2/sec., and U0 = 25 cm/sec.  On the same graph, plot for comparison the (x) expression you derived in 
problem 8 using a direct solution of the momentum integral equation. 

 
Extra Credit:  Again, assuming the same conditions as problem8, use Thwaites method to determine 
(x), and plot (x) vs. x for 0  x  2 m, for 0 = 1 cm, letting k = 0.4 ft-1,   = 10-6 m2/sec., and U0=25 
cm/sec.  On the same graph, plot for comparison the (x) expression you derived in problem 8 using a 
direct solution of the momentum integral equation.  
 
Note:  You cannot do this directly using the original Thwaites equation, but need to employ Eqs. 
14.34 and 14.35 for a non-zero momentum thickness. 
 

10. Assume a velocity of  U(x) = U0exp(-kx) over a surface, with  = 0 at x = 0.  Determine an expression 
for (x) using Thwaites method, and on one graph plot both (x) (in cm) and n vs. x for 0  x  2 m, 
letting k = 0.1 m-1,  = 10-6 m2/sec., and U0 = 0.3 m/sec.  Determine how far along the surface (in meters) 
this calculation is valid. 
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11. A fluid entering a diffuser is decelerated according to the velocity U(x) = U0/(1+ax), where a is a 
constant indicating how rapidly the diffuser decelerates the flow.  Assume that U0 and  (kinematic 
viscosity) are known constants.  Using Thwaites method, do the following: 

 
a) Determine an expression for  as a function of U0, , a, and x. 
b) Determine an expression for the parameter n as a function of U0, , a, and x. 
c)  Assuming that a is inverse units to x, and determine values of  at x = 0.5 for both a = 0.1 and a = 

0.2 in terms of U0 and .   
d)  Determine the values of x where U = 0.9U0 for both a = 0.1 and a = 0.2; compare the respective 

values of  that occur at these points, and comment on the reason for any variations. 
e) For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 

occurs.  Briefly explain the physical processes which result in the development of this maxima.  
 

12. A fluid entering a diffuser is decelerated according to the velocity U(x) = U0(1- ax), where a is a 
constant indicating how rapidly the diffuser decelerates the flow.  Assume that U0 and  (kinematic 
viscosity) are known constants.  Using Thwaites method, do the following: 
 
a) Determine an expression for  as a function of U0, , a, and x. 
b) Determine an expression for the parameter n as a function of a, and x. 
c) Assuming that a is in inverse units to x, determine values of  at x = 1 for both a = 0.05 ft-1 and a 

= 0.1 ft -1 in terms of U0 and .   
d)  Determine the values of x where U

 = 0.90 U0 for both a = 0.05 and a = 0.1; compare the 
respective values of  that occur at these points, and comment on the reason for any variations. 

e) For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 
occurs.  Briefly explain the physical processes that result in the development of these maxima. 

 
13. A fluid entering a nozzle is accelerated according to the velocity U


(x) = U0(1+ax) where a is a 

constant indicating how rapidly the nozzle accelerates the flow.  Assume that U0 and  (kinematic 
viscosity) are known constants.  Using Thwaites method, do the following: 

 
a) Determine an expression for  as a function of U0, , a, and x. 
b) Determine an expression for the parameter n as a function of a, and x. 
c) Assuming that a is in inverse units to x, determine values of  at x = 1 for both a = 0.05 and a = 

0.1 in terms of U0 and .   
d)  Determine the values of x where U

 = 1.10 U0 for both a = 0.05 and a = 0.1; compare the 
respective values of  that occur at these points, and comment on the reason for any variations. 

e) For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 
occurs.  Briefly explain the physical processes that result in the development of these maxima. 

 
 

14. Consider the flow of air over a cylinder.  Assume that the impinging velocity is U = 1 cm/s, and the 
cylinder radius is R = 10 cm. The kinematic viscosity for air is  = 16 mm2/s.  As the flow passes 
around the cylinder, a laminar boundary layer develops on the cylinder surface.  Assume that the 
velocity at the edge of the boundary layer can be approximated by the potential flow solution of U

 = 
2Usin(), where  is the angle measured from the cylinder stagnation point around the cylinder.  
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(14.  continued) 
a.  Using Thwaites method, neglect curvature effects and determine the development of the 

momentum thickness () as a function of x, where x = R, when  is in radians.  You can  
integrate the Thwaites equation analytically (you need to review your integral tables)—do it in 
terms of , and then express in terms of x. 

 

b. Determine the angle max (in degrees) where the solution is no longer valid, using a parallel 
calculation of the parameter n.  Why does the solution fail at this point?  
 

c. Plot  and n on the same graph (using different axis scales) vs. x, for 0 cm < x < 20 cm.  Use 
appropriate scales for  and n, such that the full extent of the changes in  and n can be observed 
and compared to each other. I suggest you use smaller increments of  near  = 0 to effectively 
resolve the curves. 

 

15. Consider the flow of water with a Falkner-Skan type of outer region velocity
m

0
0 x

xUU 









 , 

where U0, x0, and m are a constants, with U0 = 10 cm/s and x0 = 100 cm. The kinematic viscosity for 
water is is  = 0.01 cm2/s.  The initial momentum thickness at x0 is 0 = 0.2 cm. 

 
a.  Using Thwaites method, determine expressions for the momentum thickness ()  and the 

Thwaites pressure gradient parameter (n) as a function of x, in terms of 0, , U0, x0, x, and m. 
Note that you must start with your integration for the momentum thickness using Eq. 14.29 
since 00. 

b. Create a graph of 
0


 (where 0 is the initial momentum thickness, 0.2 cm) vs. Show plots for 

m = 0 (Blasius), = 0.25 (accelerating), and = - 0.05 (decelerating).  For your graph, use 

increments of 
0x

x
of  0.1 from 4

x
x1

0

 . 

c. Create a second corresponding graph of n vs. 
0x

x
showing plots for m = 0 (Blasius), = 0.25 

(accelerating), and = -0.05 (decelerating).  For your graph, again use increments of 
0x

x
of 0.1 

from 4
x
x1

0

 . Is the decelerating flow likely to separate? What is your basis for judging 

whether or not it separates? 

d. Create a third graph of 
B


 (where B is the Blasius value for m = 0) vs. m, for 4

x
x

0

 .  Plot 

your graph for 1m10  .  (use increments of 0.05).  Compare your graph to the results for 
the Falkner-Skan solution of Figure 13.11 in Chapter 13. 

e. Using your expression for n vs. 
0x

x
, use a root-finding program to determine the value of m for 

which the Thwaites method would indicate that the flow would reach separation at x = 400 cm.  
How does this compare with the actual Falkner-Skan solution? 
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Chapter 15 
 

Flow Separation and Drag 
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15.1 Causes of Separation 
 
As discussed previously in Chapter 14, when a boundary layer flow comes under the influence of 
an adverse pressure gradient (i.e. with pressure increasing in the flow direction), both the local 
wall shear stress and the increasing pressure will act to retard the flow immediately adjacent to 
the bounding surface.  In often a very short distance, the fluid adjacent to the surface will be 
become stagnant (i.e. be brought to rest), and begin to move in opposition to the main flow.  This 
condition results in what is known as flow separation, where the initially stagnated fluid will 
cause the following flow to divert outward, away from the surface, and around the stagnant or 
rearward flowing wall fluid.  This process causes a substantial change of the flow field, resulting 
in significant losses of flow energy and pressure due to the intense mixing between the stagnant 
fluid and the downstream flow bounding this stagnant fluid.   
 

The conditions necessary for such a flow separation behavior to develop are: 
 

 1) A local, adverse pressure gradient, and/or 
 

 2) Strong curvature or sharp corners 
 

Figure 15.1 shows several examples of separated flows.  Figure 15.1a is typical of flow 
separation occurring over bluff bodies.  Here we show a cylinder, but the same behavior is 
characteristic of flows where the width and length of the body are comparable, such as  
 

https://en.wikipedia.org/wiki/Flow_separation
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Separated wake 

Separation point 
Flow 

Flow 

No separation  No separation  

Separation at sharp leading edge  

Separated wake 

 

 a) Cylinder 
 
 
   
 
 
 
 
 
 
 
 b) Airfoil c) Flat Plate 
 
 
   
 
 
 

 
 
 
d) Smoke flow visualization of separated flows  
 

           
1. Separation for an airfoil: 2. Laminar separation 3. Turbulent separation 

high angle of attack behind a sphere behind a sphere 
 
Figure 15.1 Some typical examples of separated flows: a) a circular cylinder; b) an airfoil;  
 c) a flat plate; d) smoke visualizations of separation behind an airfoil and a 

sphere. 
 
rectangular or elliptical bodies.  As shown in Chapter 9, flows passing around these types of 
bodies will experience significant surface pressure variations.  If the boundary layer that 
develops on these bodies encounters an adverse pressure gradient, it will be subject to possible 
(and often rapid) boundary layer separation.  As discussed earlier in Section 14.5, once a 
boundary layer separates, a region of reversed flow, or a recirculating wake, is created 
downstream of the body.  This wake, as shown by the pressure sketch of Figure 15.1a, will be of 
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relatively constant pressure, which is significantly lower than the leading edge pressures.  This 
relatively constant trailing-edge pressure is generally characteristic of separated flow regions or 
wakes. The cumulative differential in pressure around the body will result in a cumulative force 
in the flow direction (determined by integrating the surface pressure over the body), which is 
termed a "drag" force.  As we will discuss in section 15.3, the total drag is the sum of both 
pressure imbalances and surface shear stresses.   
 
However, note that when a body is of significant thickness (i.e. not a flat plate or thin airfoil), the 
drag due to differences in surface pressure around the body normally exceeds the drag due to the 
surface shear stresses. 
 
Additionally, the type of boundary layer on the body has a significant effect on the magnitude of 
the pressure drag.  As we discuss in Chapter 17, a transition to turbulence results in an increase 
in boundary shear stresses; however, the mixing associated with turbulence will keep the 
boundary layer energized, so it will generally remain attached to the surface much farther around 
a body.  As shown on the right of figure 15.1a, a laminar boundary layer will separate from a 
bluff body surface much sooner than a turbulent boundary layer.  The result is a trailing surface 
pressure that is lower for a laminar separation than a turbulent separation, and consequently the 
pressure drag for laminar separation will exceed that for a turbulent separation, for the same 
impinging flow. 
 
Figure 15.1b illustrates flow around a symmetric airfoil.  When a symmetric airfoil (i.e. having 
the same shape above and below the centerline) is aligned with the flow, as in the upper example 
of Figure 15.1b, the flow will (ideally) pass around the airfoil without undergoing flow 
separation.  Even though there will be an adverse pressure applied to the trailing portion of the 
airfoil (i.e. that following the thickest part of the airfoil), airfoils for aircraft applications are 
generally designed such that the region of adverse pressure will not result in a significant 
separation.  Generally, to avoid a trailing edge separation, the thickness (i.e. thickest portion of 
the airfoil) is kept thin relative to the length of the airfoil.  For a low thickness-to-length ratio, the 
flow will generally pass around the airfoil without separating.  Note that there will still be an 
unbalanced pressure force on the airfoil, since the pressure at the leading edge will be the 
stagnation pressure of the flow, and the pressure at the trailing edge will generally be that of the 
local static pressure.  The pressure distribution will result in a nominal amount of pressure 
induced drag, but much less than for a comparable body without an extended trailing edge (e.g. a 
circular cylinder).  Additionally, surface shear stresses will more significantly contribute to the 
overall drag on an airfoil. 
 
However, when an airfoil is placed at an angle of attack (the angle of the airfoil centerline to the 
flow direction), as shown in the lower portion of figure 15.1b, the pressure distribution over the 
airfoil will change significantly, creating an unbalanced pressure distribution between the top to 
the bottom of the airfoil.  This unbalanced pressure distribution results in a lift force on the 
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airfoil (necessary for flight), but also increases the pressure imbalance from front-to-back of the 
airfoil, with a subsequent increase in the pressure-induced drag on the airfoil. If the angle of 
attack is increased too severely, the adverse pressure gradient over the trailing portion of the 
airfoil will cause the flow to separate from the upper surface, with an accompanying reduction in 
surface pressure over the upper surface; the result is a marked increase in pressure-induced drag.  
If separation occurs, it will develop quite rapidly, creating a large region of separated fluid, or 
wake.  It also results in a significant loss in lift, which can have disastrous consequences on an 
aircraft, in that the aircraft will not be able to sustain flight.  Such situations are known as "stall" 
and can develop quite rapidly; the occurrence of stall is most often the cause of aircraft accidents 
and associated fatalities.  
 
Figure 15.1c represents flow over a flat plate.  As we know, when a flat plate is oriented with its 
surface aligned with the flow direction, as in the upper portion of figure 15.1c, a boundary layer 
develops over the flat surfaces of the plate, resulting in frictional drag.  Since the plate is aligned 
with the flow, the outer flow remains uniform and essentially parallel, with no variation in the 
bounding pressure.  In addition, since no pressure gradient develops, there is no flow separation. 
Consequently, the plate only experiences drag due to viscous shear. 
 
However, when a flat plate is placed at an angle of attack, as shown in the lower portion of figure 
15.1c, a very large local adverse pressure gradient will develop at the sharp leading edge (even at 
low angles of attack).  This adverse pressure gradient causes an immediate development of a 
flow separation, creating a large region of separated flow/wake on the upper surface of the plate, 
with a consequent low pressure.  The result is very large pressure drag, which increases 
essentially proportionally to the sine of the angle of attack. 
 
Figure 15.1d shows flow visualizations of separated flows using smoke streamers in a wind 
tunnel.  The first visualization shows the separation developing on the upper surface of an airfoil 
at a high angle of attack.  This degree of separation is severe, and would result in significant loss 
of lift and increased drag; typically such a flow would not sustain the flight of an aircraft, 
resulting in a "stall" referred to above.  The second and third images show the difference between 
laminar and turbulent separation behind a sphere. Note that similar to the sketches shown on the 
right of figure 15.1a, the wake is smaller when the flow over the body is turbulent, and will thus 
have less pressure drag.  Two interesting YouTube videos show a variety of flow separation 
behavior for real flows: here separation over a series of shapes using smoke visualization in air, 
and here different types of flow separation over bodies and through channels using particle 
visualization in water.  Both of these are videos of relatively old research movies, and a bit 
grainy, but they show some excellent sequences of separated flow behavior for real flows. 
 
 
 
 

https://en.wikipedia.org/wiki/Stall_%28fluid_mechanics%29
https://www.youtube.com/watch?v=JcxOub0E4aA
https://www.youtube.com/watch?v=iqz_Ooa67g8
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15.2  Effects of Separation 
 
Flow separation can have a number of deleterious effects, including: 
 

1) Form or Pressure drag, and 
 

2) Unsteady flow behavior 
 

In Section 15.1 we discussed pressure drag (often called form drag, since it is a strong function 
of the form of the body). In Section 15.3 we will develop methods for predicting and calculating 
the forces due to drag over various types of bodies, and discuss the trade-off between pressure 
drag and drag due to shear stresses.   
 
Unsteady flow behavior occurs when the separated flow developing over a body changes 
temporally, creating a time-varying pressure field, with associated time-varying pressure drag. 
As we will discuss in Section 15.4, such time-varying behavior can create unwanted, and often 
destructive, periodic loading of a body. 
 
Finally, in Section 15.5, we will discuss several methods for controlling, minimizing, and 
stabilizing separation and the resultant pressure drag, and the tradeoffs between using passive or 
active drag control techniques. 
 
15.3  Drag 
 
Drag is defined as the total force exerted on a body in the direction of the fluid motion by the 
effects of the fluid, and is a combination of (a) unbalanced pressure forces and (b) friction forces 
(i.e. fluid shear stress), both acting on the body surface.  Note, however, that pressure forces act 
normal to the surfaces, whereas friction forces act parallel to the surfaces.  The total resultant 
force acting in the direction of the fluid flow comprises the total drag on the body.  The resultant 
force acting normal to the direction of flow is termed the lift on the body. 
 

 
 

Figure 15.2 Characterization of the frontal area of a bluff body. 
 

To quantify the drag force, we establish an equation that relates the actual drag force to the 
dynamic pressure (i.e. the pressure equivalent to the fluid momentum flux, 2

2
1 V ), and the 

frontal area of the body (i.e. the cross-sectional area of the body, as viewed from the direction of 
the impinging flow), as illustrated in figure 15.2.   
So, we write the drag equation as: 

Frontal Area of a Cylinder, A=(D)(L) 

L 

D V 
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 1 2

D 2D C V A   (15.1)  

 
 
 

In Eq. 15.1, DC is the drag coefficient, which is proportional to the non-dimensional total drag on 
a body -- the combination of the shear stress drag and the form or pressure drag.  We equate the 
total drag as proportional to the dynamic pressure  1 2

2 V  and the frontal area of the body.  Note 

that the dynamic pressure is the pressure difference that would result from bringing the 
impinging velocity to zero, or stagnation.  A drag coefficient of one or greater is considered high, 
with drag coefficients of 0.2 or less considered low drag values.   
 

Analytical or computational determination of accurate drag coefficients for any but the simplest 
geometric body shapes has generally not been possible, although modern computational tools are 
making the computation of drag coefficients more feasible, but computationally time intensive.  
Thus, we generally rely on experimental data.  However, the experiments must be done 
judiciously by employing dynamic similitude techniques.  First, we determine the non-
dimensional parameters upon which the drag depends.  Secondly, we determine the functional 
relationship of the drag coefficient to these parameters.  Thirdly, we conduct experiments that 
cover the range of the appropriate parameters. 
 

From dimensional analysis and similitude we can establish that: 
 

DD CC   (geometry, Re, Fr, M), where 
  

 geometry  scaled similarity (i.e. same geometric shape) 
 

 Re  Reynolds number = 
forcesviscous
forcesinertiaVL




 (L is a characteristic length) 

 

 Fr  Froude number = 
forcesgravity
forcesinertia

gL
V2

   (for air-water interactions) 

 

 Mach  Mach number = 
sound of speed

velocityfluid
C
V
       (for compressible flows) 

 

For our purposes (i.e  incompressible, single fluid), we need only consider the geometry and 
Reynolds number, giving: 
 

Re) geometryCC DD ,(  
 

Total Drag Force 

Drag Coefficient 

Fluid Density Fluid Velocity 

Projected Frontal Area of Body 
 

https://en.wikipedia.org/wiki/Similitude_(model)
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However, even this reduction in influencing parameters still requires a number of carefully 
controlled experiments to determine CD for a range of geometries and Reynolds numbers.  As an 
example, figure 15.3 shows the general behavior of the drag coefficient for a circular cylinder. 
  

 
Figure 15.3 The generic behavior of the drag coefficient for a smooth circular cylinder (in 

blue) [after Hoerner, 1965]  
 
The drag on a cylinder is a classic example of bluff body drag.  Note that at very low Reynolds 
numbers (ReD < 10) the flow over the cylinder is laminar, with limited flow separation, such that 
CD is basically due to viscous shear, and roughly proportional to 1/ReD.  As ReD increases beyond 
10, pressure drag starts to dominate, with CD becoming essentially constant at ≈ 1.2 for 103 <  
ReD < 105 - 106, while the boundary layer over the cylinder remains laminar.   
 
Note that the broad upper range of ReD for laminar behavior depends on the character of the 
boundary layer. For a smooth cylinder, without upstream disturbances, the flow will remain 
laminar to a much higher ReD (up to 106).  However, if the cylinder surface is rough, or the 
external flow contains disturbances, the boundary layer on the cylinder can transition earlier to a 
turbulent boundary layer. This earlier transition increases local mixing, which reduces the 
separation behind the cylinder, as shown in figure 15.1a.  When the boundary layer over the 
cylinder is turbulent, CD decreases sharply to roughly 0.3, or roughly 25% of the drag with a 
laminar boundary layer.   
 
Thus, in figure 15.3, the CD vs. ReD curve shows a region of 105 <  ReD < 106 over which the 
boundary layer may become turbulent, with a consequent decrease in CD.  Note that surface 
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roughness, although it causes early transition to turbulence and thus a reduced CD, also has a 
parasitic effect on the surface drag due to increased shear effects, which generally results in a CD 
higher than that for a smooth cylinder (≈ 0.3) after transition. 
 
 

 
Figure 15.4 The generic behavior of the drag coefficient for a smooth sphere (in blue) 

[after Hoerner, 1965]. 
 

For drag on axisymmetric and three-dimensional bodies, the drag coefficient is still based on the 
frontal area as observed in the flow direction.  For example, the frontal area of a sphere will be 
D2/4.  In general, the drag coefficients for axisymmetric bodies tend to be lower than for two-
dimensional bodies, such as cylinders.  Figure 15.4 shows the behavior of CD for a sphere as a 
function of the Reynolds number based on sphere diameter.  Note that the behavior is quite 
similar to that for a cylinder, with a plateau in CD of ≈ 0.47 over a range from 103  > ReD  > 105, 
and transition to turbulence in the range 105  < ReD < 106, with a subsequent drop in CD to ≈ 0.10 
(an almost 80% reduction!).  Again, roughening the sphere surface will cause an earlier 
transition, and a consequent decrease in CD.  
 
Note that both figure 15.3 and 15.4 illustrate that roughening the surface of a body will result in 
an earlier transition to a turbulent boundary layer over the body, and a significant reduction in 
CD.  Many practical flow situations take advantage of this reduction in CD by purposely causing 
the boundary layer to transition to turbulence.  This is done by roughening of the bounding 
surface, or placing irregularities (e.g. a cable or wire) on and around the surface.  These surface 
treatments generate turbulence, which reduces the separated region, and thus the hydrodynamic 
drag.  Another quite common technique is the roughening of the surface of a ball used in a sport. 
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Examples are tennis and golf balls.  The "fuzz" on the exterior of the tennis ball greatly reduces 
both the drag and unsteadiness (more on this in Section 15.5.1), so the ball will fly faster and 
truer.  Golfers found in the 1800's that an old, scratched-up ball would fly farther and truer than a 
new one. Consequently, manufacturers started putting "dimples" on golf balls, to again reduce 
drag and unsteadiness. Even today, golf ball manufacturers are forever tweaking the dimple 
pattern on their golf balls, to reduce the drag and thus increase the distance the ball will travel, 
assuming the same initial velocity. This link discusses the history of golf balls and drag, and this 
link shows an interesting simulation of the flow due to the dimpling of a golf ball. 
 

 
 
 
 
 
 
 
 

Figure 15.5 The relative contribution of fluid friction and pressure forces to cylinder drag. 
 
Figure 15.5 shows the general difference between laminar and turbulent drag on a smooth 
cylinder.  Note that drag due to shear stresses (i.e. friction) is a minimal contribution for both 
laminar and turbulent flow (although friction drag will be higher for turbulent flow—see Section 
17.7.5.3).  The decrease in total drag is quite remarkable, and illustrates why many practical 
applications want to promote turbulent flow over bluff bodies. 
 
Figure 15.6 shows a generic characterization of the relative contribution of shear stress to the 
total drag on a body, using the ratio of the body thickness, t, to its length, C (known generally as 
the chord of the body).  For a flat plate, of negligible t/C, essentially all the drag is due to surface 
shear, whereas for a smooth cylinder, with t/C = 1, the surface shear contributes roughly 3% of 
the total drag (note: this would increase for roughened bodies).  The friction drag and pressure 
drag are about equal for t/C = 0.25, so the relative change with t/C is non-linear.  Clearly, for t/C 
> 1, essentially all the drag will be due to pressure drag. 
 
Generally, increasing t/C is accompanied by increased variations in the local pressure, resulting 
in local adverse pressure gradients.  As discussed in Chapter 13 and 14, the presence of adverse 
pressure gradients almost assures the possibility/probability of a separation of the boundary 
layer, an increased imbalance of pressure forces, and thus more drag on the body. 
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Figure 15.6 The generic effect of geometry on the contribution of surface shear drag vs. 

pressure drag to the total drag on a smooth body: (a) definition of a body shape 
parameter, (b) relative contribution of surface shear drag to total drag versus 
the body shape parameter, t/C. 

 
Figure 15.7 shows CD values for a number of common two-dimensional shapes of infinite depth 
into the page (e.g. long rods of different cross-sectional shapes).  These values assume a laminar 
approach flow with Re  104.  The Re and cross-sectional area are based on the vertical 
dimension of the body normal to the flow direction.  The CD values for the smooth, more 
rounded bluff bodies will be reduced significantly when transition to turbulence occurs, so one 
needs to understand the nature of the impinging flow. The sharp-edge bodies, such as flat plates 
or bodies with sharp edges, will be relatively insensitive to turbulent transition, since separation 
will normally occur at those sharp edges, regardless of the type of boundary layer or impinging 
flow. 
 
You might note that most of these bodies have drag coefficients that are larger than that for a 
cylinder, and often much larger.  This demonstrates the drag penalty for a body with sharp 
corners.  As we showed in Section 9.7.5.2, potential flow around a sharp corner results in an 
infinite local velocity at the corner, which would also reflect an infinite adverse pressure 
gradient. While such infinite flow singularities cannot exist in a real flow, very large pressure 
differences will develop at sharp edges, such that flow separation takes place immediately.  Flow 
separation at sharp corners creates large pressure differences between the front and the back of 
the body, and thus large drag forces and large CD.  
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Figure 15.7 Drag coefficients for selected two-dimensional bodies of infinite extent (into 
the page) at Re  104 (Reynolds number based on vertical dimension of the 
body). [after Hoerner, 1965] 

 
Notice in figure 15.7 that bodies with more pronounced corners have higher CD.  For example, 
CD = 2.05 for a square rod with a flat leading edge. However, rotating the rod 45° to give a 
pointed leading edge, which moves the corners toward the center of the body, reduces the CD to 
1.55 (a 25% reduction).  A similar reduction in CD is noted by changing the orientation of the 
hexagonal-shaped rod. 
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Note that CD for a flat plate normal to the flow is reduced by 30% when it is located on and 
normal to a bounding surface, as opposed to being far removed from bounding surfaces.  This is 
due to the presence of a boundary layer on the bounding surface, which reduces the local 
pressure at the leading edge of the plate, and may act to stabilize the trailing wake.  This 
reduction in CD is common for any bluff body mounted on a surface parallel to the flow 
direction.  In all cases, the CD for the bluff body will be reduced by the presence of a bounding 
surface.  Click here to see more CD values for a variety of two-dimensional bluff bodies. 
 

 
 

Figure 15.8 The laminar (Ret < 105) and turbulent (Ret > 106) drag coefficients for a series 
of two-dimensional oval-shaped bodies of infinite extent (into the page). [after 
Hoerner, 1965] 

 
Figure 15.8 shows the effect of bluff body thickness and boundary layer characteristics on the CD 
for two-dimensional elliptical rods.  As pointed out above, the thicker a body is relative to its 
length, the greater the effect of pressure gradients on the body boundary layer and the more 
extensive is the flow separation.  The increased separation yields correspondingly greater form 
drag. The change in CD with body thickness is clearly demonstrated in figure 15.8, which shows 
that as t/L (termed the thickness ratio) decreases from 1 (a circular cylinder), the CD 
correspondingly decreases.  Note that all the bodies shown in figure 15.8 will have the same 
frontal area, so as the bodies become more extended the subsequent modification of the pressure 
gradient will strongly reduce the form drag on the body.  Since the body will be longer, the shear 
stress drag will increase, but this is greatly exceeded by the reduction in the pressure drag due to 
reduced separation.  As shown, extending a circular body by only one thickness (i.e. from L = t 
to L = 2t), reduces the drag by 50% for a laminar flow! Moreover, extending it by seven 
thicknesses (to L = 8t) reduces the drag by 80%. This shows the benefit of a little "streamlining".  
Additionally, reducing t/L generally makes the flow more stable, such that time-varying 
separation effects are reduced as well.  We will discuss this further in section 15.4. 
 
Figure 15.8 also shows the sensitivity of CD to the nature of the boundary layer. We noted in 
Figure 15.3 the significant decrease (75%) in CD that takes place when the flow over a smooth 
cylinder becomes turbulent in the Reynolds number range 105  < ReD < 106.  As one would 

  Laminar CD  1.20 0.60 0.35 0.25 

Turbulent CD  0.30 0.20 0.15 0.10 

t/L = 1 0.5 0.25 0.125 

    
L 

t 
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expect, this sensitivity to the type of boundary layer extends to t/L < 1, with turbulent boundary 
layers giving markedly lower CD values (roughly 60% lower).  One caveat is that extending the 
length of a body adds additional surface area, such that shear drag will begin to make more 
significant contributions to the total drag. 
 

 
 

Figure 15.9 The drag coefficients for Re  104 (based on H or D) as a function of body 
length (L):  (a) a two-dimensional rod of infinite extent (into the page) with a 
flat leading edge; (b) a two-dimensional rod of infinite extent with a semi-
circular leading edge; (c) a flat-faced cylindrical rod. [after Hoerner, 1965] 

 
Figure 15.9 further illustrates the impact of added body length on CD, for some generic types of 
smooth bodies with laminar boundary layers.  Figure 15.9a is a rectangular rod with a flat 
leading edge.  For this body, a very short body length (e.g. L/H = 0.1) is essentially a flat plate 
with the flow normal to the plate, as shown in figure 15.7.  As body length is increased, the CD 
increases slightly to 2.05 at L/H = 1 (the square rod of figure 15.7).  Further increases in length 
cause CD to decrease markedly to roughly 0.9 by L/H = 4, where the CD appears to stabilize.  
Apparently, increasing length beyond L/H = 1 must have a significant impact on the separation 
characteristics in the wake of the body for 1 < L/H < 4, with a corresponding reduction of CD.  

H 

L 

(a)  Flat leading edge rod (2-D) 

L/H 0.1 0.5 1.0 2.0 4.0 6.0 

CD 1.97 2.02 2.05 1.82 0.93 0.90 
 

H 

L 

(b)  Rounded leading edge rod (2-D) 

L/H 0.1 0.5 1.0 2.0 4.0 6.0 

CD - 1.16 0.90 0.70 0.58 0.54 
 

D 

L 

(c)  Flat-faced cylinder (3-D) 

L/D 0.1 0.5 1.0 2.0 4.0 6.0 

CD 1.17 1.15 0.90 0.85 0.84 0.82 
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However, increasing the length beyond L/H = 4 appears to have minimal impact on the wake 
behavior and CD.  
 
The body shown in figure 15.9b is a rectangular rod with a semi-circular leading edge. Note that 
rounding the leading edge reduces the drag by roughly 50% from the rectangular rod with a flat 
leading edge (figure15.9a). Obviously, elimination of sharp corners, which reduces the separated 
wake of the rod, has a marked effect on CD.  Again, there is a corresponding decrease in CD with 
increased length, with increases beyond L/H = 4 having a limited effect on CD. 
 

The third body shown in figure 15.9c is a flat-faced circular rod, with its axis in line with the 
flow direction. This is considered a three-dimensional body, since it is radially symmetric in the 
flow direction.  The behavior of CD for this body with increases in length is similar to that for the 
flat leading edge rectangular rod (figure 15.9a), but with less dramatic changes in CD.  For 
example, for the rectangular rod, CD decreases 53% from L/H = 0.1 to L/H = 4; for the 
cylindrical rod, CD decreases only 28% from L/D = 0.1 to L/D = 4. This suggests that the wake 
of the circular rod is less affected by the length increases, most likely because of the closer 
exposure of the wake to the main flow due to the axisymmetry.  This closer exposure of the wake 
to the main flow is also why the CD for the cylinder does not change significantly after L/D = 2 
 

Example:  Drag Force on a Suspended Telephone Cable/Smoke Stack 
 

Consider a telephone cable of 1 cm diameter, with a wind blowing perpendicular to the cable 
at 10 m/s.  Determine the force per unit length on the cable due to drag. 
 
Assuming air at 20 C, the kinematic viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3.  
Thus, the Reynolds number for the cable would be: 
 

 
     

 

3

3
D 2

5

m mm10 10 mm 10VD s mRe 6.66x10
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From figure 15.3, at this Reynolds number the CD for a smooth cylinder is roughly 1.  The 
frontal area of the cable (per meter of length) is A = (0.01)m x (1)m = 0.01m2.  Thus, we 
calculate the drag/meter as: 
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Not a particularly large force.  For a suspended cable 30 meters long, the total force on the 
cable would be 18 Newtons, or about 2.4 lbf.   
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Now, what if the same wind blew on a power plant smoke stack, 10 meters in diameter and 
80 meters high?  Here, the Reynolds number would be: 
 

 
   

 

7
D 2

5

m10 10 mVD sRe 6.66x10
m1.5x10
s



  


 

 

From figure 15.3, this would place the flow in the turbulent region, with a CD of roughly 0.4.  
So, the drag on the smoke stack would be: 
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A substantial force (roughly 4,300 lbf), but easily handled by such a large structure. 
 

Note that if the wind were to blow twice as hard (i.e. 20 m/s), the force would quadruple to 
76,800 N (17,300 lbf), which could begin to be worrisome for the operators. Note that 20 m/s 
is roughly in the range of what would be considered a gale force wind. 

 
Figure 15.10 shows CD values for selected smooth three-dimensional bodies with laminar 
approach flow and Re  104.  For these bodies, the Reynolds number is based on the frontal 
vertical dimension (i.e. diameter for bodies of revolution, like a cone, and frontal height for 
rectangular shapes).  The behavior of these bodies is similar to that of the two-dimensional 
bodies shown in figure 15.7, with variations in CD dependent upon the orientation of the body.  
Again, sharp corners at the leading edge create much higher CD values.  Note particularly the 
hemispherical cup, for which CD varies by a factor of 375% depending on orientation.   Of course 
this elevated drag effect is put to good use for such devices as parachutes (the last shape in figure 
15.10), where high drag provides lowered terminal velocities for falling bodies (such as 
paratroopers), or when employed as air brakes (e.g. on aircraft or drag racers).  
 

Example:  Terminal Velocity with a Parachute 
 

Consider an 80 kg man jumping from an airplane, and using a parachute to descend.  Assume 
that the air (near the ground) is at 20 C, the kinematic viscosity is 1.5x10-5 m2/s, and the 
density is 1.2 kg/m3.  What should the frontal area of the parachute be to assure landing at a 
safe speed of 6 m/s? Let the weight of the parachute and pack be 5 kg, and neglect the drag 
coefficient of the man.   
 

The drag force required at landing will be a balance of the gravitational force on the 
combined man + parachute: 
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Figure 15.10 Drag coefficients for selected three-dimensional bodies at Re  104 with 
laminar approach flow (Reynolds number based on diameter or vertical 
dimension of the body). [after Hoerner, 1965] 

 
The drag equation is: 
 

 AVCDrag 2
2
1

D  
 

Solving for the frontal area gives: 
 

 2
D VC
Drag2A


  

 

From figure 15.10 CD = 1.2 for a parachute, so the required frontal area is: 
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And since the frontal area will be 
4

DA
2

 , the parachute diameter will be 6.4 meters, or 21 

feet. The amount of cloth to make the necessary parachute (assuming a hemispherical shape) 
would be about 64.3 m2 or 692 ft2—a lot of cloth.  Additionally, The Reynolds number for 
this chute would be 2.5x106, so it is easily exceeds the ReD > 104 criteria listed in figure 
15.10. 
 

Click here to see more examples of CD values for symmetric two-dimensional, three-
dimensional, and other types of common bluff bodies; this also provides a series of relevant 
references on bluff body drag. 

 
15.4  Unsteady Separation/Drag Effects  
 

As we discussed in Section 15.3, when an impinging flow encounters a bluff body, the flow will 
initially undergo strong acceleration toward the thickest portion of the body, followed by strong 
deceleration after passing the point of maximum thickness.  For example, in Section 9.8.1 we 
showed that inviscid flow over a circular cylinder will initially accelerate to the point of 
maximum thickness, and then decelerate from that point to the trailing edge. Correspondingly, 
the pressure along the cylinder surface will decrease to the point of maximum thickness, yielding 
a favorable pressure gradient, followed by a pressure increase to the trailing edge of the body, 
reflecting an adverse pressure gradient.  Figure 15.11 shows the general streamline pattern and 
non-dimensional pressure behavior for inviscid flow over a cylinder, from Section 9.8.1. 

 

As was illustrated by the Falkner-Skan solutions in Section 13.6, and discussed in general in 
section 14.6, the boundary layer of a viscous fluid cannot be maintained under even a mild 
adverse pressure gradient, and will quickly separate from a cylinder, or other similarly bluff 
bodies, when an adverse pressure gradient is encountered. However, as we showed in Section 
11.5.3, a region of favorable pressure gradient (as encountered in the leading portion of bluff 
bodies) will cause vorticity to be generated at the bounding surface. So, what happens to the 
vorticity generated by the favorable pressure gradient over the leading side of a cylinder or other 
bluff body when a boundary layer separates?  The answer is that the vorticity is transported into 
the wake of the cylinder from the point of boundary layer separation (generally, shortly after 
reaching the maximum body thickness). In addition, because a sheet of vorticity is very unstable, 
the separating vorticity will generally concentrate into discrete vortices in the wake of the body.  
After reaching a certain strength and size (depending on the Reynolds number and type of body), 
these vortices periodically detach from the wake, and are carried downstream.  This detachment 
of discrete vortices is termed "vortex shedding" since the vortices are formed near the edge of the 
separated wake, and then periodically "shed" from the wake and carried downstream by the flow 

https://en.wikipedia.org/wiki/Drag_coefficient
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field. A YouTube video, shown here, uses laser-illuminated dye in a water flow to visualize the 
type of unsteady, yet periodic, vortex shedding behavior that can develop in the wake of bluff 
bodies. 
 

 (a)     
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Figure 15.11 Inviscid, potential flow over a circular cylinder: (a) Streamline behavior [from 

figure 9.7]; (b) Surface pressure coefficient for inviscid flow over a cylinder, 

where 






2
412

U2
1

PP
pC sin  [from figure 9.9]. 

 

As you might expect, the process of periodic vortex shedding causes an often strong oscillation 
of the wake of the bluff body.  This wake oscillation results in a change in the trailing edge 
pressure on the body, which correspondingly causes a temporal change in both the drag and lift 
forces on the body.  Depending on the size, frequency, and regularity of this vortex shedding 
process, these oscillations of the body wake and the associated pressure field can act as a strong 
forcing function on the body. A good example of periodic forcing by vortex shedding on a 
cylindrical pendulum can be viewed here. 
 

When this vortex-induced forcing is near the natural frequency of a solid body, it can cause the 
development of significant periodic movement of the body within the flow field, and under 
extreme cases, failure and collapse of the solid structure comprising the body. The YouTube 
video shown here shows the forced oscillation of a street light due to vortex shedding.   
 

15.4.1 Vortex Shedding by a Circular Cylinder 
 

The process of vortex shedding from a circular cylinder can display very periodic behavior, with 
the formation of very discrete vortices that are carried downstream by the main flow, as shown 
schematically in figure 15.12. 
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Figure 15.12 Schematic of vortex shedding from a circular cylinder of diameter D, with a 
shed vortex spacing  L and a shedding frequency  N, in an impinging fluid of 
velocity V and kinematic viscosity . 

 
We can characterize the frequency of the shedding of the separated vortices by a non-
dimensional frequency number termed the Strouhal number, given by Eq. 15.2: 
 

 Strouhal Number = St = ND
V

       where N is the shedding frequency (#/s) (15.2) 
 

Note that the Strouhal number (Strouhal, 1878) depends on the Reynolds number of the cylinder 

(based on the cylinder diameter, D), D
VDRe 


.  Figure 15.13 shows the general behavior of the 

Strouhal number for a cylinder as a function of Reynolds number, as determined from a number 
of experimental studies.  The grey region in this figure indicates the spread of the data for a 
series of studies, with the red line indicating the general consensus for St = f (ReD).   
 

 
Figure 15.13 The behavior of the Strouhal number as a function of Reynolds number.  The 

red line is the consensus behavior for a series of experimental studies, and the 
grey region indicates the spread in the empirical data. [after Hoerner, 1965] 

 The dotted line indicates the accepted value of N  0.21 for 103 < ReD < 105. 
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http://en.wikipedia.org/wiki/Strouhal_number
http://en.wikipedia.org/wiki/Vincenc_Strouhal
http://www.scribd.com/doc/117103507/Hoerner-Fluid-Dynamic-Drag
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Generally, the separated wake behind a cylinder is relatively steady until ReD  60.  Once ReD > 
60, vortex shedding initiates, and the Strouhal number increases with ReD [i.e. St = St )(ReD ]  up 

to about 3
D 10Re , where St becomes constant at 21.0 , until ReD  105.   For ReD > 105, the 

vortex shedding becomes less consistent and irregular, with different studies suggesting a range 
of behavioral changes.  The red line in figure 15.13 represents a compromise, with the dotted line 
indicating the broadly accepted value of  N  0.21.  Most studies show that when ReD > 107 the 
vortex shedding becomes disorganized, and Strouhal numbers may no longer be determined. 
 
Note that the region of constant St can be put to good use as a velocity-sensing device, by noting 
that for a circular cylinder we can approximate that St  0.21 within the region  
103 < ReD < 5x105.  Thus: 
 

  210
V

NDSt .     ND764
210

NDV .
.

   NV   
 

So, within the region of constant Strouhal number the velocity is directly proportional to the 
shedding frequency.  Thus, by correlating the local flow velocity with the shedding frequency of 
a small cylinder, the shedding frequency can be used to calibrate velocity measurement devices, 
such as hot-wire anemometers, and is the basis for certain pipe flowmeters. 
 

Example: Since each shed vortex is a source of low pressure (at the center of the vortex), 
the passage of a vortex will create a temporal pressure change. Since sound is created by 
time-varying pressure, if the vortex shedding frequency is high enough, there will be an 
audible sound.  So, consider air at 20 m/sec (about 65 ft/s) passing across two different 
circular rods:  a) 2 mm coat hanger, and b) a 2 cm rod. 
 
The vortex shedding frequency will be different, due to the differing diameters, which will 
result in different audible frequencies.  The shed vortices are sources of sound pressure, and 
thus we can “hear” the difference in the shedding behavior.  
 
Here we estimate the shedding frequencies: 

 

a) Coat hanger  2D mm, 20V  m/s, 51051  . m2/sec 

  3
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3
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s
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  St = 0.21  (from figure 15.13) 

   St 
V

ND210  .  

http://en.wikipedia.org/wiki/Anemometer
https://www.youtube.com/watch?v=GmTmDM7jHzA
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b) 2 cm rod   2D cm, 20V   m/s, 51051  . m2/sec 
 

  4
D 10x662.Re         St = 0.21   (from figure 15.13) 

     

   210N   HZ 
 

Human hearing can detect sounds in the range of 20 to 20,000 Hz (check here to see how good 
your hearing is).  Therefore, the shedding from a coat hanger will be in the mid-higher frequency 
range of our hearing, and the 2 cm rod (roughly the diameter of a broomstick) will shed near the 
low end of our hearing.  Try this as an experiment.  You should be able to swing these types of 
rods by hand at roughly the 20 m/s speed.  Note that the sounds will also be of different 
amplitudes, because the different diameters generate different strength and size vortices (the coat 
hanger sound will be harder to hear). 
 

15.4.2 Vortex Shedding by Other Shapes 
 

Generally, any bluff body will display similar periodic shedding, with some bodies shedding 
more periodically than others.  Hoerner (1965) has shown that within 103 < ReH < 105 (where H 
is the vertical dimension of a body), the Strouhal frequency is (roughly) inversely proportional to 
the drag coefficient of the body, with an empirical relationship according to Eq. 15.3: 
 

 0 75
D

NH 0 21St
V C .

.
   (H is vertical dimension of the body) (15.3) 

 

So, generally a lower drag body will yield a higher Strouhal number, and a higher drag body a 
lower Strouhal number.  However, the more streamlined a body is, the less likely it is to have 
organized vortex shedding.  Additionally, three-dimensional bodies will generally not shed in an 
organized manner.  Organized, periodic vortex shedding primarily occurs for flow over two-
dimensional cross-section bluff bodies (e.g. long rods, wires, or poles). 
 

So, what are common bodies that shed vortices?  Almost anything that has a bluff-shaped body 
will shed vortices.  Moreover, the bodies, and the vortices they shed, can often be quite large.  
For example, all the following can undergo some form of vortex shedding---periodic, or 
otherwise: 
 

  girders   big ships 
  buildings   dock pilings and bridge supports 
  trucks & cars   suspended pipe lines and cables 
  airfoils 

https://www.youtube.com/watch?v=qNf9nzvnd1k
http://www.scribd.com/doc/117103507/Hoerner-Fluid-Dynamic-Drag
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What are the consequences?  Periodic pressure loading of the body, which can cause fatigue and 
failure of a solid body, or can act as an external forcing function that can excite large oscillations 
at the system natural frequency.  Examples are: 
   

 Tacoma Narrows bridge collapse (1932) (http://www.youtube.com/watch?v=j-
zczJXSxnw) 
 

 swaying flagpoles (https://www.youtube.com/watch?v=ptYrbQGk6DQ) 

 buffeting of cars by shedding from large trucks 

 swaying buildings  
 (this video shows the skyline moving, while this video shows a pendulum in a room 

swaying as the building moves) 
 

On a windy day, the Sears Tower in Chicago will shed large vortices, which cause it to sway 
slowly, with a movement of up to three feet on a windy day.  Of course the higher the wind 
speed, the greater the movement, and the higher the frequency of the swaying motion.  For 
example, assuming a rectangular-shaped building of the dimensions of the Sear Tower, we get 
following approximate frequencies  
 

 @ 10 m/s – 0.021 HZ 48 second oscillation period. 
 

 @ 30 m/s – 0.063 HZ 16 second oscillation period 
 

People occupying the upper floors of the tower have been known to get "seasick" from this 
motion. See this video of building sway caused by vortex shedding. 
 
15.5 Control of Separation and Drag 
 
Since pressure/form drag is significant on bluff bodies, it is of practical advantage to employ 
methods to reduce pressure drag (i.e. a process generally termed “control”), and/or reduce or 
eliminate the pressure fluctuations due to vortex shedding.  There are many different approaches 
to accomplish this reduction, most of which fall into two categories:  
 

 (1) passive control, and  
 

 (2) active control.   
 

15.5.1  Passive Control 
 
Passive methods of control are methods that do not require an action to effect the control 
process.  These are methods which reduce drag and unsteady behavior by changes in surface 
characteristics or geometry changes, or insertion of secondary geometrical elements in the wake 
region.  

http://www.youtube.com/watch?v=j-zczJXSxnw
http://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=ptYrbQGk6DQ
https://www.youtube.com/watch?v=0JLw2Oo1he0
https://www.youtube.com/watch?v=QkGk8HJLr6o
http://www.youtube.com/watch?v=0JLw2Oo1he0
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15.5.1.1 Surface Effects 
 

The most common passive control method is to promote mixing of the fluid passing over the 
body to keep the flow attached, and thus delay separation, which correspondingly reduces 
pressure drag and vortex shedding. Some general methods are shown in Figure 15.14.  The 
simplest passive methods attempt to cause the boundary layer on the body to transition to 
turbulence as soon as possible.  For these techniques, the body is either purposely roughened 
(e.g. the dimples on a golf ball), or fitted with a "tripping" device, such as a wire, rod, or saw-
toothed blade, which generate localized disturbances.  In all of these cases, artificial disturbances 
are generated, which promote the development of a turbulent boundary layer (see Chapter 17), 
which subsequently delays flow separation (see figure 15.1a, and the associated visualizations in 
15.1d, pictures 2 and 3). 
 
  
  a) rough surfaces 
  b) trip wires 
  c) turbulence generators 

 
 
 

Figure 15.14 Passive methods for delaying separation by creating increased mixing. 
Methods causing an early transition to turbulence: (a) roughening surfaces, 
and (b) use of a trip wire.  Methods generating vortices near the surface: (c) 
turbulence or vortex generators projecting from the surface. 

 
More complicated passive methods utilize larger protrusions from the body surface (on the order 
of the boundary layer thickness, or larger), which generate large-scale vortices to promote strong 
mixing near the region of natural separation, and again delay separation. These are generally 
termed "vortex" or "turbulence" generators, since they promote turbulent-like behavior by 
generating streamwise vortices near a surface.  
 

 
 

Vortex generators normally create stream-wise vortices of larger scale than naturally occurring 
turbulence. These devices range from small protruding tabs at an angle of attack, which generate 
trailing vortices, to the fabrication of bounding surfaces with span-wise waviness, which also 

 

Trip wire 

Roughen 

Increased 
mixing 

Turbulence 
generator 

https://www.youtube.com/watch?v=LvVuuaqCC7A
https://en.wikipedia.org/wiki/Vortex_generator
http://www.vortex-generators.com/vortex-generators.html
http://www.google.com/patents/US20120061522
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promote the development of stream-wise vortices. Regardless of how the streamwise vortices are 
generated, their creation promotes downstream mixing, and can be very effective in delaying 
separation and reducing drag.  Additionally, stream-wise vortices will interact with the 
separating vorticity layer, and interfere with the vortex shedding process, and thus reducing or 
eliminating the periodic pressure variations due to vortex shedding.  
 
A variation on trip wires and vortex generators that has proven relatively successful is wrapping 
a wire spirally around a cylinder.  This is relatively easy to do, and has the combined effect of 
tripping the boundary layer, to make it turbulent, while generating streamwise vortices, which 
interfere with the periodic vortex shedding process.  An additional benefit of this approach is that 
unlike the trip wire, it has no preferred directional orientation, and will be effective regardless of 
the flow direction.  This spiral wrapping approach has been used successfully in a wide variety 
of applications, from power plant chimneys (see images here) to large suspended cables and 
pipelines. 
 

Passive mixing methods are generally easy to apply and implement, and do not require an 
additional control system to operate.  However, such methods have varying degrees of 
effectiveness in the control of separation, depending on the type of body.  The placement of trip 
wires and turbulence generators is sometimes a bit tricky, and may require a bit of trial and error 
to optimize the best location.  Additionally, turbulence generators extract energy from the mean 
flow to generate stream-wise vortices.  This energy extraction process creates additional drag on 
the body.  However, these devices normally delay separation sufficiently, and reduce pressure 
drag enough, to override the added device drag of the turbulence generators.  
 

15.5.1.2 Splitter Plates 
 
Another passive method of drag and vortex shedding control is the use of splitter plates, several 
variations of which are shown in figure 15.15.  The type of effect splitter plates can have on flow 
behavior is illustrated here.  Splitter plates are flat plates located in the wake of a bluff body, and 
extending across the span of two-dimensional geometries.  Figure 15.15shows several types of 
plate sizes and relative locations in the wake of a circular cylinder, from a very short plate (about 
¼ D in length, known as a Thwaites flap), shown in figure 15.15a, to a long plate (about 4D in 
length), shown in figure 15.15b.   
 
The objective of these plates is to stabilize the wake by reducing the unsteady interaction of the 
boundary layers separating from the top and bottom of the body.  This stabilization also causes 
an increase in the trailing edge pressure, and thus reduces the drag on the body.  It is interesting 
that the location of a splitter plate of roughly 1D length at a distance of 3D downstream of a 
cylinder, as shown in figure 15.15c, has almost the same effect on drag and unsteadiness as that 
of the 4D plate in figure 15.15b. 
 
 

https://www.google.com/search?q=helical+strake+drag+reduction&newwindow=1&tbm=isch&imgil=q4fTYmOTc5hp7M%253A%253BX232o8Iu22GxgM%253Bhttp%25253A%25252F%25252Fwww.ivoryresearch.com%25252Fwriters%25252Fdave-oneil-ivory-research-writer%25252F&source=iu&pf=m&fir=q4fTYmOTc5hp7M%253A%252CX232o8Iu22GxgM%252C_&biw=1920&bih=1066&ved=0CFYQyjc&ei=0_ieVa22DYyWNr-aheAJ&usg=__l1ssCaBvjSbgG_6tHde6EVEo-Ck%3D#imgrc=q4fTYmOTc5hp7M%3A&usg=__l1ssCaBvjSbgG_6tHde6EVEo-Ck%3D
http://www.symscape.com/blog/helical-strakes-with-your-chimney
http://images.search.yahoo.com/yhs/search;_ylt=A0LEV7jMHypXAwUAiIoPxQt.;_ylu=X3oDMTByMjB0aG5zBGNvbG8DYmYxBHBvcwMxBHZ0aWQDBHNlYwNzYw--?p=Strakes+On+Chimneys&fr=yhs-iry-fullyhosted_003&hspart=iry&hsimp=yhs-fullyhosted_003
http://www.rigzone.com/training/insight.asp?insight_id=359&c_id=17
http://www.rigzone.com/training/insight.asp?insight_id=359&c_id=17
http://fluidsengineering.asmedigitalcollection.asme.org/data/Journals/JFEGA4/27307/012804jfg7.jpeg
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Figure 15.15 The use of splitter plates for reduction of drag and vortex shedding effects. CD 
values are for the respective splitter arrangements shown (unmodified CD 
values are shown in parentheses) [after Hoerner (1965) ] 

 
Generally, the complete elimination of vortex shedding requires a splitter plate of length 4D or 
greater.  Shorter plates will cause reductions in the Strouhal number, but will not eliminate the 
process.  The 1D plate was found to reduce the normal cylinder Strouhal number of St ≈ 0.21 to 
St ≈ 0.19 when the plate is in contact with the cylinder, and to roughly St ≈ 0.13 when the plate 
is 3D removed from the cylinder (figure 15.15c).  However, locating the plate farther from the 
cylinder ( > 3D) results in a jump in Strouhal number back to St ≈ 0.21 (and a return to CD = 
1.11, the value with no plate).  
 
While splitter plates can reduce drag from 10 to 40%, their chief impact is to reduce or eliminate 
the vortex shedding.  Thus, the primary application of these splitter plates would be where 
unsteady loading on a structure is a problem.  However, fabrication of such control plates is often 
awkward, particularly if they are to be located away from the body, such as those in figure 
15.15c and d.  If the plates are not sufficiently rigid, they can be subject to forcing by the 
alternating vortex interactions, which can result in harmonic flexing of the plate, which can 
potentially exacerbate the vortex shedding.  Additionally, to be effective, the direction of the 
flow over the body must be from a consistent direction.  If a flow is an atmospheric or oceanic 
flow, and varies significantly in direction, the use of flaps can be quite problematic and is not 
recommended.  
 

15.5.1.3 Sequenced Bodies 
 
 

   
 

x 

V 
d 

V 

 CD = 0.94  (1.11) Thwaites flap a) 

 CD = 0.64  (1.11) b) 

 CD = 0.67  (1.11) c) 

CD = 1.63  (1.98) d) 

CD = 1.67  (1.98) e) 

http://www.scribd.com/doc/117103507/Hoerner-Fluid-Dynamic-Drag
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Another method of controlling and reducing drag for multiple bluff bodies is the process of 
sequencing the bodies in line with each other (i.e. having one body located in front of the other).  
Such an arrangement for a pair of cylinders is shown above. 
 
As one might guess, the spacing between a sequence of bodies can have an effect on the drag of 
both the leading and trailing body, with the magnitude of the effect being a function of the 
separation distance between the bodies. In general, the closer the bodies are to each other, the 
greater the effect, which is to reduce the effective drag on one or more of the sequenced bodies. 
 
Figure 15.16 shows the effects of separation distance, x/d, on the drag coefficient, CD, for a 
sequence of two identical cylinders at Red  105, such that the first cylinder is in the laminar flow 
regime.  This figure, after Hoerner(1965), requires a little interpretation.  CD for both the leading 
edge cylinder and the trailing edge cylinder are calculated as: 
 

 D 21
2

cylinder drag forceC
V dL




     (15.4) 

 

 
Figure 15.16 Drag coefficients for two circular cylinders, sequenced inline as a function of 

separation distance, x/d.  Red = 105.  [after Hoerner, 1965] 
Here L is the length of the cylinder, d the cylinder diameter, and the cylinder drag force is the 
streamwise force acting on either the leading cylinder or the trailing cylinder.  In addition, for 
figure 15.16, Hoerner calculates CD for the total drag on the combined cylinders as: 
 

 
D leading D trailing

D total 21
2

C Ccollective drag force on both cylindersC
V 2dL 2


 



_ _
_   (15.5) 
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Thus, nondimensionalizing the total drag coefficient on the combined frontal area of the two 
cylinders, 2dL. 
 
What figure 15.16 shows is that for spacing between the cylinders of x/d > 3, the drag on the 
leading cylinder is CD  1.2, essentially that for a single cylinder at this Red (see figure 15.3).  

However, the drag on the trailing cylinder is significantly reduced, to roughly CD  0.3, which is 
essentially that for turbulent flow (again see figure 15.3).  What is happening is that the wake of 
the leading cylinder is creating flow unsteadiness that behaves as a turbulent flow impinging on 
the trailing cylinder, thus reducing the effective drag coefficient. What this does is reduce the 
collective drag for the combined bodies by roughly 40% from that for two cylinders not 
sequenced. 
 
However, for x/d < 3, the effects on the drag of each cylinder, and the collective drag is even 
more dramatic.  As x/d decreases below 3, the trailing cylinder significantly interferes with the 
development of the wake of the leading cylinder, causing the wake of the leading cylinder to 
stabilize and merge with the outer surface of the trailing cylinder.  The change in the wake flow 
pattern results in a modest increase in the pressure distribution on the rear of the leading edge 
cylinder, thus causing CD_leading to decrease.  However, the flow field alteration also causes the 
pressure distribution on the front of the trailing edge cylinder to strongly decrease from 
stagnation levels, which causes a marked decrease in CD_trailing.  As figure 15.16 shows, by x/d  
2 the pressure distribution over the front surface of the trailing cylinder becomes equivalent to 
the distribution over its rear surface, which results in essentially a cancellation of drag on the 
trailing cylinder.  Moreover, for x/d < 1 the pressure distribution over the front of the trailing 
cylinder will become less than over the rear surface, and the trailing cylinder will actually 
experience a significant suction, or negative drag.   
 
Note that when x/d = 0 (the cylinders touch), the CD_total asymptotes to  0.3. This is a 75% 
reduction in the collective drag for the combined bodies from the cumulative drag for two 
cylinders not sequenced.  However, we could have anticipated this reduction from figure 15.8.  
When the cylinders are touching, the combined bodies will roughly represent a body of t/L = 0.5 
(d/2d) in figure 15.8.  The laminar CD for such a tapered body is 0.6.  If we now rewrite 
Hoerner’s total drag coefficient to base it on only the frontal area of our combined body (dL), we 
would have: 
 

 x
d

D total D leading D trailing210
2

collective drag force on both cylindersC C C
V dL

1 04 0 4 0 64


  



  

_ _ _

. . .
 (15.6) 

Therefore, when the two cylinders touch, they emulate the drag behavior similar to a tapered 
body of 2d in length. 
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We might reason that if we included more bodies in sequence, that we might experience similar 
reductions with increased numbers of bodies.  That is true.  A sequenced combination of three 
bodies will reduce the collective CD further than for two sequenced bodies, and so forth, although 
the reductions will not be as significant.  
 
There are a number of practical applications of sequenced body drag reduction.  The 
aerodynamic drag of trains is one example, where the collective pressure drag on a train with 
multiple sequenced cars is much less than the pressure drag on a single locomotive (although 
long trains will have more drag due to surface shear stresses).  However, some of the more 
common applications have to do with sports.  In stock car racing, “drafting” has a big effect in 
improving the speed and performance of cars during a race.  Two cars racing in line, and very 
close to one another, experience less drag than the individual cars alone.  So, two cars moving in 
concert (with two engines powering the combination) can go much faster that one car alone.  In 
addition, if you add more sequenced cars, that group can go even faster. In fact, it is quite 
common for the rear car to actually “push” on the bumper of the lead car so they share their 
collective engine power. While a successful strategy, it is also highly dangerous; if the rear car 
does not apply its push in the center of the lead car’s bumper, the lead car can become unstable 
and spin out, resulting in a potentially devastating crash.  For a good article on the effects of car 
separation distance on drag, click here. 
 

 
 

Other applications of sequenced body drag reduction are in bicycle racing, cross country ski 
racing, and running races, to name a few.  I all cases, the trailing competitors will benefit more 
by closely following a leading competitor who is “breaking the wind”.  However, the faster the 
sport, the more help drafting will be to a competitor (e.g. it is much more useful in bicycle racing 
than distance running). 

 

 
 

Another practical example of sequenced bodies is a variation on the principle of drafting, and can 
be employed to reduce one’s fuel usage on a highway trip.  We can’t safely drive very closely 

https://www.researchgate.net/publication/343391137_CFD_Analysis_of_Slipstreaming_and_Side_Drafting_Techniques_Concerning_Aerodynamic_Drag_in_NASCAR_Racing
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behind another similar vehicle, because we can’t respond quickly enough if the lead vehicle 
brakes sharply (and you would probably sustain some angry gestures from the lead vehicle 
driver).  However, if you are traveling at highway speeds and can drive behind a larger vehicle, 
such as a tractor-trailer truck, you can reasonably drive within 2-3 truck lengths.  Driving at that 
distance, or closer, will reduce the air drag on your vehicle, require less power from your engine, 
and thus reduce your fuel usage.  This requires strict, full-time attention so you can respond 
quickly should the truck brake suddenly, and again may get you nasty stares or gestures from the 
truck driver. Use of modern “adaptive cruise control” on newer vehicles actually helps facilitate 
this process, by automatically sensing and controlling the distance from the trailing vehicle to the 
lead vehicle.  For a very good article on the manifold applications of drag reduction by 
multibody interactions, click here. 
 

15.5.2  Active Control 
 
Active control of flow separation and drag is done using some form of auxiliary system to 
actively remove the stagnant wake fluid downstream of a flow separation or to reenergize the 
boundary layer fluid by some active means.  As opposed to passive methods, which extract 
energy from the mean flow, and reenergize the boundary layer through mixing processes, active 
control requires the addition of energy to the local boundary layer from some external source.  
These approaches are generally more complicated than passive devices, but can be directed at 
specific regions of the flow, and can often be very effective in minimizing separation and 
pressure drag for flows that cannot be controlled by passive means. 

 
 

  a) suction  remove separated fluid/wake 

  b) blowing keep boundary layer moving/energize wake 

  c) rotating surfaces  rudders 

 
 

 
 

 

Figure 15.17 Active methods for delaying separation by removal of regions of separated 
fluid or reenergizing the boundary layer: (a) fluid removal by surface suction; 
(b) reenergizing the boundary layer/wake by injection of stream-wise fluid 
through the bounding surface; (c) reenergizing boundary layer fluid by use of 
a moving surface. 

 

No rotation 

Separated flow 

With assisting rotation 

Attached flow 

Separated flow Attached flow 

https://www.motortrend.com/news/adaptive-cruise-control/
https://en.wikipedia.org/wiki/Drafting_(aerodynamics)
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Figure 15.17 shows several general approaches to active control of separation.  There are others, 
but those shown illustrate the most common approaches. One particularly effective technique is 
the use of suction (figure 15.17a) to remove boundary layer fluid that has been slowed by an 
adverse pressure gradient, or the stagnant wake fluid in a downstream separation region.  
Suctioning off of the low-speed or stagnant fluid will bring the higher-speed outer region flow 
into closer proximity of the bounding surface, and thus keep the boundary layer energized.  Such 
techniques are not easy to implement, since they require a separate pump or suction device to 
create the suction, and a locally perforated (i.e. porous) bounding surface.  In such suction 
systems, contamination of the porous surface, creation of the proper flow distribution though the 
porous surface, and proper location of the porous surface are all problems that must be 
addressed, usually by trial and error.   
 
To account properly for any drag reduction due to active fluid removal, one must also account 
for the additional energy required to operate the suction device. The reduction in flow energy 
losses, reflected by the reduced total drag, is often exceeded by the energy required to run the 
fluid removal system.  In such a situation, there is a net increase in "lost" flow energy, rather than 
a decrease in lost flow energy. Often suction systems are utilized when drag reduction is not the 
objective, but when one wants to reduce separation, and keep a flow attached and steady.  If 
vortex shedding or unstable behavior is threatening the integrity of a structure, the penalty paid 
to operate the suction or injection system may be justified. 
 
A second active technique for controlling separation/drag is fluid injection through the bounding 
surface (figure 15.17b), generally termed "blowing".  This is usually done through surface holes 
or slots angled to inject the fluid in the direction of the downstream flow.  Again, the objective is 
generally to either (1) reenergize the boundary layer fluid by the introduction of "new" high-
velocity fluid, or (2) create vortices similar to a vortex generator to help control separation.  This 
technique can be effective, if done correctly.  However, it has drawbacks similar to the use of 
suction, such as contamination of the injection openings, proper placement of the injection ports, 
creation of an appropriate injection pattern, and the requirement of a separate pump or pressure 
device to create the flow.  An additional concern is the angle of the injection openings, which 
cannot, due to practical considerations, be parallel to the bounding surface, but must be at some 
angle to the flow direction. Of course, one must again account for the added energy required to 
create the injection process vs. any improvement in separation/drag.  In general, injection 
systems have proven most effective for airfoil-shaped blades used in gas turbine environments, 
and are generally more effective in reducing heat transfer to turbine blades, than reducing flow 
separation and overall drag.  In such gas turbine environments, the turbine blades are essentially 
hollow, and receive the pressurized fluid by bleeding air from the compressor of the gas turbine 
system (see a discussion of turbine blade cooling here). 
 

A third approach for active separation/drag control is to employ a moving boundary 
(figure15.17c).  Such an approach is only possible using a moving belt, or a circular rotor, built 
into the boundary of a body.  The objective is to use a moving boundary to reenergize the 

http://old.ichmt.org/abstracts/Turbine-2000/Abstracts/49.pdf
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boundary layer fluid, such that the boundary layer does not have to work against both an adverse 
pressure gradient and surface shear. I am not aware of any practical applications of moving belt 
flows for separation control. However, rotors have been studied for improvement in airfoil lift 
and separation, an example study is found here.  While such rotors are shown to be effective, I 
am unaware of any practical application to aircraft, because of the weight, the high velocity of 
the airflows, and the complexity of operating such rotors on practical aircraft wings.  
 

However, rotors have been put to practical use at the junction of rudders on large ships, where 
the flow velocities are not particularly high, and where the objective is to reduce separation 
downstream of the rudder junction, or pivot.  This process helps the rudder retain aerodynamic 
"lift", and thus its effectiveness as a control surface.  
 

 
 

Figure 15.18 The use of a rotating cylinder at the leading edge of a rudder, allowing ships 
to turn more sharply due to elimination of rudder “stall” by the cylinder 
rotation. From Popular Science, Feb. 1973, pg. 101. 

 
The schematic in Figure 15.17c shows the general placement of a rotor at a rudder junction or 
leading edge.  As shown, such configurations will keep the local boundary fluid energized such 
that it can remain attached under significant changes in direction.  Such rotor devices have been 
successfully utilized on the rudders of large cargo ships, and allow them to have a much tighter 
turning radius when maneuvering in tight spaces, such as harbors.  The figure 15.18 is an excerpt 
from a popular science article about such a rudder.   

https://dspace.mit.edu/handle/1721.1/78196
http://www.slideshare.net/silvercyril/ship-rudders
https://books.google.com/books?id=IWxyanKoRUoC&pg=PA101&lpg=PA101&dq=rotating+cylinder+rudder&source=bl&ots=P7zZB79t7N&sig=ACfU3U1i_OXfEsdt3_oaOCtnNyCteWeV6A&hl=en&sa=X&ved=2ahUKEwilk_H1ivLjAhVCuVkKHdxDD9wQ6AEwD3oECAgQAQ#v=onepage&q=rotating%20cylinder%20rudder&f=false
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However, such rotor devices are not practical in aerodynamic flight systems, due to the velocities 
involved, and the weight of the rotor and accompanying powering system. It should be noted that 
such rotational devices applied in practice will reduce separation, and potentially the drag, 
although that is generally not their primary objective. 
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Study Problems 
 

1.  Consider a telephone pole of circular cross section of 28 cm diameter, with a gale force wind 
blowing perpendicular to the pole at 20 m/s.  Determine the force per unit length on the pole 
due to drag if the pole surface is (a) smooth, or (b) rough. Assume air at 20 C, the kinematic 
viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3 (neglect any effect of the ground on 
the drag).   
 

2.  A square sign post of 28 cm on a side, with a gale force wind blowing perpendicular to the 
post at 20 m/s.  Determine the force per unit length on the post due to drag. Assume air at 20 
C, the kinematic viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3.  Determine the 
highest drag to be expected, and the lowest drag  
for these conditions, and why? 

 
3.  A square sign post of 20 cm on a side, supports a thin, circular metal sign of 70 cm in 

diameter, with the sign attached to the post starting at 2 meters above the ground. Hurricane 
force winds blow perpendicular to the post at 50 m/s.  Determine the Total force on the post 
and on the sign due to drag.  Assume air at 20 C, the kinematic viscosity is 1.5x10-5 m2/s, and 
the density is 1.2 kg/m3.  Neglect boundary layer effects from the ground. What is the highest 
drag to be expected, and what is the lowest for these conditions, and why? 

 
4.  A circular cross-section leg of an off-shore oil platform is of 3 meters in diameter, and 

extends down 100 meters.  An ocean current of 4 meters/s flows past the leg.  Determine the 
total force on the leg due to drag. Assume the flow velocity is uniform over the entire leg, sea 
water is at 10 C, the kinematic viscosity is 1.3x10-6 m2/s, and the density is 1020 kg/m3.   

 
5.  A two smooth spherical pieces of metal of density 3050 kg/m3 are dropped over the side of a 

boat.  The smaller piece is 2 cm diameter, and the larger piece is 20 cm diameter.  Assume 
sea water is at 10 C, the kinematic viscosity is 1.3x10-6 m2/s, and the density is 1020 kg/m3.  
When the spheres reach terminal velocity (no longer accelerating), what will their descent 
velocities be (in m/s) and which will descend faster?  What are the results if the spheres are 
roughened? 
 

http://www.scribd.com/doc/117103507/Hoerner-Fluid-Dynamic-Drag


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 15 
 

 526 

6.  A car top carrier for a kayak has a front cross-strut that is circular in cross-section, with 
diameter 3 cm and 1.3 meters long.  Assume the cylinder is smooth.  When the car is driven, 
the air flows perpendicular to the strut. Assuming the flow is uniform approaching the strut, 
determine the total force on the strut due to drag, when the car travels at 30 m/s without the 
kayak on the rack. Assume air at 20 C, the kinematic viscosity is 1.5x10-5 m2/s, and the 
density is 1.2 kg/m3.  How much power (in Watts) from the engine is required to maintain 
this force?  If we change the cross-section of the rod to an oval with t/L=0.25, where t = 3 
cm, how much is the force and power requirement reduced? 

 
7.  The drag coefficient for a runner is roughly 1.2.  The world record holding sprinter, Usain 

Bolt, can run at an average speed of about 10.6 m/s for 100 meters.  The world record holder 
in the 1500 m run is Hicham El Guerrouj, who covered the distance in 3 minutes and 26 
seconds.  Your typical recreational jogger runs at a speed of about 3 m/s in running 5000 m.  
Assuming a cross sectional area of 0.75 m2 for all three runners, an air density of 1.2 kg/m3, 
and that they run at a constant speed for their respective distances, determine the drag force 
that acts on each runner during their run, the power they must expend, and the total work 
they do due to overcome air drag in covering their respective distances. 

 
8.  For the conditions given in problem 1, determine the approximate vortex shedding frequency 

for the telephone pole. 
 
9.  For the conditions given in problem 4, determine the approximate vortex shedding frequency 

for the oil platform leg. 
 
10. For the conditions given in problem 6, determine the approximate vortex shedding frequency 

for the circular strut.  Would this be audible?  How might you improve the design of this 
strut? 

 
11. For the conditions given in problem 2, determine the approximate vortex shedding frequency 

for the square post, for both the highest drag and lowest drag configuration. 
 
12. We want to calibrate a hot-wire anemometer (an electrically-heated wire that can measure 

high frequency velocity variations) by using vortex shedding from a small cylindrical rod.  
We want to do this in air, by measuring the vortex shedding frequency with the hot-wire 
anemometer, and correlating it to the respective velocity.  If we need to calibrate the 
anemometer over a range of velocities from 1 and 20 m/s, what is the range of rod diameters 
that we could use to assure that the velocity will be a linear function of the shedding 
frequency? Assume air at 20 C with kinematic viscosity of 1.5x10-5 m2/s. What is the lowest 
shedding frequency we might measure with this range of rods? 

 
13. Consider the flow of air over a cylinder.  Assume that the impinging velocity is U = 1 cm/s, 

and the cylinder radius is R = 10 cm. The kinematic viscosity for air is  = 16 mm2/s.  As the 
flow passes around the cylinder, a laminar boundary layer develops on the cylinder surface.  
Assume that the velocity at the edge of the boundary layer can be approximated by the 
potential flow solution of U = 2Usin(), where  is the angle measured from the cylinder 
stagnation point around the cylinder.  
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(13. continued) 
 

a.  Using Thwaites method (from Chapter 14), neglect curvature effects and determine the 
development of the momentum thickness () as a function of x, where x = R, when  is 
in radians.  You can integrate the Thwaites equation analytically (you need to review your 
integral tables) or using the Seeking Alpha webpage—do it in terms of , and then express 
in terms of x. 

 
b. Determine the angle max (in degrees) where the solution is no longer valid, using a 

parallel calculation of the parameter n.  Why does the solution fail at this point? [hint: 
consider the point of separation] 
 

c. Using the pressure distribution given by the potential flow solution over a cylinder (from 
Chapter 9), determine the drag per unit depth on the cylinder.  For this real fluid flow, 
assume that after max the flow is separated, and that the pressure will remain constant at 
the P(max) value until =180 is reached.  Neglect the shear stress on the cylinder 
surface.  Express your results in terms of the drag coefficient: 
 

d 21
2

DragC
U 2R


 ( )

 

 
How does the value you obtain compare to what you might expect for this flow (i.e. in 
figure 15.3)? 
 

14. The power P to maintain a bluff body with drag of FD at a velocity V, is given by  
P= FDV.  Consider the case of two cylinders, each of diameter d and length L, and each 
moving perpendicular to their length at a velocity V in a fluid of density .  Assume the 
cylinders are at Red = 105.  Determine the power required to collectively move both the 
cylinders, in terms of V, d, L, and  if the cylinders are: 
 
 a) Independent of each other 
 b) In line with each other, separated by a distance x/d = 6 
 c) In line and touching each other (x/d = 0)  
 
From your calculations, what % less power is required for b) and c) relative to a)? 
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Chapter 16 
 

Introduction to Non-Newtonian Fluid Behavior 
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16.1 Introduction 
 
To this point, we have assumed that fluids are Newtonian, and deform linearly under an applied 
stress.  Newtonian fluids are the most commonplace fluids, representing air and most other 
gasses, water, most oils, most liquid fuels, and mercury, to name a few.  However, many other 
common materials qualify as fluids, but do not deform linearly under an applied stress.  Some 
examples are many foodstuffs, such as peanut butter and ketchup, cosmetics such as nail polish 
and toothpaste, industrial materials such as freshly mixed cement and drilling mud, and 
biological materials like blood and mucus.  Therefore, while we do not cover such non-
Newtonian fluids in depth, it is appropriate that we examine some common types of non-
Newtonian fluids, and understand how these behave differently than Newtonian fluids. 
 
So, how do non-Newtonian fluids behave differently than Newtonian fluids? The key is how the 
shear stress is a function of the strain rate,  : 
 

 f     (16.1) 
 

We know that for a Newtonian fluid the shear stress changes linearly with the shear strain rate,  , 
such that: 

          yx
due.g.,
dy

  
    

  
, 

 

where the coefficient relating shear stress and strain rate is the viscosity of the fluid, . 
 
Thus, non-Newtonian fluids are those that demonstrate non-linear changes of shear stress with 
strain rate.  Figure 16.1 shows a generic graph of several common types of non-Newtonian fluid 
behavior. Non-Newtonian fluids that deform continuously under an applied shear stress (the 
definition of a fluid, from Section 1.1), are generally categorized as either shear-thinning fluids, 
shear-thickening fluids, or viscoplastics.   
 

16.1.1 Shear-Thinning Fluids (Pseudoplastics) 
 
A shear-thinning fluid, often called a pseudoplastic fluid, will become less viscous with 
increasing shear stress. It turns out that many common materials display shear-thinning behavior.  
Two examples are peanut butter and paint. At room temperature, peanut butter is highly viscous 
at low shear rates.  However, when one applies a high shear stress, as you do when spreading it 
on bread, the peanut butter flows, and can be distributed evenly (pretty much) over a piece of 
bread.  However, once the shear is reduced, the peanut butter will recover to its more viscous 
nature, and will move very little, if at all.  If we were to perform the same process with a 
Newtonian fluid, the fluid would continue to flow under very little stress (such as that applied by 
gravity), and flow off the bread.  Note that if we were to heat the peanut butter, it would change 
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its characteristics.  Although it would still behave as a shear thinning fluid, it would spread, and 
be less stable at much lower shear stresses.  This explains why peanut butter sandwiches, when 
they are subjected to a hot environment (like leaving one in a car on a warm summer day), may 
result in peanut butter oozing out of the sandwich. 

 
 

Figure 16.1  The generic behavior of power-law and Bingham plastic non-Newtonian fluids 
relative to Newtonian fluid behavior. The n values refer to the flow behavior 
index for an Ostwald-de Waele power-law model, Eq. 16.2. 

 
Another example of a shear-thinning fluid is paint. Paint is very viscous when held within the 
bristles of a paintbrush. However, when we brush paint on a wall, the shear stress applied 
between the brush and the wall causes the paint to become less viscous, which allows it to spread 
evenly across the wall. Moreover, when that paintbrush shear stress is removed, the paint will 
return to its more viscous state.  In this relaxed state, the thin paint layer will become more 
viscous, and behave more like a solid, maintaining an even layer on the wall while drying 
(however, if the paint layer is too thick, it may move under the effect of gravity, creating an 
undesirable irregular paint coating). 
 
Did you ever have that age-old problem of getting ketchup out of a bottle?  You open the bottle, 
and it just will not come out.  So, you shake the bottle toward your food, and whoosh! Out comes 
the ketchup, often quite rapidly.  That is because ketchup is a shear-thinning, pseudoplastic fluid. 

Shear Thinning 
(Pseudoplastics) 

Shear Thickening 
(Dilatant) 
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It is very viscous under low stresses (when you try to pour it), but becomes less viscous (and 
flows more quickly) when you shake the bottle and apply a higher stress. 
 
An interesting, and lethal, pseudoplastic is quicksand. Quicksand is a suspension of loose sand 
saturated by water.  The suspension will appear solid, but a sudden small (1 to 2%) change in 
pressure, or application of a shock, will cause the suspension to transform rapidly to a low 
viscosity fluid.  If a human or animal walking on the quicksand causes the shock, they will start 
to sink. The good news is that due to the higher density of the quicksand, a human will only sink 
to about their waist.  The bad news is that further agitation of the quicksand by rapid, struggling 
movements will further reduce the quicksand viscosity, causing one to sink further.  The solution 
to escaping (if you are careless enough to step into quicksand) is to move your legs slowly, 
which causes the quicksand to remain more viscous, and slowly rotate your body to a face up 
floating position.  Then you do a really, really slow backstroke to move your body over and out 
of the quicksand. 
 

16.1.2 Shear-Thickening Fluids (Dilatants) 
 
In contrast to shear-thinning fluids, shear-thickening fluids, many of which are termed dilatant 
fluids, become more viscous as the shear stress is increased (see this link). These types of fluids 
are generally suspensions of particulate matter in a surrounding liquid, and are less common than 
pseudoplastic fluids.  Examples of such fluids are wet cement and synovial fluid.  The 
explanation of why this thickening occurs with increased shear stress is speculative; it is 
presumed that when the fluid is at rest, or under low shear stress, the supporting liquid, which 
inhibits the suspended material from interacting strongly, lubricates the suspended material.  
However, when the dilatant material is under high shear stress, the suspension expands, reducing 
the liquid lubrication, and allows the suspended material to interact strongly, increasing the 
apparent viscous behavior. There are other speculations as to the physical reasons for shear 
thickening, but there is no definitive answer. 
 
This shear thickening process within particulate suspensions, such as the cited wet cement, 
clearly explains our experience with these types of suspensions.  For example, if one steps into 
wet cement, the material will allow you to move slowly, with low shear motions, to extract your 
foot.  However, quick, high shear motions will make the material behave in a much more viscous 
manner, and you will have little chance of easily extracting your foot, most probably losing your 
shoe. 
 
Synovial fluid, which is a suspension of biological material, is secreted by the cartilage 
protecting our body joints, and has a consistency like egg whites. It acts as a lubricant, becoming 
more viscous under strong shearing movements, such as those generated by running.  This more 
viscous behavior acts to protect the higher loading on the joint surfaces.   However, synovial 
fluid becomes less viscous when shear and movement are reduced, such as slow walking, where 

https://en.wikipedia.org/wiki/Quicksand
https://www.azom.com/article.aspx?ArticleID=6113
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joints are under lower loading. This lowered viscosity, of course, allows easier movement of the 
joint. 

A truly interesting aspect of certain dilatant fluids is they will essentially solidify under a sharp 
impact.  With certain fluids, (a highly concentrated mixture of cornstarch and water is one 
example), this rapid thickening allows a person to run or walk briskly across a pool of the 
mixture, without sinking in.  However, if one just stands on the mixture, the viscous effect is 
diminished, and a person will slowly sink in, and have real trouble extracting themselves (see 
this link for a funny video example). 
 
An unexpected practical application of shear-thickening fluids is in body armor (see this link).  
Tests have shown that filling Kevlar body armor with a small layer of certain shear-thickening 
fluids can increase the effectiveness of the armor to bullet impacts, while allowing the armor to 
remain relatively mobile under normal body motion.  However, use of the fluid increases the 
weight of the armor, which may be a significant disadvantage. 
 

16.1.3 Viscoplastics (Bingham plastic) 
 

Fluids that do not continuously deform until a finite shearing stress is exceeded are termed a 
viscoplastic.  These materials behave as a rigid body under low shear stresses, but flow as a fluid 
under high shear stresses.  The fluid behavior of a viscoplastic, after reaching a minimum yield 
stress, can behave like either a Newtonian or a shear-thinning fluid.  The simplest of these types 
of non-Newtonian materials is an ideal Bingham plastic, named after E. C. Bingham who 
originally proposed the model.  As shown in Figure 16.1, an ideal Bingham plastic will deform 
like a Newtonian fluid, after a critical yield stress is exceeded.  Often these materials are 
composed of suspensions of particles or large molecules, which in a quiescent state interact with 
one another, creating a weak solid structure.  However, under a critical level of applied stress the 
solid structure breaks down and begins to flow like a fluid.  If the stress drops below the critical 
level, the particles/molecules reform as a weak solid.  An interesting aspect of a Bingham plastic 
is that when it is at rest in an open container, its free surface will not even out like true fluids, but 
will retain peaks and valleys on the surface. For example, honey, a very viscous Newtonian fluid, 
will slowly relax to give a smooth free surface, but mayonnaise, a Bingham plastic, will not relax 
to a smooth free surface, regardless of the time allowed. 
 
Examples of a Bingham plastic are drilling mud and toothpaste.  Drilling mud is a suspension of 
special clays in either water or a petroleum fluid, generally resembling thick chocolate milk, or a 
milk shake. The mud is pumped through oil field drilling systems to lubricate and cool the 
drilling bit, and remove the drill cuttings.  Under high pumping pressure, the fluid flows in a 
Newtonian-like, free-flowing fashion.  However, reducing the pumping pressure below a certain 
level causes the mud material to transform into a “gel-like” structure, which resists flow. This 
solidification holds the drill cuttings in place until the flow is resumed. When the pressure is 
raised above a critical level, the mud will again start to flow as a fluid, carrying along the 

https://www.youtube.com/watch?v=JkS1ymQ73oc
http://dilatantfluids.weebly.com/3-application-of-dilatant-fluids-in-body-armour.html
https://en.wikipedia.org/wiki/Bingham_plastic
https://en.wikipedia.org/wiki/Eugene_C._Bingham
https://www.rigzone.com/training/insight.asp?insight_id=291&c_id=
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suspended drill cuttings.  However, the pressures required to cause the mud to flow are quite 
significant, as we will see later in Section 16.5.2.2. 
 
You probably never paid much attention to toothpaste as a fluid, but it also behaves as a 
Bingham plastic.  If you uncap a tube of toothpaste, the paste will remain in the tube, as a gel-
like solid—even if you invert the tube with the opening facing downward.  However, when you 
squeeze the tube, which raises the internal pressure and thus the shear stress at the wall of the 
outlet of the tube, the paste will flow out of the tube like a very viscous liquid; and when you 
stop squeezing, the tooth paste returns to a solid, or gel-like state. 
 
16.2 Power-Law and Bingham Plastic Fluid Models 
 
Many mathematical models have been developed to describe (or attempt to describe) non-
Newtonian fluid behavior. A study of these models, and their various fluid behaviors, occupies 
thousands of technical papers, and numerous books on the topic (see for example, Bird, Stewart, 
and Lightfoot, 2002, Bird, Armstrong, and Hassager,1987,and Chhabra and Richardson, 1999).  
However, to give you some understanding of how non-Newtonian fluids differ from Newtonian 
fluids, we will examine only two of these models: a simple power-law model of Ostwald and de 
Waele, (which models both pseudoplastic and dilatant fluids) and the viscoelastic ideal Bingham 
plastic model.  Both of these models are approximations of actual fluid behavior, but allow us to 
examine the generic behavior of a broad range of non-Newtonian type fluids. 
 
Both of these models are based on curve fits of empirical data, and were hypothesized by their 
namesakes as reasonable curve fits of observed and measured fluid behavior.  And both models 
recognize that, like a Newtonian fluid (Eq. 16.1), the fluid shear stress is a function of the shear 
strain rate,  , where again  f   . 

 
16.2.1 Ostwald-de Waele Power Law 

 
Whereas the shear stress for a Newtonian fluid is given by: 
 

          yx
due.g.
dy

  
    

  
, 

 

the equation for an Ostwald-de Waele power-law fluid is a variation on Newton’s law, and given 
by: 

 
nK    (16.2) 

 

Here K is termed the flow consistency index (with SI units of Pa sn), which is similar to (but not 
identical to) viscosity, and n is termed the flow behavior index (n > 0).  Values of K and n for a 
range of pseudoplastic and dilatant fluids are shown at the end of this chapter in Table 16.1. 

http://nebm.ist.utl.pt/repositorio/files/_R._Byron_Bird__Solutions_to_the_class_1_and_2_pro(BookZZ.org).pdf
http://nebm.ist.utl.pt/repositorio/files/_R._Byron_Bird__Solutions_to_the_class_1_and_2_pro(BookZZ.org).pdf
http://californiadanae.com/newoxij.pdf
https://s3-ap-southeast-1.amazonaws.com/erbuc/files/5639_41292326-3341-49d9-a9b4-ab7e73c238b8.pdf
https://en.wikipedia.org/wiki/Wilhelm_Ostwald
https://en.wikipedia.org/wiki/Armand_de_Waele
https://en.wikipedia.org/wiki/Armand_de_Waele
https://en.wikipedia.org/wiki/Bingham_plastic
https://en.wikipedia.org/wiki/Bingham_plastic
https://en.wikipedia.org/wiki/Power-law_fluid
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Note in Figure 16.1 that fluids with flow behavior indices in the range 0 < n < 1 are considered 
pseudoplastic fluids (shear thinning); the closer the value of n is to 0, the more the fluid behaves 
plastically.  For values of n < 0.5, the shape of the curve will start to approximate the behavior of 
a Bingham plastic, with such fluids often modeled reasonably well as either a power-law or 
Bingham plastic fluid. 
 
Figure 16.1 also shows that fluids with n > 1 are dilatant fluids (shear thickening).  Such fluids 
are less common and often only display thickening effects over only a certain range of shear 
rates. Most shear-thickening fluids are suspensions, and generally don’t display consistent 
behavior over their entire shear stress range, often displaying pseudoplastic behavior at low shear 
rates, transitioning to dilatant behavior at higher shear rates. 
 

While it is a nice model for a number of non-Newtonian fluids, there are a couple of issues with 
the Ostwald-de Waele power law equation of Eq. 16.2. First, since the flow behavior index, n, is 
generally a fractional number, the equation only works for positive shear rates, since we cannot 
take a fractional power of a negative value.  This is often circumvented by assuming absolute 
values of strain rate.  However, for the examples shown in this chapter, coordinates and limits of 
integration are used that will yield positive shear rates.  
 

Secondly, the flow consistency index K for specific fluids has units that depend upon the value 
of n, to yield a shear stress that is in force per area.  As we point out above, the units of K will be 
SI units of  Pa sn.  Thus, the time units are unique to the respective value of n for a specific fluid.  
This is quite awkward, and makes effective comparisons of one fluid to another difficult, as we 
will see. 
 

Finally, if we define a relative shear viscosity for an Ostwald-de Waele fluid, we have: 
 

   
n n 1

app appK K 
          , 

 

where app is the apparent viscosity of a fluid.  For pseudoplastic fluids (n < 1), this apparent 

viscosity will become infinite as the shear rate approaches zero, which cannot physically happen. 
Other fluid models address this inconsistency, but generate expressions that are more 
complicated. 
 

Despite the limitations, the Ostwald-de Waele model does a nice job of approximating the 
characteristics of fluids that are both shear thinning (n < 1) and shear thickening (n >1).  

 

16.2.2 Ideal Bingham Plastic 
 

The equation for an ideal Bingham plastic fluid is a two-region model, and is referenced to the 
strain rate as: 
 

00 when          and        0 B 0when         (16.3) 
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Here 0  is termed the yield stress, and B  is the apparent viscosity once the material starts to 

flow as a fluid.  In regions where 0   , the material will not deform  0  , and simply remain 

static, or move in uniform motion as a solid. Values of 0  and B are also listed in Table 16.1 for 
a number of ideal Bingham Plastic materials. 
 
Notice that this section is titled “Ideal Bingham Plastic.”  As shown in Figure 16.1, an ideal 
Bingham Plastic deforms linearly, like a Newtonian fluid, after reaching the critical yield stress.  
In reality, Bingham fluids more often behave as pseudoplastics after reaching the yield stress.  
However, to make our subsequent example calculations easier, we will use the ideal plastic case. 
 
I must note that the properties listed in Table 1 come from a wide variety of sources, and may 
vary widely, depending on the constituency of the material, which is often vague.  For example, 
there are several listings for the properties of mayonnaise, which vary quite broadly, as do the 
listings for latex paint, the constituents of which may or may not be listed.  In addition, if you 
solve problem 22 at the end of this text, you will note a significant difference in the calculated 
properties depending on whether you use the listed power-law properties or the ideal Bingham 
plastic properties, which are from different sources and clearly different test materials, although 
both are listed as the same material (25% solids tomato paste). Also, note that the cited properties 
are often shear dependent (i.e. they may vary with the shear value of the material). Therefore, 
Table 1 should be taken as exemplary, but not definitive. 
 
16.3 Simple Non-Newtonian Flows: Couette and Poiseuille 
 
In Sections 16.4 and 16.5, we first examine the behavior of power-law and Bingham plastic 
fluids in two simple flow situations that we examined previously in Chapter 6 for Newtonian 
fluids: Couette and Poiseuille flows. Recall that these Newtonian flows were the simplest types 
of flows that we modeled, and resulted in relatively simple equations modeling the respective 
flow behaviors. Moreover, once the controlling parameters were specified (e.g. pressure 
gradients, pipe diameters, viscosity, etc.), the non-dimensional flow behavior was identical for 
any set of parameters (e.g.  the velocity profile for a Newtonian Poiseuille flow always has a 
parabolic shape).  However, as we will discover in this chapter, flows of non-Newtonian fluids 
can undergo quite different flow behaviors, depending on the magnitude of the controlling 
parameters and the type of non-Newtonian behavior.  
 
We will consider Couette and Poiseuille flows first in Cartesian coordinates for flows between 
parallel plates, then in cylindrical coordinates for flows between rotating, concentric cylinders 
and flows along circular ducts.  We will only consider fully-developed flows, which will 
simplify the analysis and reduce all flows to one-dimensional flows. However, to deal with non-
Newtonian flows we will have to step back from the conventional Navier-Stokes momentum 
equations, and consider the momentum equations in terms of stress terms, rather than the 
previous rate deformation equations shown in Section 5.8.  The governing momentum equations 
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in terms of stress terms are listed at the end of the chapter in section 16.8, for both Cartesian and 
cylindrical coordinates.  Which directional equation is used to assess a particular flow depends 
on the geometry and the direction of motion, as we will show in the following sections. 
 
16.4 Power Law Fluid Solutions 
 

The Ostwald-de Waele model was indicated in Eq. 16.2 as  
nK   , where   is the 

deformation rate.  However, the relationship of   to the fluid behavior will vary depending on 
the geometry and coordinates considered, and the flow orientation of interest.  The three model 
variations we will use here are: 
 
Non-Newtonian, Cartesian:   

x-direction only:  
n

yx app yx app
u uK
y y

    
         

    
,  and  

1n

app y
uK















  (16.4) 

Non-Newtonian, Cylindrical 

θ direction only:  
n

r app r app
v vr K r

r r r r
 

 

     
          

     
  

 

where 
1n

app r
v

r
rK

























  (16.5) 

 

z-direction only: 
n

z z
r z app r z app

v vK
r r

    
         

    
 

 

where  
1n

z
app r

vK














   (16.6) 

 

In the above equations, app  is the apparent viscosity relative to the linear deformation rate  . 

 
16.4.1 Parallel Plate Flows 

 
For fully-developed Couette and Poiseuille flows between infinite parallel flat plates, there is no 
motion in the lateral directions, but only in the streamwise, x-direction. The governing equations 
reduce to the x-direction momentum equation (Eq. 16.122b) 
 





















































zyx
1g

x
p1

z
uw

y
uv

x
uu

t
u zxyxxx

x  (16.7) 

 

Simplifying Eq.16.7 for steady, fully-developed flow in the x-direction only, we get: 
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yxdp 0
x dy


  


    where 
n

yx
uK
y

 
   

 
 

Thus, for power-law flows between parallel plates, the governing equation is: 
 

n
d du pK
dy dy x

   
  
   

 (16.8) 

Equation 16.8 applies for both a Couette flow p 0
x
 

 
 

, and a Poiseuille flow p constant
x
 

 
 

.  

The velocity behavior for these flows is derived in the following Sections 16.4.1.1 and 16.4.1.2 
respectively. 
 

16.4.1.1 Couette Flow between Parallel Plates 
 
Using the coordinate system in figure 16.2, we have boundary conditions of u = 0 at y = 0, and  
u = U at y = h, where we consider a moving upper plate and a fixed lower plate. 
 

 
 
  
 

Figure 16.2 Couette flow between a lower stationary plate and an upper moving plate. 
 
Since there is no pressure gradient for a Couette flow (see the detailed discussion of this in 
section 6.3.1), Eq. 16.8 reduces to: 
 

n
d duK 0
dy dy

  
  

   

 (16.9) 

 

Integrating Eq. 16.9 once we have: 
 

1
n

1Cdu
dy K

 
  
 

 

 

Integrating again: 
 

2

n
1

1 Cy
K
Cu 








  

 

Applying the boundary condition u = 0 at y = 0, gives:  

y 

x 
h 

U 
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  0CC0
K
C0 22

n
1

1 







  

y
K
Cu

n
1

1 







  

 

And applying the second boundary condition u = U at y = h: 
 

n

1

n
1

1

h
UKCh

K
CU 

















  

Thus, 
1

n n
1
n

1

UK
C Uyhu y y
K K h

  
  

       
  
 
 

 (16.10) 

 

Equation 16.10 is the same result we determined for a Newtonian fluid in Section 6.3.1, Eq. 6.8, 
despite the non-linear relationship of shear stress to deformation rate for a power-law fluid.  To 
examine this non-intuitive result, consider the shear stress distribution. 
 
The shear stress is given by Eq.16.4 as: 
 

n

yx
duK
dy

 
   

 
 

Differentiating Eq. 16.10, gives:  du U
dy h

 . 

Thus,  
n

yx
UK constant
h

 
   

 
 (16.11) 

 

So, for a given plate gap, h, and plate velocity, U, the shear stress, Eq. 16.11, is constant across 
the gap (the same as for a Newtonian fluid). Since the shear stress is constant, the deformation 
rate,  , will also be constant, and thus the velocity profile must be linear.  However, note that the 
shear stress does not change linearly with variations in the plate velocity or the gap width, as it 
does for a Newtonian fluid. 
 
It would be nice if all our other examples were so straightforward.  However, as you will see in 
Section 16.4.2.1, Couette flow between rotating, concentric cylinders can get quite messy. 
 
 

U 
y 

x 
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16.4.1.2 Poiseuille Flow between Parallel Plates 
 
It might first seem that we should treat this solution the same way we did a Newtonian flow in 
Section 6.3.2, where we located the origin on the lower plate.  However, since the integration 
process here deals with values of n that are generally non-integer, this creates problems with the 
integration process, and in developing velocity equations that can be displayed effectively. 
Since the flow will be symmetric about the midplane between the plates, it is the most effective 
to locate the coordinate system with the origin on the midplane between the two plates, as shown 
in figure 16.3.  This allows the assessment of the flow in the upper half of the gap, recognizing 
that the flow in the lower half of the gap will be a mirror reflection.  Using this coordinate 

system, the boundary conditions for the upper half of the flow are 0
y
u




  at y = 0 (assuming 

flow symmetry), and u = 0 at hy
2

 . 

 

 
Figure 16.3 Poiseuille flow between parallel flat plates, power-law fluid. 

 

For a Poiseuille flow, p constant
x





(as was shown in section 6.3.2), and the governing equation 

from section 16.4.1 is Eq. 16.8 
 

n
d du pK constant
dy dy x

   
   
   

, 

 with boundary conditions u = 0 at hy
2

 , and du 0
dy

 at y = 0. 

Integrating once gives: 
 

n

1
du pK y C
dy x

  
  
 

 

Applying boundary condition du 0
dy

 at y = 0: 

  1 1
p0 0 C C 0
x


   


 

Thus,  

y 

x 

Decreasing pressure,  

h/2 
h 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 16 
 

 540 

n
du pK y
dy x

  
 
 

 

or 
1
ndu 1 p y

dy K x
 

  
 

 

 

Integrating gives: 
 

1
n 1n
n

2
n 1 pu y C

n 1 K x


  

   
   

 

Applying the second boundary condition, u = 0 at hy
2

 . 

1 n 1 1 n 1
n n n n

2 2
n 1 p h n 1 p hu C 0 C

n 1 K x 2 n 1 2K x 2

 

          
              

            
 

Thus, 
1 n 1
n nn h p h 2yu 1

n 1 2K x 2 h

 
              

        
 

 

Defining 
h
y2y * , and designating  nu u n , since the u velocity profile will be a function of 

n, we have: 

 

1
n 1n
n

n
n h p hu y* 1

n 1 2K x 2

      
              

 (16.12) 

 

At  y* = 0    n n,max n,CLu u u  , so from Eq. 16.12 we have: 
 

1
n

n,CL
n h p hu

n 1 2K x 2
    

     
     

 (16.13) 

 

Note in Eqs. 16.12 and 16.13, that the pressure gradient, p
x



, must be positive to allow 

calculation to the power of 1
n

, which makes nu  and n,CLu negative velocities (like a Newtonian 

fluid, a positive pressure gradient yields a negative velocity).  However, we can deal with 

positive behavior by defining n
n

n,CL

uu *
u

 .  Thus, dividing Eq. 16.12 by 16.13 gives:  

 
n 1

n n
n

n,CL

uu * 1 y*
u



    (16.14) 
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Equation 16.14 gives the non-dimensional velocity variation relative to the maximum centerline 
velocity as a function of n, the flow behavior index.  A graph of Eq. 16.14 is shown for a series 
of n values in figure 16.4(a). 
 

 
(a) (b) 
  

Figure 16.4 Power law velocity profiles for Poiseuille flow between parallel flat plates.   
(a) Normalized on the centerline velocity of each respective n value fluid;  
(b) Normalized on Newtonian centerline velocity; constant volume flowrate. 

 
A limitation of  Eq. 16.14 is that it does not allow a comparison of the relative velocity behavior 
of a power law fluid to that of a Newtonian fluid, since the K and n values will not be consistent.  
However, there is a way to do this for flows at equal volume flow rates. 
 
We calculate the volume flowrate per unit depth, Q, in the upper half of the gap by integrating 

the velocity from y = 0 to hy
2

 (note that the total flowrate between plates would be twice Q): 

 

hy y* 1 y* 12 n 1
n

n n,CL n n,CL
0 0 0

h hQ u dy u u* dy* u 1 y* dy*
2 2


   

    
 

    

n,CL n,CL
h n h n 1Q u 1 u
2 2n 1 2 2n 1
     

      
     

 

 

Substituting for CLu from Eq. 16.13 
 

1
2nn h p hQ

2n 1 2K x 4
  

   
   

 (16.15) 
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Notice that the parameter 
1
nh p h

2K x 2
 

 
 

 in Eq. 16.15 is also common to the same parameter in 

the velocity equation, Eq. 16.12.  Solving for this parameter from Eq. 16.15 gives:  
 

1
nh p h Q

h n2K x 2
2 2n 1

  
 

   
 

 

 (16.16) 

 

Substituting Eq. 16.16 into Eq. 16.12, we have: 
 

 
n 1
n

n
2Q 2n 1u 1 y*
h n 1

   
       

 (16.17) 

 

Using Eq. 16.17, we can now do a comparison of the velocity behavior for both pseudoplastic  
(n < 1) and dilatant (n > 1) fluids to a Newtonian fluid (n = 1) at the same volume flowrates. 
 

Note that for Newtonian flows, n = 1: 
 

 
2

Newt
3Qu 1 y*
h
  
 

, 

with the maximum Newtonian velocity at the centerline, y* = 0: 
 

Newt, CL
3Qu
h

  (16.18) 

Dividing Eq. 16.17 by Eq.16.18, we calculate n
n,rel

Newt, CL

uu *
u

 , the comparative velocity 

profiles, for the same flowrate, Q, through a channel of width h as: 
 

 
n 1

n n
n,rel

Newt, CL

u 2 2n 1u* 1 y*
u 3 n 1

   
        

 (16.19) 

 

Figure 16.4(b) shows comparative velocity profiles, n,relu * , Eq. 16.19, for a series of n values. 

 
Figure 16.4 illustrates the comparative effect of the fluid behavior index, n, on the velocity 
behavior relative to a Newtonian fluid (n = 1). Note in figure 16.4(a) that shear-thinning 
pseudoplastics (n < 1) have flatter profiles, while shear-thickening dilatants (n > 1) have a more 
peaked profile. Figure 16.4(b), for equivalent flowrates, Q, shows that the centerline velocities 
for pseudoplastics will be less than Newtonian, and dilatants in excess of Newtonian.  What is of 
real interest for pseudoplastics is that for smaller n values (n  0.5 or less) the behavior is similar 
to that of a Bingham plastic, which we consider in Section 16.5.2.2, and discuss in detail in 
Section 16.6. 
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What we can’t show is the general effect a power law fluid has on the pressure gradient.  We 
might consider a relationship derived from Eq. 16.16.  Solving Eq. 16.16 for the pressure 
gradient in terms of Q and other parameters, we have: 
 

n

2

p 2K 2Q
nx h h

2n 1

 
  
 

   
    

 (16.20) 

As Eq. 16.20 shows, if Q is assumed positive, we can’t determine a value of p
x



.  However, if 

we assume Q is negative (i.e. flowing right to left in figure 16.3), or just assume a positive value 

of the numerator, a positive value of p
x



 can be determined. However, since the K values of 

power-law fluids have differing units (depending on n), the only way to determine relative 
pressure gradients is to calculate them individually for specific fluid properties. 
 

16.4.2 Flows with Circular Symmetry 
 
In this section, we address Couette flow and Poiseuille flow of a power-law fluid in geometries 
of radial symmetry.  Again, these flows will reduce to one-dimensional, fully-developed flows 
with no lateral cross flow.  However, although each of these flows is a function of radius only, 
the governing momentum equation, and consequent velocity, for each of these two flows will be 
different.  The Couette flow will depend on the azimuthal (θ) direction equation and yield
v f (r)  , whereas the Poiseuille flow will depend on the axial (z) direction equation and yield

zv f (r) .  They will also depend on different constitutive equations for the shear stress, as was 
indicated in Section 16.4. 
 

16.4.2.1 Couette Flow between Concentric, Rotating Cylinders 
 
 
 
 
 
 
 
 

Figure 16.5 Geometry for Couette flow between concentric rotating cylinders 
 
As shown in Section 6.4.2, the governing equation for this type of cylindrical flow reduces to the 
θ-direction momentum equation, 16.123c of Section 16.7.3.  

Vi 
r 

 
Ri 

Ro 

Vo 
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 (16.123c) 

 

Since this is a steady, fully-developed flow, the velocity field is given by v f (r)  , and Eq. 
16.123c reduces to: 
 

 2
r

p 1 d0 r
r dr 


   


, (16.21) 

 

where the power-law shear stress is given by Eq. 16.5: 
 

n

r
vdK r

dr r




  
    

  
  

We showed in section 6.3.1 that 0p




  for Couette flows, so Eq. 16.21 reduces to: 

 2
r

d r 0
dr    

 

Integrating and substituting from Eq. 16.5 for the shear stress: 
 

n
1

r 2

v CdK r
dr r r




  
    

  
 

or 
11 1
nn n

1
22 2 1
n

v Cd 1 1
dr r r Kr r r r





      
     

   
        where   

K
C1  

Integrating again: 
 

1
n

22 1
n

nv C r
2r




    (16.22) 

 

Equation 16.22 is a general solution, requiring boundary conditions at Ro and Ri to solve for the 
integration constants  and C2.  In Section 6.4.2 we performed a general solution given 
independent rotations of both cylinders.  However, in this case the mathematical manipulation 
would be quite messy, so here we will examine two simpler cases:  
 

(a) Rotation of the outer cylinder with the inner cylinder stationary, and  

(b) Rotation of the inner cylinder with the outer cylinder stationary.  
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Boundary Conditions (a): Outer cylinder rotating at velocity Vo, Inner cylinder fixed 
 
Here the boundary conditions are: 
 

(1)  oo RratVv  ,     and      (2) iRrat0v   
 

Applying boundary condition oo RratVv   to Eq. 16.22 gives: 
 

1
n

o 2 o2 1
n

o

nV C R
2R



          (16.23) 

Applying boundary condition iRrat0v   to Eq. 16.22:    
     

1 1
n n

2 i 22 21
n n

i i

n n0 C R C
2R 2R



       

 

Substituting for C2 in Eq. 16.23 yields:  
 

1 1
n n

o
o o 2 2

n n
o i

o 2 2
n n

o i

Vn 1 1 nV R
2 2R R 1 1R

R R

    
          

          
      

 
 
 

 

Substituting C2, and 

















2
n n

1

back into Eq. 16.22, and simplifying gives 
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n
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in
n2

n
2

in
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o

o
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1
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1

R
R1

R

R

rV

R

r
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1

R

1

R

1R
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2 2
o n n

o o o
2 22
n nn

io

i

rV
R R Rv

r RR1
R



 
  

    
           

  
 

 (16.24) 

 

Defining 
oR

rr *  and 
o

i
i R

Rr * , and substituting into Eq. 16.24 we get: 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 16 
 

 546 

 

     

   

 

2 2
n n

o io
2 2 2 n2 2
n n nn ni i

i

V r * r * r *V1 1v
r * r * r *r * 111

r *

 

   
     

                    
  

 

 

 

Rearranging terms gives: 
 

2
n

i

o 2
n

i

r *1
r *v V r *

1 r *


 
        

 
 
 

 

Defining a non-dimensional velocity as 
o

vv *
V


  , our final expression is:  

2
n

i

2
o n

i

r *1
v r *v * r *
V 1 r *




 
    

     
 
 
 

 (16.25) 

 

An alternative way of writing Eq. 16.25, which is often cited, is to let i oR aR  where 

i
i

o

Rr * a 1
R

   , and or * 1  then 

2
n

2
n

a1
r *v * r *

1 a


 
        

 
 
 

 16.26 

 

Note that Eq. 16.5 gives the shear stress as (after a little work): 
 

n

o
n 2

o
r 2

n

2V
v nR aK r K

r r r *
1 a




 
 

                    
  

   

 (16.27) 

 

Using Eq. 16.27, we calculate the torque on any surface between ir * a and or * 1  as: 
 

   2 2
r r oT 2 Lr (r) 2 LR r *         where L is the length of the cylinders 
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n

o

2 2 o
o 2

n

2V
nRT 2 R a LK

1 a

 
 
  
  

  
   

 (16.28) 

 

Eq. 16.28 indicates that for a given Vo, Ro, and a, the torque for a given power law fluid is 
constant across the circular gap, and is not a function of the radius.  Physically, this is as it 
should be since if the torque varied, there would be an acceleration of fluid layers relative to one 
another, which would violate the premise of a steady-state flow.  Note that constant torque across 
a Couette flow between concentric cylinders will hold true regardless of the type of fluid within 
the cylinders. This constancy of torque will prove very helpful in Section 16.5.2.1 where we 
derive the behavior of a Couette flow for a Bingham plastic fluid. 
 
Boundary Conditions (b): Inner cylinder rotating at velocity Vi, Outer cylinder fixed 
 
Here the boundary conditions are reversed, with: 
 

(1) ov 0 at r R         and       (2) i iv V at r R    
 

The integrated equation is again Eq. 16.22: 
 

1
n

22 n
n

nv C r
2r

 
   ,     where  

K
C1  

 

Boundary condition ov 0 at r R    gives:  
 

1 1
n n

2 o 22 n 2
n n

o o

n n0 C R C
2R 2R


             

 

And boundary condition i iv V at r R    gives:        
 

i2
n

n2

i

n
1

i RC
R2

nV 


 (16.29) 

 

Substituting C2 into Eq. 16.29 and rearranging gives: 
 

1
n

i

i 2 2
n n

i o

Vn
2

1 1R
R R
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Substituting into Eq. 16.22 for C2 and 

















2
n n

1

, and simplifying gives: 

2 2
i n n

o o o
2 22
n nn

ooi

o i

rV
R R Rv

r RRR 1
R R



 
  

    
              

   
 

 

Again defining 
oR

rr *  and 
o

i
i R

Rr * , substituting and rearranging gives: 

 

2
2n

i n
i

i 2
in

i

r * r *
r *r *v V
r *1 r *



 
       

 
 
 

 

With a non-dimensional velocity in terms of Vi as 
i

vv *
V


   , our final expression is:  

 

2
2n

i n
i

2
i in

i

r * r *
v r *r *v *
V r *1 r *




 
        

 
 
 

 (16.30) 

Again, an alternative way of writing Eq. 16.30, is to let i oR aR , where i
i

o

Rr * a 1
R

   , and 

or * 1  giving: 
 

2
2n
n

2
i n

a a
v r *r *v *
V a1 a




 
        

 
 
 

 (16.31) 

 

Figure 16.6 is a graph showing the comparative behavior of: (a) only the outer cylinder rotating 
(Eq. 16.25) and; (b) only the inner cylinder rotating (Eq. 16.30).  The material behavior for 
three different inner cylinder radii, ir * 0.2, 0.5, and 0.8 , and for a series of flow behavior 
indices, n, from 0.2 (shear thinning) to 4 (shear thickening).  The behavior of a Newtonian 
fluid, n = 1, is shown for comparison. The cross-hatched bar on each figure represents the inner 
cylinder wall. 
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Figure 16.6 Power-law Couette flow between concentric, rotating cylinders.   

(a) Outer cylinder velocity = Vo, inner cylinder fixed, ir *  =  0.2, 0.5, 0.8  

(b) Outer cylinder fixed, inner cylinder velocity = Vi, ir *  = 0.2, 0.5, 0.8 
n = 0.2 and 0.5 are shear thinning; n = 2 and 4 are shear thickening. 
 

(a)  (b) 
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Figure 16.6(a) for the rotating outer cylinder is pretty much as one would assume. As Eq.16.27 
indicates, the highest shear stress occurs at the inner wall.  For n < 1, shear-thinning fluids, the 

fluid will be less viscous near the inner wall, and thus the velocity gradient, dv *
dr
 , will be 

larger, and the velocity profiles will lie above the Newtonian, as shown.  For n > 1, shear-
thickening fluids, the fluid will more viscous near the inner wall, with correspondingly lower 
velocity gradients, with velocity profiles that lag the Newtonian. 
 
Figure 16.6(b) for the rotating inner cylinder shows that the velocity profile behavior is 
reversed from figure 16.6(a).  Since the shear-thinning fluids are less viscous near the inner 
surface, they again have correspondingly larger velocity gradients. However, since the inner 
cylinder it rotating, the lower viscosity results in the velocity near the inner wall lagging 
Newtonian behavior, yielding velocity profiles that also lag the Newtonian.  The shear 
thickening fluids are again more viscous near the inner surface due to higher shear stress, with 
this more viscous region “pulling” the fluid ahead of the Newtonian behavior.  This is most 
clearly shown for ir * 0.2 and 0.5 , with the respective velocity profiles leading the comparable 
Newtonian profile.   
 
However, note that for the rotating inner cylinder with ir * 0.2  and n = 4 (figure 16.6(b), top-

right), v * exceeds 1 at r* = 0.25.  This is unusual, since this implies that the fluid will move 
faster than the wall rotation!  The most likely explanation is that it is a failure of the power-law 
model.  Remember, back in sections 16.1.2 and 16.2.1 we mentioned that most shear 
thickening fluids often don’t display consistent behavior over the entire shear stress range. 
Therefore, some relaxation of the shear thickening behavior at the high stress end could change 
this apparent unusual behavior.  However, if the model holds, let’s consider if such behavior is 
physically possible, and why. 

 
Figure 16.7 shows a comparison of profiles of the velocity, v * ,  and the corresponding velocity 

gradient, dv */dr* , for inner cylinder radii ir *  =  0.5 and 0.2.  Note that adjacent to the inner 
cylinder wall, the gradients for the shear thinning fluids are strongly negative.  However, the 
gradients for the shear thickening fluids, are only weakly negative, and less so near the inner 
cylinder wall. In addition, the velocity gradient for the case of ir * 0.2  and n = 4 becomes 

positive for r* < 0.25, indicating that there is a maximum at r* = 0.25, where iv * V  .  If one 
examines the relative magnitude of the shear stress across the fluid layer for n = 4, the ratio of 

the shear stresses from the inner wall to the outer wall are inner

outer

4



 for ir * 0.5 , but inner

outer

25




for ir * 0.2 .  Therefore, it appears that the much greater shear stress differential due to shear 
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thickening for the smaller inner radius would cause the fluid layers closely adjacent to the inner 
wall to move in a somewhat solid body manner, which produces the iv * V   anomaly.   
 

 
Figure 16.7 Comparative power law Couette flows with rotating inner cylinder = Vi.   

(a) Velocity profiles, v * vs. r*  for ir *  =  0.5 and 0.2. 

(b) Corresponding velocity gradients, dv */dr* vs. r*  for ir *  =  0.5 and 0.2. 
n = 0.2 and 0.5 are shear thinning; n = 2 and 4 are shear thickening. 

 
This same process, although not as accentuated for ir * 0.5 and 0.8  in figure 16.6b is also what 
produces velocity profiles in excess of a Newtonian fluid as the higher shear inner region fluid 
pulls along the lower shear outer region fluid. 
 
To explore this anomaly a bit more, note that the derivative of the velocity from Eq. 16.31 is: 

(a)  (b) 
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2
2n
n

2
n

n 2 a a
dv * 1 n r *
dr * a 1 a



 
          

 
 
 

 (16.32) 

 

Setting Eq. 16.32 to zero, and solving for r*, we have: 
 

n
2

max
n 2r* r *

n
 

  
 

 (16.33) 

 

Eq. 16.33 gives the location where v * will be a maximum, according to Eq. 16.31.  Note that 

for values of n < 2, there is no solution for maxr* .  For n  > 2, there is a solution, but the solutions 

only become relevant when max ir* r * .  Note that for ir * 0.2 , maxr* 0.25 , which what is 
observed in figure 16.6b and 16.7.   
 
Having made this observation, I must remind the reader that this is most likely an anomaly of the 
power-law assumption, which may not hold at high shear rates.  This also should only occur for 
n values greater than 2, which are not all that common. 
 

16.4.2.2 Poiseuille Flow in a Circular Duct 

 
 

Figure 16.8 Geometry for Poiseuille flow of a power-law fluid in a circular duct 
 
For a fully-developed Poiseuille flows in a circular duct, as shown in figure 16.8, there is no 
motion in the r and θ-directions, but only in the streamwise z-direction, and the governing 
equations reduce to the z-direction momentum equation (Eq. 16.123d of Section 16.7.3): 
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 (16.123d) 

 

Since this is a steady, fully-developed flow, the velocity field is given by zv f (r) , and  

r 

z 
 

Decreasing pressure,  

R 
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Eq. 16.123d reduces to:  
 

 rz
p 1 d r 0
z r dr


   


 (16.34) 

For a Poiseuille flow, p constant
z





(as shown in section 6.4.1), which allows Eq. 16.34 to be 

rewritten as: 
 

 rz
d pr r
dr z


 


 (16.35) 

 

Integrating Eq. 16.35, and equating it to the power-law shear stress from Section 16.4, Eq. 16.6, 
gives: 

n n 2
1 z z

rz 1
C dv dvp r p rK C Kr

z 2 r dr dr z 2
    

         
    

 

One boundary condition will be symmetry at the centerline of the tube, 0rz  , so zdv 0
dr

  at r = 0, 

which renders C1 = 0, and: 
 

n
zdv p rK

dr z 2
 

 
 

 

 

Solving for zdv
dr

: 

1
n

zdv r p
dr 2K z

 
  

 
 

 

Integrating again, 
 

1
n 1n
n

z 2
n 1 pv r C

n 1 2K z


 

  
  

 

 

The second boundary condition is 0vz   at r = R,  
 

1 1
n 1 n 1n n
n n

2 2
n 1 p n 1 p0 R C C R

n 1 2K z n 1 2K z

 
    

       
      

 

 

Thus, vz becomes: 
 

n 1 1 n 1
n n n

z
nR 1 p rv 1
n 1 2K z R

  
        

     
 

 (16.36) 
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Defining 
R
rr * , and designating  z,n zv v n , since zv  will be a function of n, we have: 

1
n 1n
n

z,n
nR R pv r * 1

n 1 2K z

  
   

    
 (16.37a) 

 

From Eq. 16.37a at r* = 0    z,n z,n,max z,n,CLv v v  : 
 

1
n

z,n,CL
nR R pv

n 1 2K z
 

   
  

 (16.37b) 

As I pointed out in Section 16.4.1.2, the pressure gradient, p
z



, must be positive to allow the 

calculation to the power of  1
n

, which makes z,nv  and z,n,CLv  negative velocities.  We again deal 

with this by defining z,n
z,n

z,n,CL

v
v *

v
   

 

n 1
z,n n

z n
z,n,CL

v
v * 1 r *

v

 
   

 
 (16.38) 

 

We obtain the shear stress by differentiating Eq. 16.36 and substituting into Eq. 16.6: 
 

1
n 1 n1 1
n n n

z
n 1
n

n 1 r
dv nR 1 p r pn
dr n 1 2K z 2K zR





 
          

     
 

 

Thus, Eq. 16.6 gives: 
 

n
z

rz
dv r p p rK K
dr 2K z z 2

    
     

   
 

 

At the tube wall, r = R, the shear stress is: 
 

rz,wall
p R
z 2


 


 
 

So, the wall shear stress is only a function of the tube radius and the applied pressure gradient.  
This is the same result we obtained in section 6.4.1, Eq. 6.64, for a Newtonian fluid. Thus, this 
same relationship also applies for a non-Newtonian fluid at r = R.  
 
Like a Poiseuille flow between flat plates, Section 16.4.1.2, we cannot compare the relative 
velocities for different n values based on Eqs. 16.36 or 16.37a due to the functionality of the 
power law.  However, we can again compare different power-law fluids at the same volume 
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flowrate, Q, like I did in section 16.4.1.2.   We determine the flowrate by integrating Eq. 16.36 
(substituting for vz, CL) for 0 r R  : 
 

 

r R3n 1n 1
r R r R 2 nn

z z,n,CL z,n,CL n 1
r 0 r 0 n

r 0

r r n rQ v 2 rdr 2 v 1 rdr 2 v
R 2 3n 1 R




 



 



  
                 

    

   

 

 2
z,n,CL

n 1Q R v
3n 1
 

  
 

 (16.39) 

 

Note that for a Newtonian fluid (n = 1), that: 
 

 2
Newt z,CL

1Q R v
2

   
 

This is the same relationship of flowrate to z,CLv that we determined in Chapter 6 (section 6.41, 

Eqn. 6.62). 
 
To allow a comparison between different power law fluids, we will use the above relationships 
for velocity and flowrate to show how a particular power law fluid behaves relative to a 
Newtonian behavior.   
 
Substituting Eq.16.37b into Eq. 16.39, we have: 
 

 
1
n2n R pQ R R

3n 1 2K z
   

     
    

 (16.40) 

 

Notice that the parameter 
1
nR pR

2K z
 

 
 

 in Eq. 16.40 is also common to the same parameter in the 

velocity equation, Eq. 16.37a.  Solving for that parameter from Eq. 16.40 gives:  
 

 

1
n

2

R p QR
n2K z R

3n 1

  
 

     
 

 

  

Substituting into Eq. 16.37a for vz,n, gives: 
 

 

n 1 n 1
n n

z,n 2
2

n Q Q 3n 1v r * 1 1 r *
nn 1 R n 1R

3n 1

        
         

          
 

 (16.41) 

 

Using Eq. 16.41, we can now do a comparison of the velocity behavior for both pseudoplastic  
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(n < 1) and dilatant (n > 1) fluids to a Newtonian fluid (n = 1) at the same volume flowrates. 
For a Newtonian flow, n = 1: 
 

2
z, Newt 2

2Qv 1 r *
R

   
 

  

On the centerline, r* = 0, we have the maximum Newtonian velocity: 
 

z, Newt, CL 2

2Qv
R




 (16.42) 
 

This expression is, of course, identical to the relationship we determined in Section 6.4.1,  
Eq. 6.62. 

Dividing Eq. 16.41 by Eq.16.42, we calculate z,n
z n,rel

z,Newt, CL

v
v *

v
 , the comparative velocity 

profiles, for the same flowrate, Q, through a circular duct of radius R as: 
 
 

n 1
z, n n

z n,rel
z, Newt,CL

v 1 3n 1v * 1 r*
v 2 n 1

  
    

   
 (16.43) 

 

Figure 16.8 shows the comparative effect of the fluid behavior index, n, on the velocity behavior 
relative to a Newtonian fluid (n = 1).  Figure 16.8(a) is plots of Eq. 16.38, with each n value 
velocity profile normalized on its maximum centerline value. Figure 16.8(b) is plots of Eq. 
16.43, with each n value velocity profile normalized on the Newtonian centerline velocity for the 
same flowrate.  Like the Poiseuille flows between parallel plates examined in Section 16.4.1.2, 
figure 16.8(a) shows that shear-thinning pseudoplastics (n < 1) display much flatter profiles than 
a Newtonian flow, while shear-thickening dilatants (n > 1) display more peaked profiles. For 
equivalent flowrates, Q, figure 16.8(b) shows that the centerline velocities for pseudoplastics will 
lag a Newtonian fluid, and dilatants will exceed a Newtonian fluid.  Moreover, as I commented 
on in Section 16.4.1.2 on parallel flat plate flows, the velocity behavior for smaller n values (n  
0.5 or less) often appears similar to that of a Bingham plastic. 
 
A comparison of figure 16.8 with the similar profiles from figure 16.4 show that figures 16.8a 
and 16.4a are identical, since they are both are functionally the same.  The relative velocity 
profiles of figures 16.8b and 16.4b, normalized on the Newtonian centerline velocity, are similar, 
but show a wider spread in the various n-profiles.  This is due to a more significant difference of 
the centerline velocity relative to the average velocity for Poiseuille circular duct flows than for 
Poiseuille parallel plate flows; a result of the radial symmetry of the duct flows. 
 
Again, like in section 16.4.1.2, because of the differing units of the K parameters we can’t make 

a relative comparison of p
z



 for different power law fluids without calculating the values for 

each specific fluid.   
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(a) (b) 

  
Figure 16.8 Power law velocity profiles for Poiseuille flow in a cylindrical duct.  
  (a) Normalized on the centerline velocity of each respective n value fluid;  

(b) Normalized on Newtonian fluid centerline velocity for Q = constant. 
 

 
16.5 Ideal Bingham Plastic Solutions 
 
An ideal Bingham Plastic, as modeled by Eq. 16.3, requires that a critical stress, termed the yield 
stress, be reached before the material will start to flow as a fluid.  Prior to reaching that yield 
stress, the material will act as a solid, and remain fixed, or move in unison with the surrounding 
material.  Thus, an ideal Bingham Plastic is modeled by a two-region equation.  As was indicated 
in Eq. 16.3, the two regions are generically related to the strain rate as: 
 

00 when     , and 
 

 0 B 0when         (16.3) 
 

Here   is the generic strain rate, 0  is the yield shear stress, and B  is the apparent viscosity 
when the material flows as a fluid. The three particular model variations we will use in this 
section are: 
 
 

Non-Newtonian, Cartesian  

x-direction only:     yx
u 0
y


  


,          when 0yx    (assuming 0 >0) (16.44a) 

 and yx B 0
u
y

 
     

 
,   when 0yx   (16.44b) 
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Non-Newtonian, Cylindrical 

θ direction only:   r
v vr 0 0

r r r r
 



    
       

    
,  when 0r    (16.45a) 

 

 and r B 0
vr

r r




   
      

   
 ,  when 0r    (16.45b) 

  

z-direction only:  z z
rz

v v0 0
r r

  
     

  
,  when 0rz   (16.46a) 

 

 and z
rz B o

v
r

 
     

 
 ,  when 0rz   (16.46b) 

 
16.5.1 Parallel Plate Flows 

 

For fully-developed Couette and Poiseuille flows between infinite parallel flat plates, there is no 
motion in the lateral directions, but only in the streamwise direction, and (like Section 16.4.1) the 
governing equations again reduce to the x-direction momentum equation (Eq. 16.122b of Section 
16.7.2). 
 





















































zyx
1g

x
p1

z
uw

y
uv

x
uu

t
u zxyxxx

x  (16.122b) 

 

Again, for steady, fully-developed flow in x-direction, Eq. 16.122b simplifies to: 
 

yxd p
dy x
 




  (16.47) 

 
16.5.1.1 Couette Flow between Parallel Plates 

 

Using the coordinate system shown in figure 16.9, we again specify boundary conditions of u = 0 
at y = 0, and u = U at y = h. 
 

 
 
  
 

Figure 16.9 Couette flow between a lower stationary plate and an upper moving plate. 
 

Since there is no pressure gradient for a Couette flow (see the detailed discussion of this in 
section 6.3.1), Eq. 16.47 further reduces to: 
 

yxd p 0
dy x
 

 


 (16.48) 

y 

x 
h 

U 
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Integrating Eq. 16.48 once: 
 

1yx C  
 

Now if 0yx   (assuming 0 > 0), 0yx τconstantτ  , and thus Eq. 16.44a applies: 
 

2
du 0 u C
dy

    
 

But since u = 0 at y 0 , then u = 0 across the entire gap when 0yx   for 0 y h  . 

 
Note that when 0yx   across the entire gap, the upper plate cannot move.  So, the boundary 
condition of u = U at y = h cannot be met, and u = 0 across the entire channel, and the material 
remains fixed until yx 0   . 

When yx 0   , Eq. 16.44b applies, yx B 0
du
dy

 
     

 
.  So, integrating Eq.16.48 again, and 

equating yx  to Eq. 16.44b: 
 

yx B 0 1
du C
dy

 
      

 
 

 

Rearranging, 
 

 1 0
B

du 1 C
dy

  


 (16.49) 

 

Integrating Eq. 16.49, 
 

 1 0 2
B

1u C y C   


 (16.50) 

 

Applying the boundary conditions that u = 0 at y = 0, and u = U at y = h: 
 

 1 0 2 2
B

10 C 0 C C 0     


 

 1 0
B

1U C h  


 

B
1 0

UC
h


    

 

Substituting C1 and C2 back into Eq. 16.50:  
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B
0 0

B

U1u y
h

 
     
  

 

 

h
Uyu   (16.51) 

 

Thus, as Eq.16.51 shows, the velocity profile is again linear across the gap between the plates, 
which is the same as for a Newtonian flow and for a power-law fluid, as shown in Section 
6.4.1.1, Eq. 16.10.  Note that the shear stress across the gap is: 
 

B
yx B 0 0

Udu constant
dy h

  
         

 
 

 

Thus, the shear stress across the gap is constant, as is the strain rate.  Therefore, in parallel plate 
Couette flow of an indeal Bingham plastic, the material will remain static until the yield shear 
stress is reached, and then all the material will begin to flow with a linear velocity profile, with a 
constant shear stress across the material.  This process is approximated by “spreading” a material 
like mayonaise or other stiff food product on bread. The knife acts as the moving plate, and the 
bread as the fixed plate. 
 

16.5.1.2 Poiseuille Flow between Parallel Plates 
 

 
 
 
 

 
 

 
 

Figure 16.10 Poiseuille flow between parallel flat plates, ideal Bingham plastic. 
 

Similar to how we approached the solution for a power law fluid in Section 16.4.1.2, here we 
again employ a coordinate system with the origin located on the midplane of the channel, and 
again recognize that the velocity profile will be symmetric about the midplane, as shown in figure 
16.10. Employing this midplane coordinate system, the boundary conditions for the flow in the 

upper half of the flow are 0
u 0 for 0 y y
y


  


 (the central plug flow), and u = 0 at 
2
hy  .  I 

discuss how we establish the first boundary condition below. 
 

For a Poiseuille flow, p constant
x





(as shown in section 6.3.2).  Thus, we rearrange Eq. 16.47 

to integrate for the shear stress. 
 

h 
h/2 y0 

Decreasing pressure,  

y 

x 

U 
y 

x 
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yxd p
dy x
 




 = constant    (16.52) 

 

Integrating Eq. 16.52 once gives: 
 

1yx Cy
x
p





  (16.53) 

Note that Eq.16.53 indicates that the shear stress will vary linearly (since p constant
x





) , with 

the highest shear at the plate surface, and decreasing linearly toward the midplane. When the 

shear on the upper plate (
2
hy  ) exceeds the yield shear stress h 0yx,y

2

i.e.


 
   

 
, the fluid 

adjacent to the wall will behave as a fluid, as long as yx 0   .  However, Eq. 16.53 indicates the 

shear stress within the fluid region decreases as we move toward the midplane. Potentially, we 
will reach a location within the material where 0yx  (assuming 0 > 0) and fluid behavior will 

cease. Since we don’t know where that location is, we arbitrarily designate that location as the 

yield location, 0 0
hy , where 0 y
2

  , which I show as a red dotted line in Figure 16.10.  Within 

the region adjacent to the wall, 0
hy y
2

  , we assume that yx 0   , so the material will behave 

as a fluid.  However, within the region adjacent to the midplane ( 00 y y  , yx 0   ) the 
material will behave as solid.  In this latter region, the pressure gradient will cause the material to 
move as a solid plug flow, with the material moving at a constant velocity equivalent to the 
velocity at 0y y .  

 
 

Figure 16.11 Forces acting on the solid region material, 00 y y  , of arbitrary length L. 
 

To assess this solid region, I apply a force balance over the solid portion of the material of 
arbitrary length, L, as shown in figure 6.11.  Note that since the solid plug will move uniformly, 
the shear stress within the plug, and at the centerline y = 0, will be zero, as indicated. 
 
Performing a force balance on the solid material (assuming a unit depth), we have a balance 
between the shear stresses and pressure forces acting on the material: 
 

y 

x 
  

L 
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 0 1 0 2 0L 0 L p (y 0) p (y 0) 0        
 

 1 2
0 0 0

p p py y
L x
 

  


 (16.54) 
 

In Eq. 16.54, we note that the pressure differences,  1 2p p , divided by the arbitrary length, L, 

is simply the pressure gradient, and the shear stresses will act in a negative direction, with 

yx 0    at 0y y , and yx 0   at y 0 . 

 
Solving Eq. 16.54 for 0y gives: 
 

















x
p

y 0
0  (16.55) 

 

Equation 16.55 indicates that the yield location 0y , which is the bounding location between fluid 
and solid behavior, is controlled by two parameters: the yield shear stress and the pressure 

gradient. Since 0y  cannot be greater than h
2

, the pressure gradient must exceed the yield stress 

in order for the material to move.  After the pressure gradient exceeds the yield stress, continued 
pressure gradient increases will cause 0y  to diminish, with the region of fluid behavior 

0
hy y
2

   expanding outward from the plate surface toward the midplane. We will see the 

impact of an increasing pressure gradient, and a consequent reduction in 0y , later in this section.  
 
Therefore, a Poiseuille flow of an ideal Bingham plastic will have two regions of behavior:  
 

(1) for 00 y y  ,  yx 0   , the material will behave as a solid plug flow at u = constant,  
 

 (2) for 
2
hyy0  , yx 0   , the material will behave as a fluid with u = u(y). 

 

Within the fluid region, 
2
hyy0   and 0yx  , Eq. 16.53 applies: 

1yx Cy
x
p





  

 

Applying a boundary condition that yx 0 0at y y    , we get: 
 

0 0 1 1 0 0
p py C C y
x x
 

      
 

 

So, 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 16 
 

 563 

 yx 0 0
p y y
x


    


 
 

Substituting the governing shear stress relationship for the fluid region, Eq. 16.44b: 
 

 yx B 0 0 0
du p y y
dy x

  
         

 
 

 

Which rearranges to: 
 

 0
B

du 1 p y y
dy x


 
 

 

 

Integrating, gives: 
 

2

0 2
B

1 p yu y y C
x 2
 

   
   

 (16.56) 

Applying the boundary condition that u = 0 at 
2
hy  , we determine C2 as: 

2

2 0
B

1 p h hC y
x 8 2
 

   
   

 

 

Substituting C2 into Eq.16.56 and rearranging gives: 
 

 
2

2 0

B B

y1 p h pu y h 2y
2 x 4 2 x

  
    

    
  for 0

hy y
2

   (16.57) 

Defining a non-dimensional y variable as 2yy*
h

 , and 0
0

2y *
ph
x




 
 
 

, then  
0y * 0u u y * , since 

the u velocity profile will be a function of 0y * , as well as y*, we rewrite Eq. 16.57 as: 
 

   
o

2
2

y * 0
B

h pu y* 1 2y * 1 y*
8 x


    
  

 for 1yy0  **  (16.58a) 

 

To determine the maximum velocity, which will be the velocity of the material “plug” in the 
center of the channel, I let 

o oy * y *,max 0u u at y* y *   in Eq. 16.58a: 
 

   
o

2
2

y *,max 0 0 0
B

h pu y * 1 2y * 1 y *
8 x


    
  

 

Which reduces to: 
 

 
o

2
2

y *,max 0
B

h pu y * 1
8 x


  

 
 for 00 y* y *   (16.58b) 
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Recall that 0
x
p




  for a flow in the positive x direction, thus Eq.16.58 will yield positive 

velocities for a pressure decreasing in the x direction. 

Defining 0

o

0

y *
y *

y *,max

u
u *

u
  gives: 

 

   

 
0

0

0

2
0y *

y * 2
y *,max 0

1 y* 2y* y* 1u
u*

u y * 1

   
  


 for 1yy0  **  (16.59a) 

and 

0y *,maxu * 1  for 00 y* y *   (16.59b) 
 

 

 
 

Figure 16.12 Ideal Bingham plastic Poiseuille flow between parallel flat plates. Normalized 

on the respective maximum velocity at the yield location, 0
0

2y *
ph
x




 
 
 

. 

 

Equation 16.59 reflects how an ideal Bingham fluid velocity profile varies relative to its 
maximum centerline (or plug velocity). Figure 16.12 is a series of velocity profiles of 

oy *u *  vs. 

y* calculated from Eq. 16.59 for a range of 0y *values, 00 y * 1  .  
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As figure 16.12 shows, for a yield location near the wall ( 0y * 1 ), the material profile is 
essentially a flat plug flow.  However, as the yield location moves toward the midplane  
(i.e. the pressure gradient increases), the profile will display a wider region of fluid-like 
behavior, and the region of plug flow will decrease. Potentially, if the pressure gradient gets 

quite large, 02p
x h




, the yield location will become quite small, and the flow will approach 

Newtonian behavior ( 0y * 0 ). 
 

While Figure 16.12 is instructive regarding the shape of the velocity profiles, it does not reveal 
the impact of the yield location on the behavior of the material relative to a comparable 
Newtonian fluid. Unlike the power-law fluid we examined in section 16.4.1.2, we can compare 
the behavior of an ideal Bingham fluid to Newtonian fluid, assuming the same pressure gradient 
and fluid viscosity. 

A Newtonian fluid will have 0 = 0, and thus 0y0 * .  Equation 16.58b gives 
2

Newt,max
h pu
8 x


 

 
, 

which is the same as Eq. 6.19 we derived in Section 6.3.2.  If we assume equivalent pressure 
gradients and fluid viscosities, B    (not probable, but instructive), we can determine velocity 
profiles for a range of Bingham fluids relative to a comparable Newtonian fluid.  Thus, dividing 
Eq. 16.58a for 

oy *u  by Newt,maxu , we obtain: 
 

   0y * 2
rel 0

Newt,max

u
u* 1 y* 2y * y* 1

u
     
   for 1yy0  **  (16.60a) 

and 

 0y *,max 2
rel,max 0

Newt,max

u
u* 1 y *

u
    for 00 y* y *   (16.60b) 

 

Equation 16.60 gives the velocity profile behavior relative to a pure Newtonian fluid, with the 
same pressure gradient and fluid viscosity.  Figure 16.13 shows a series of velocity profiles of 

relu *  vs. y* plotted for a range of 0y *values, 00 y * 1  .  
 
Figure 16.13 illustrates that the flow of material does not initiate if the pressure gradient is less 

than the yield stress, 02p
x h


 


0y * 1  ( 0y * 1 ,the green line, reflects all cases for 0y * 1 ).  

As the pressure gradient increases relative to the yield stress, 0 , the material begins to move as 

the yield location, 0y * , shifts toward the midplane.  As the pressure gradient is increased, this 
results in the expansion of the region of fluid-like behavior, with a commensurate increase in the 
maximum (plug) velocity. This correspondingly reduces the extent of the solid, plug-flow region, 
and increases the volume flowrate. 
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Figure 16.13 Ideal Bingham plastic Poiseuille flow between parallel flat plates for a series 
of yield locations, 0y * ; normalized on the maximum (centerline) velocity for 
a Newtonian fluid with the same pressure gradient and fluid viscosity. 

0
0

2y *
ph
x




 
 
 

 

 

To understand the effect of 0y *on both the volume flowrate and the pressure gradient, I integrate 
Eq. 16.58 across the duct to determine the volume flowrate, Q. Since the flow is symmetric about 

the x-axis, the volume flowrate for 
2
hy

2
h

 will just be double the flowrate for 
2
hy0  .  

Using 









2
hyy * ,  and an arbitrary plate width W, we have, using Eq. 16.58 (this requires a two 

part integral of both the fluid and solid material regions): 

0

o o o o o

0

hy y* y *y* 1 y* 12

y * y * y * y *,max y *
0 0 y* 0 y* y *

hQ 2 u Wdy 2W u dy* hW u dy* hW u dy*
2


 

 

        

 

     
0

o

0

y* y * y* 13 3
2 2

y * 0 0
B By* 0 y* y *

Wh p Wh pQ y * 1 dy* y* 1 2y * 1 y* dy*
8 x 8 x
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0

o

0

y* 13 3 3 2y* y *2
y * 0 0

y* 0B B y* y *

Wh p Wh p y* y*Q y * 1 y* y* 2y * y*
8 x 8 x 3 2







                         
 

Which reduces to: 
 

 
o

3
3

y * 0 0
B

Wh pQ y * 3y * 2
24 x


   

 
 (16.61) 

 

As a check on Eq. 16.61, we note that when 0y0 * , the fluid would behave as a Newtonian 

fluid, B   , so: 
 

3

Newt
Wh pQ
12 x


 

 
 (16.62) 

 

Equation 16.62 is the same as Eqn. 6.23 for the volume flowrate of a Poiseuille flow derived in 
Section 6.3.2. 
 

To compare the respective flow rates, we take the ratio of 
oy *Q to NewtQ : 

 0

0

y * 3
y *,rel 0 0

Newt

Q 1Q y * 3y * 2
Q 2

     (16.63) 

 

Equation 16.63 gives the volume flowrate for an ideal Bingham plastic relative to a Newtonian 
fluid with identical pressure gradients and fluid viscosities, B   . Figure 16.14(a) is a plot of 

0y *,relQ vs. 0y *  for 00 y * 1  .  
 

Note that unlike the power-law solutions, the Bingham plastic solutions are linear with the 
pressure gradient. So, solving Eq. 16.61 for the pressure gradient, and letting 

0y *Q Q , we have: 
 

 0

B
3 3

y * 0 0

24 Qp 1
x Wh y * 3y * 2

 
  

    

 (16.64) 

 

For a Newtonian fluid, 0y0 * , Eq. 16.64 gives: 

3
Newt

p 12 Q
x Wh
 

 


 (16.65) 

 

To compare the respective pressure gradients at the same volume flowrates, we again assume 
identical fluid viscosities, B   , and take the ratio of Eq. 16.64 to Eq. 16.65: 
 

 
0y *

3
rel 0 0

Newt

p
xp 2
px y * 3y * 2
x




 
  



 (16.66) 
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(a) (b)  

 
Figure 16.14 Comparisons of ideal Bingham plastic volume flowrate and pressure gradient 

as a function of 0y * -- Poiseuille flat plate flow.   

(a) 
0y *,relQ , with identical pressure gradient and fluid viscosity;  

(b)  
rel

p x  , with identical volume flowrate and fluid viscosity. 

 
0

0
2y * h p x



 

 

 

In Eq. 16.66, 
rel

p
x



is the relative increase in pressure gradient required to maintain the same 

volume flowrate as a comparable Newtonian flow with the same fluid viscosity. Figure 16.14(b) 

is a plot of 
rel

p
x



vs. 0y *  for 00 y * 1  .  

 
Figure 16.14(a) shows that the flowrate of an ideal Bingham plastic will always be less than that 
of a comparable Newtonian fluid with the same pressure gradient and fluid viscosity. The thinner 
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the fluid region (larger 0y * ), the lower the flowrate. Why is this so? If we do a force balance for 

a control volume of length L and h0 y
2

   we can show that the wall shear stress at hy
2

 is: 

wall
p h
x 2


 


 
 

The governing shear stress equation for an ideal Bingham plastic, Eq. 16.44b, is: 
 

yx B 0
du
dy

     ,   when 0yx   

 

So, at hy
2

   

wall B 0
wall

p h du
x 2 dy


     


 

 

Rearranging we have: 
 

 0 0
B Bwall

du 1 p h p h 1 y *
dy x 2 x 2

  
     
    

       (16.67) 

 

(Note: this only holds if   0
p h
x 2


 


 and 0y * 1 ) 

What Eq. 16.67 shows is that the slope of the velocity profile at the wall ( hy
2

 ) will be 

wall

du 0
dy

  (no flow) until 0
p h
x 2


 


 or 0y * 1 .  If the pressure gradient increases beyond 0 , 

thus reducing 0y * , the slope of the velocity at the plate surface will increase, 
wall

du 0
dy

 ,  and 

the material (solid and fluid portions) will begin to move.  The higher the pressure gradient 
relative to 0 , the larger the region of fluid behavior, and the faster the collective material 

moves. The key is the that shear stress at the wall is always the same, wall
p h
x 2


 


. So, the larger 

the yield stress, 0 , the more the pressure gradient has to work to overcome 0 , and the less 
work it can do to move the material. 
 
Likewise, figure 16.14(b) illustrates that the thinner the fluid region (larger 0y * ), the higher the 

relative pressure gradient must be to maintain the same flow rate.  For example, if 0
1y *
3

 , such  

that 66% of the material behaves as a fluid, the pressure gradient is double that of a Newtonian 
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fluid.  By 0y * 0.6 , where only 40% of the material behaves as a fluid, the required pressure 

gradient grows to 5 times the Newtonian.  As figure 16.14(b) shows, when 0y * 0.7  the relative 
pressure gradient required to maintain the same flowrate is literally off the chart.  
 
Also, since the power required to move the material will be roughly the pressure gradient times 

the volume flowrate pi.e. Power Q
x
 

 
 

, the pumping power required to maintain a constant 

flowrate will behave essentially the same as the pressure gradient in figure 16.14(b). 
 

 
16.5.2 Flows with Circular Symmetry 

 
In this section, I address Couette flow and Poiseuille flow of an ideal Bingham plastic fluid in 
geometries with circular symmetry.  Like the parallel plate flows of section 16.5.1, these flows 
will reduce to one-dimensional, fully-developed flows with no lateral cross flow.  Also, like the 
power-law flows covered in section 16.4.2, different governing momentum equations apply for 
each of these flows. The Couette flow depending on the azimuthal (θ) direction equation and 
yields v f (r)  , whereas the Poiseuille flow depends on the axial (z) direction equation and 

yields zv f (r) .  The two flows will also depend on different constitutive equations for the shear 
stress, as indicated in Section 16.5. 
 

16.5.2.1 Couette Flow between Concentric, Rotating Cylinders 
 
 
 
 
 
 
 
 

Figure 6.15 Geometry for Couette flow between concentric rotating cylinders 
 
As discussed in Section 6.4.2, the governing equation for this type of cylindrical flow reduces to 
the θ-direction momentum equation, 16.123c of Section 16.7.3.   
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Since this is a steady, fully-developed flow, the velocity field is given by v f (r)  , and Eq. 
16.123c  reduces to: 
 

 2
r

1 d pr
r dr 


 


  (16.68) 

I showed in section 6.4.4 that for Couette flow, 0p




 , which further reduces Eq. 16.68 to: 

 2
r

d r 0
dr    

 

Integrating, we have: 
 

2
1

r r
C

    (16.69) 
 

However, in order to integrate Eq. 16.69 further, we need to assess and specify the appropriate 
boundary conditions. 
 
Boundary Conditions (a): Outer Cylinder Rotating at velocity Vo, Inner Cylinder Fixed 
 
In the case of rotating, concentric cylinders, with an ideal Bingham flow, we cannot apriori 
specify the velocity of rotation, Vo, since when 0r    across the entire gap between the 

cylinders, i oR r R  , there can be no motion, whereas when 0r    over some portion of the 
gap, the outer cylinder can rotate. So, how do we set a boundary condition for this problem? 
 
What we do know, from our previous examples of Couette-type flows is that the torque across 
the gap will always be a constant (see Sections 6.4.2, Eq. 6.68 and 16.4.2.1, Eq. 16.29).  So, if 
we let toque = T= constant, then at any r location the torque for a depth of L is given by: 
 

  2
r rT 2 rL r 2 Lr         

 

Such that 
 

2r Lr2
T


   (16.70) 

For an ideal Bingham plastic, the θ-direction, two-region equations (Eq. 16.45) for the shear 
stress are: 
 

r
v vd dr 0 0

dr r dr r
 



   
       

   
,  when 0r    (16.45a) 

and 
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r B 0
vdr

dr r




  
      

  
 ,  when 0r    (16.45b) 

 

When 0r    across the entire cylinder gap, the equation that applies is 16.45a, which integrates 
to: 
 

1
v C
r
   

  

However, the boundary condition for the fixed inner cylinder iat r R  is v 0  , which will 

make v 0   across the gap, since the torque will be insufficient to deform the fluid, and the 
fluid will remain stationary. 
 
Equation 16.70 indicates that the highest shear stress will occur at iR  (the smallest radius), so 

the first location that the material will reach r 0    is r 0 2
i

T
2 LR   


 at ir R .  However, as 

the torque is further increased, the shear stress at iR  will increase, and the location where 

r 0    will move away from the inner surface and out into the material. We will call this 

location where 0r    the yield radius, and designate it by 0r .  From Eq. 16.70, we can write: 
 

02
0

r Lr2
T




   

 

Solving for 0r in terms of the torque we have: 
 

0
0 L2

Tr


  (16.71) 

 

Equation 16.71 will be the outer limit at which the Bingham plastic will behave like a fluid, with 
fluid behavior spanning a region i 0R r r  . 
 
Within this region i 0R r r  , the shear stress abides by the Bingham fluid equation, Eq.16.45b, 
such that: 
 

r B 0
vdr

dr r




  
      

  
  

or 

B r 0
vdr

dr r




 
     

 
 

 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 16 
 

 573 

From Eqs. 16.70 and 16.71, we substitute for the shear stress values to give: 
 

B 2 2
0

vd T Tr
dr r 2 Lr 2 Lr

 
   

  
 

or 
2
0

2 3
B 0

v rd T 1
dr r 2 Lr r r


  

   
   

 (16.72) 

 

Integrating Eq. 16.72, gives: 
 

 
2
0

22 2
B 0

v rT ln r C
r 2 Lr 2r


 
    

  
 

 

Employing the boundary condition that 0v   at ir R , we have: 
 

 
2
0

2 i2 2
B 0 i

rTC ln R
2 Lr 2R

 
  

  
 

 

Substituting C2 and simplifying:  
 

i
2 2 2

B i 0

v RT 1 1 1 1 ln
r 2 L 2 R r r r


     
       

      

 (16.73) 

 

To non-dimensionalize Eq. 16.73, we first let oR R  and iR aR , were a < 1, then we define 
rr*
R

 .  Thus, substituting r r*R , iR aR , and Rrr 00 * , into Eq. 16.73 and simplifying, 

we get: 
 

2 2 2
B 0

T 1 1 1 1 av ln r *
2 LR 2 a r * r * r *

    
      

     
    for ** 0rra   (16.74) 

 

What about the region that is between 0r  and Ro = R, where 0r   ?  From Eq. 16.45a we have: 
 












 

r
v

r
=0 

 

Integrating gives: 
 

3v C r   
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For the case where at least some portion of the material behaves as a fluid adjacent to iR , the 

outer cylinder can rotate, and we have a boundary condition of oVv   at r = Ro = R (even 

though we don’t know the value of oV ).  Thus, o
3

VC
R

 , and 

*rV
R

rVv o
o      for 1rr0  **  (16.75a) 

 

We note that oV , since it cannot be specified apriori (since we have specified the torque, T), is 
determined by equating the two velocities from the outer and inner regions (Eqs. 16.75a and 
16.74) at ** 0rr  : 
 

o 0 02 2 2
B 0 0 0

T 1 1 1 1 aV r * ln r *
2 LR 2 a r * r * r *

    
      

     

 

 

o 2 2 2
B 0 0 0

T 1 1 1 1 aV ln
2 LR 2 a r * r * r *

    
      

     

 (16.75b) 

 

Substituting for oV  in Eqs. 16.74 and 16.75a, the two-region velocity equations are:  
 

o 2 2 2
B 0 0 0

T 1 1 1 1 av V r* ln r *
2 LR 2 a r * r * r *

    
       

     

   for 1rr0  **  (16.76a) 

and  

2 2 2
B 0

T 1 1 1 1 av ln r *
2 LR 2 a r * r * r *

    
      

     
   for ** 0rra   (16.76b) 

 

Notice that Eq. 16.76a is simply a solid body rotation of the solid portion of the material. 
 
However, what if 0r    all across the entire gap to r = R, or r* = 1?  Then 1r0 * , and only 
Eq. 16.76b applies across the whole gap from RraR  , or 1ra  * , so that: 
 

2 2
B

T 1 1 1 av ln r *
2 LR 2 a r * r *

    
           

   for 1ra  * , and 1r0 *  (16.77a) 

and 

 o 2
B

T 1 1V 1 ln a
2 LR 2 a

  
       

      at 1r *  (16.77b) 

 

Now, what if 1
LR2
Tr

0
20 


* , which can certainly happen if 0
2LR2T  ? For this case, 

we need to re-examine our determination of Vo.  Here, we note that r* cannot exceed 1 (r = R), 
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but *0r  can exceed 1. So, revisiting our boundary conditions for determining Vo, we have 

oVv   at r* = 1, which Eq. 16.74 gives as: 
 

 o 2 2
B 0

T 1 1 1V 1 ln a
2 LR 2 a r *

  
    

   
 (16.78a) 

 

Note that the value of *0r is a direct function of the torque, T, so Vo will increase for 1r0 * , and 
the equation for the velocity distribution for 1ra  *  will be: 
 

2 2 2
B 0

T 1 1 1 1 av ln r *
2 LR 2 a r * r * r *

    
      

     
     for  1ra  * , 0r * 1  (16.78b) 

 

Since we can solve for Vo from Eqs. 16.75b, 16.77b, and 16.78a, we can non-dimensionalize v  

as 
o

vv *
V


  , like we did in Section 16.4.2.1.  However, here Vo is a function of 0r *, and is not a 

consistent value as it was for the power-law solution. So, we reexamine our expression for *0r  
noting that from Eq. 16.71:   
 

0
2

2
0 LR2

Tr


*   

 

Substituting 2
0r *  into Eq. 16.74, we get: 

 

0
2 2

B B

RT 1 1 av r * ln r *
4 LR a r * r *

    
      

     
 (16.79) 

 

If 00   in Eq. 16.79 we have a Newtonian flow, with velocity: 
 

*
*, r

r
1

a
1

LR4
Tv 22Newt 











  (16.80a) 

 

At  r* = 1, Eq.16.80a gives  , Newt o, Newtv 1 V   of: 
 








 


 2

2

Newto a
a1

LR4
TV ,  (16.80b) 

Therefore, to keep perspective on the influence of 0  on the outer wall velocity, I normalize our 

v  velocities for Eqs. 16.76, 16.77, and 16.78 on NewtoV , , i.e. 
NewtoV

vv
,

* 
  .   This gives us 

velocity profiles that compare ideal Bingham Couette behavior to comparable Newtonian 
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behavior (assuming Bingham Newtonian    for the fluid behavior) under the same applied torque.  The 
three possible flow cases for a rotating outer cylinder are: 
 
Case 1(a): 
 

When 0r    across the entire Couette gap, then the material behavior across the whole gap is 
governed by the inner radius, r = aR, r* = a, which is where the material will initially begin to 

flow. Thus, if the yield radius is less than the inner radius, i.e. aR
L2
Tr

0
0 


 , the applied 

torque will be less than that required to initiate fluid behavior, 0
22RLa2T  , and the material 

will remain stationary under the applied torque, and the outer cylinder cannot move.  So, 
 

0r   , for 1ra  *  0v *  and 0Vo *   
 
Case 2(a): 
 

When 0
22RLa2T   and 0r    occurs within the Couette gap at 0r , where 0aR r R   

 0a r * 1  , the regions of behavior will be: 
 

0r   , for 0a r* r *    
 

*
*

ln
**

* r
r
a

r
2

r
1

a
1

a1
av 2

0
222

2




























    (16.81a)  

and 

0r   , for 0r * r* 1  :  
 

2

2 2 22
0 0 0

a 1 1 2 av * ln r *
a r * r * r *1 a

    
      

     
 (16.81b) 

 

with  
  





































*
ln

**
*

0
2

0
2

0
22

2

o r
a

r
2

r
1

a
1

a1
aV  (16.81c) 

 

Note that when 0r * 1 , only Eq.16.81a is required across the Couette gap. 
 
Case 3(a): 
 

When 1
LR2
Tr

0
20 


* , which occurs when 0
2LR2T  . Here, r* cannot exceed 1  

(r = R), but *0r  may exceed 1. Thus, oV * is the value of v *  at r* = 1, rather than at *0r = 1, 
which yields the equations:  
 

 
*

*
ln

**
* r

r
a

r
2

r
1

a
1

a1
av 2

0
222

2




























    for 1ra  * , and 01 r *  (16.82a) 
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with 

 
 a

a1
a

r
21V 2

2

2
0

o ln
*

*


  (16.82b) 

 

Note that when 0r * 1, then Eqs. 16.82 collapse to the Newtonian solution, as it should. 
 
Velocity profile behavior calculated from Eqs. 16.81 and 16.82 appear later in figure 16.16(a). 
 
Boundary Conditions (b): Outer Cylinder Fixed, Inner Cylinder Rotating at velocity Vi 

 
For the case of inner cylinder rotation, the derivation of the velocity behavior of an ideal 
Bingham plastic is similar to the case for the outer cylinder rotation.   
 

When 0r    across the entire cylinder gap, the material cannot flow and v 0   across the 

Couette gap. The material will remain fixed, until r 0   , which will again initiate fluid 
behavior at ir R . 
 

When r 0   , and a portion of the material begins to behave as a fluid, the equation derivation 
is the same through Eq. 16.72.   
 

2
0

2 3
B 0

v rd T 1
dr r 2 Lr r r


  

   
   

 (16.72) 

 

Eq. 16.72 again integrates to: 
 

 
2
0

22 2
0

v rT ln r C
r 2 Lr 2r


 
    

  
 

 

However, here the appropriate boundary condition is again at ir R , where the material first 

behaves as a fluid, and where iv V  .  Note that we cannot use a boundary condition of v 0   at 

or R , since that condition will lie within the region where the material behaves as a solid.  To 
help simplify the derivation process, we will again let oR R and iR aR , where a < 1. 

Employing the boundary condition that iv V   at ir R aR  , we have: 
 

 
2
0 i

2 2 2 2
B 0

r VTC ln aR
2 Lr 2a R aR

 
   

  
 

 

Substituting C2 and simplifying:  
 

2 2
0 0 i

2 2 2 2
B 0

v r r VT 1 aRln
r 2 Lr 2 a R r r aR


    
       

    
 (16.83) 
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I non-dimensionalize Eq. 16.83, again letting 
R
rr * . Thus, substituting Rrr * and 

Rrr 00 * into Eq. 16.83 and simplifying: 
 

i
2 2 2

B 0

Vr *T 1 1 1 1 av ln r *
2 LR 2 a r * r * r * a

    
       

     
    for ** 0rra   (16.84) 

 

Again, we cannot specify iV  apriori (since we have again specified the torque, T). We determine 

the value of iV  by noting that within the region 0r * r* 1   the material behaves as a solid, with

0v  . Therefore, letting 0v 0 at r* r *    in Eq. 16.84 and solving for iV : 
 

i 2 2 2
B 0 0 0

T 1 1 1 1 aV ln a
2 LR 2 a r * r * r *

    
       

     

 

 

Substituting iV  back into Eq. 16.84 and simplifying, we have the two-region velocity equations:  
 

0
2 2 2

B 0 0

r *T 1 1 1 1v ln r *
2 LR 2 r * r * r * r *

    
      

    

    for 0a r* r *    (16.85a) 

and  
v 0      for 0r * r* 1   (16.85b) 

with 

0
i 2 2 2

B 0 0

r *T 1 1 1 1V ln a
2 LR 2 r * a r * a

    
      

    

    at r* = a (16.85c) 

 

When 0 2
0

Tr * 1
2 LR

 
 

, we need to again re-examine the determination of Vi.  Again, we 

note that r* cannot exceed 1, but *0r  can exceed 1.  Revisiting our boundary conditions for 

determining Vi, we have 0v   at r* = 1, rather than at 1r0 * . Substituting into Eq. 16.84 and 

solving for iV : 
 

i 2 2
B 0

T 1 1 1 1V 1 ln a
2 LR 2 a r * a

    
      

     
 (16.86a) 

 

Substituting iV back into Eq. 16.84 and simplifying, we have the velocity equation for 0r * 1 . 
 

2 2
B 0

T 1 1 1 1v 1 ln r *
2 LR 2 r * r * r *

    
      

     
  for a r* 1  , 0r * 1  (16.86b) 
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I will now normalize v on the inner wall velocity for a Newtonian flow. If we let 00  , in Eq. 

16.86b this gives the equation for a Newtonian flow. When 00  , then 0r *  , and Eq. 16.86 
reduces to: 
 




















 *

*, r
r
11

LR4
Tv 2Newt  for a r* 1   (16.87a) 

with 








 




a
1a

LR4
TV

2

Newti,  (16.87b) 

 

Similar to the rotating outer cylinder, here I normalize the v  velocity from Eq. 16.85 and 16.86 

on NewtiV , , i.e. 
NewtiV

vv
,

* 
  .  Again, this compares ideal Bingham Couette behavior to the 

comparable Newtonian behavior (again letting Bingham Newtonian   ) at the same applied torque. 
The possible flow cases for a rotating inner cylinder are: 
  
Case 1(b): 
 
When 0r    across the entire Couette gap, the material behavior across the whole gap is again 
governed by the inner radius, r* = a, which is again where the material will initially begin to 

behave as a fluid. Thus, if the yield radius is less than the inner radius, i.e. aR
L2
Tr

0
0 


 , 

the applied torque will again be less than that required to initiate fluid behavior, 0
22RLa2T  , 

and the material will remain stationary under the applied torque, and the inner cylinder cannot 
move.  So, 
 

0r   , for 1ra  *  0v *  and 0Vi *  
 

Case 2(b):  
 

When 0
22RLa2T   and 0r    occurs within the Couette gap at 0r , where RraR 0   

 1ra 0  * , the regions of behavior will be: 
 

0r   , for ** 0rra   *
*
*ln

***
* r

r
r

r
2

r
1

r
1

1a
av 0

2
0

22
0

2










































 (16.88a) 

and 
 

0r   , for 1rr 0  **   0v *  (16.88b) 
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with a
a

r
r

2
a
1

r
1

1a
aV 0

2
0

22
0

2i










































*ln
**

*    (16.88c) 

 

Case 3(b):  
 

When 0 2
0

Tr * 1
2 LR

 
 

, which happens if 2
0T 2 LR   . In this case, r* cannot exceed 1  

(r = R), but *0r  can exceed 1.  Therefore, we require that v * 0   at r* = 1, rather than at *0r =1, 
which yields the equations:   
 

*
*

ln
**

* r
r
1

r
2

r
11

1a
av 2

0
22 



































    for a r* 1   (16.89a) 

with 

 
2

i 2 2
0

2 aV* 1 ln a
r * 1 a

 
   

 
 (16.89b) 

 

Figure 16.16 shows the comparative Couette velocity profile behavior for an ideal Bingham 
plastic with: (a) only the outer cylinder rotating (Eqs. 16.81 and16.82) and; (b) only the inner 
cylinder rotating (Eqs. 16.88 and 16.89). The material behavior is shown for three different inner 
cylinder radii, ir * a 0.2, 0.5, and 0.8  , and for a series of yield radii, 0r *, starting at the inner 

cylinder radius, and extending outward to 0r * 1.4 or1.5 . 
 
Note that for all cases, when 0 ir * r * a  (or when 0 ir * r * ) there is no movement of the 

material (blue lines).  However, once 0 ir * r * the fluid-like material flow begins at ir *  and 

extends out to 0r *.  Figure 16.16(a) shows that if 0r * 1  the region 0r * r* 1   will behave as a 

solid, in solid body rotation. This can best be seen for ir * 0.2 and 0.5 , where the solid portion is 
reflected by a linear velocity profile.  However, for the case of inner cylinder rotation, figure 
16.16(b), the solid portion will remain fixed for the region 0r * r* 1  . What is clear from 
scaling the velocity relative to o, NewtV  and i, NewtV  is that for the same torque the velocity of the 

rotating cylinder with an ideal Bingham plastic will always be less than that for a Newtonian 
fluid, because of the added resistance due to the yield stress, 0 . 
 
When 0r * 1 , all of the material behaves as a fluid. Note that the larger the gap between 

cylinders is, the more nonlinear the velocity profiles are.  And as 0r * increases beyond 1, the 
more closely the velocity profiles approach the behavior of a Newtonian fluid (which would be 
when 0r * 1).   
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Figure 16.16 Ideal Bingham plastic Couette flow between concentric, rotating cylinders.   

(a) Outer cylinder velocity = Vo, inner cylinder fixed. ir *  = a = 0.2, 0.5, 0.8  

(b) Outer cylinder fixed, inner cylinder velocity = Vi. ir *  = a = 0.2, 0.5, 0.8 
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Notice that Eq. 16.89b for iV * is identical to Eq. 16.82b for oV * , which may seem unusual.  
However, the Newtonian values for Vo , Eq. 16.80b, and Vi , Eq. 16.87b, which are used to 
normalize the velocities are quite different for the same applied torque.  This is a function of the 
moment over which the torque is applied ( oR R  for Eq. 16.80b vs. iR aR for Eq. 16.87b). 
Thus, for the same applied torque, when the outer cylinder rotates (Case a), the outer wall shear 
stress will be less than inner wall shear stress when the inner cylinder rotates (Case b). This 
allows the outer cylinder to rotate at a higher velocity than the inner cylinder, under the same 
applied torque.  Also, if we examine the angular velocity of the cylinders for a Newtonian fluid 
from Eq. 16.80b and 16.87b, we get: 
 

2 2

o, Newt o,Newt o,Newt2 2 2

T 1 a T 1 aV R
4 LR a 4 LR a

    
        

    
 (16.90a) 

 

2 2

i, Newt i,Newt i,Newt 2 2

T a 1 T 1 aV aR
4 LR a 4 LR a

    
         

    
 (16.90b) 

 

Equation 16.90 shows that under the same applied torque, the angular velocity for both the outer 
rotating cylinder and the inner rotating cylinder will be equal in magnitude. The difference in the 
sign is a result of our assumption of a positively oriented shear stress on the material surface at 
the inner radius. In reality, the inner material surface has a negatively-directed normal relative to 
r, thus a positive orientation for the shear would point in the negative θ direction, and be 
considered a negative torque.  Thus, the angular velocities of Eq. 16.90 will be the same. 
 

16.5.2.2  Poiseuille Flow in Circular Duct 
 

 
 

Figure 16.17 Geometry for Poiseuille flow of ideal Bingham plastic in a circular duct 
 

For a fully-developed Poiseuille flow of an ideal Bingham fluid in a circular duct, as shown in 
figure 16.17, there is no motion in the r and θ-directions, but only in the streamwise z-direction, 
and the governing equations reduce to the z-direction momentum equation. 

 

  zz z z z zz
r z z rz

vv v v v 1 p 1 1 1v v g r
t r r z z r r r z

       
                    

 (16.123d) 
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Decreasing pressure,  
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Since this is a steady, fully-developed flow, the velocity field is given by zv f (r) , Eq. 16.123d 
further reduces to a balance between shear stress and pressure: 
 

 rz
1 d pr
r dr z


 


 (16.91) 

For a Poiseuille flow, p constant
z





(as discussed in section 6.4.1), which allows Eq. 16.91 to be 

rewritten as: 
 

 rz
d pr r
dr z


 


 (16.92) 

 

Integrating Eq. 16.92 once yields: 
 

r
C

2
r

z
p 1

rz 



  (16.93) 

 

To determine the constant C1 in Eq. 16.93, we need to consider how an ideal Bingham plastic 
will behave for Poiseuille flow in a duct. Like the parallel plate Poiseuille flow of Section 
16.5.1.2 (and Newtonian Poiseuille flow, Section 6.4.2), the location of the highest shear 
stresses, and thus the location where an ideal Bingham plastic first begins to behave as a fluid 
will be adjacent to the cylinder wall, r = R, with the shear stresses decreasing away from the duct 
wall. The criteria for fluid behavior to occur is rz 0   . Therefore, if the wall shear stress, rz , is 

greater than the yield stress, 0 , the material in some region adjacent to the wall will behave as a 

fluid. The extent of this fluid region will be 0r r R  , where we designate 0r  as the yield radius, 

similar to the yield location, 0y , that we employed for parallel plate flow in Section 16.5.1.2. We 

hypothesize 0r as the location where rz 0   , and the material ceases to behave as a fluid, and 
behaves as a solid . 
 
For a Bingham fluid behaving as a solid, Eq. 16.46a specifies that: 
 

z
rz

dv 0
dr

 
    

 
, when 0rz    (assuming 0 > 0) 

 

Thus, the solid behavior region where 0rz  , must behave as a solid, moving uniformly at a 
constant velocity as a plug flow, as shown in the central portion of figure 16.17.  The extent of 
this plug flow region will be 00 r r  .  
 
To determine where 0r occurs, we perform a force balance on the region 00 r r  , similar to 

what we did in Section 16.5.1.2, recognizing that rz 0    at 0r r , and rz 0  at r = 0.  The 
result of that force balance is: 
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0
0

rp
z 2


 


 
 

Solving for 0r gives: 
 

0
0

2r
p
z




 
 
 

 (16.94) 

 

Equation 16.94 indicates that the location of 0r  is a direct function of the ratio of the yield stress 

to the applied pressure gradient. In particular, note that 0r  must be less than R 02pi.e.
z R

 
 

 
  

in order for any of the material to behave as a fluid. 
 
Therefore, a Poiseuille flow of an ideal Bingham plastic will have two regions of behavior:  
 

1) for 00 r r  ,  rx 0   , the material will move as a solid at zv = constant as a plug flow,  
and  

2) for 0r r R  , rx 0   , the material will move as a fluid with  z zv v r . 
 

Within the fluid region 0r r R  , and rx 0   , Eq. 16.93 applies: 
 

r
C

2
r

z
p 1

rz 



  

 

To determine the constant C1, we note that Eq. 16.46a requires that within the solid plug flow 

region that zdv 0
dr

  when 0rz  .  And since the derivative of zv , i.e.  zdv
dr

, must be continuous 

within the ideal Bingham plastic, the condition that zdv 0
dr

  for the solid material in the region 

00 r r  , must also apply for the fluid behavior material at the interface 0r r .  To apply this 

condition, we substitute Eq. 16.46b, z
rz o

dv
dr

 
     

 
, into Eq. 16.93 for the fluid region 

behavior, then substitute from Eq. 16.94 for o  : 
 

01 z z
rz B o B

rC dv dvp r p
z 2 r dr dr z 2
    

            
    

 

 

Solving for zdv
dr

: 

 z 1
0

B B

dv C1 p r r
dr 2 z r
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Applying the boundary condition of  zdv 0
dr

  at 0r r , we have that 1C 0 , which gives; 

 z
0

B

dv 1 p r r
dr 2 z


 

 
 

 

Integrating gives: 
 

2

z 0 2
1 p rv r r C

2 z 2
 

   
   

 (16.95) 

 

Applying the boundary condition zv = 0 at Rr  to Eq. 16.95, and solving for C2: 
 

2

2 0
B

1 p RC r R
2 z 2

 
   

   
 

 

Substituting for C2 and simplifying gives: 
 

 
2 2

z 0
B B

1 p r R 1 pv r R r
2 z 2 2 2 z

  
    

    
 (16.96) 

 

Defining rr*
R

 , and letting  
oz,r * z ov v r*, r * , since the vz velocity profile will be a function 

of or * as well as r*, we rewrite Eq. 16.96 as: 
 

   
0

2
2

z,r * 0
B

R pv r * 1 2r * 1 r *
4 z


    
  

 (16.97a) 

 

The material velocity will reach a maximum at the interface between the fluid and solid 
behavior, with 

0z z,r *,max 0v v at r* r *  , which will also be the velocity of the material “plug” in 

the central portion of the circular duct: 
 

   
0

2
2

z,r *,max 0 0 0
B

R pv r * 1 2r * 1 r *
4 z


    
  

 

 

which reduces to: 
 

 
0

2
2

z,r *,max 0
B

R pv r * 1
4 z


  

 
 (16.97b) 

 

Note that 
p 0
z





 will give a flow in the positive z direction, thus Eq. 16.97 will yield positive 

velocities for pressure decreasing in the z direction. 
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Defining 0

0

0

z,r *
z,r *

z,r *,max

v
v *

v
  gives: 

 

   

 
0

0

0

2
0z,r *

z,r * 2
z,r *,max 0

1 r* 2r * r* 1v
v *

v r * 1

   
  


 for 0r * r* 1   (16.98a) 

And 
 

0z,r * maxv * 1  for 00 r* r *   (16.98b) 
 

Equation 16.98 shows how an ideal Bingham fluid velocity profile varies relative to the 
maximum centerline (or plug velocity) for the respective 0r * value. Figure 16.18 is a series of 

velocity profiles of 
0z,r *v *  vs. r* for a range of 0r * values, 00 r * 1  .  

 

 
 

Figure 16.18 Ideal Bingham plastic flow in a circular duct. Normalized on the maximum 

velocity for respective values of the yield radius, 0
0

2r *
pR
x




 
 
 

 . 

 
As figure 16.18 shows, for a yield location very near the wall ( 0r * 1 ), the material profile is 
essentially a flat plug flow.  However, as the yield radius decreases (i.e. the pressure gradient 
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increases), the profile displays a wider region of fluid-like behavior, with the extent of the plug 

flow region decreasing. Potentially, if the pressure gradient gets quite large, 02p
x R




, the yield 

location will become quite small, and the flow will approach Newtonian flow behavior ( 0r * 0 ). 
 
While Figure 16.18 is instructive regarding the shape of the velocity profiles, it does not show 
how the yield radius affects the behavior of the material relative to a comparable Newtonian 
fluid. As we did in Section 16.4.2.2, we can compare the behavior of an ideal Bingham fluid to a 
Newtonian fluid with the same pressure gradient and fluid viscosity. 
For a Newtonian fluid, 0 0  , which gives 0r0 * ,  Eq. 16.97b gives: 

2

z,Newt,max
R pv
4 x


 

 
 (16.99) 

 

If we again assume equivalent pressure gradients and fluid viscosities ( B   ), we can compare 
velocity profiles for a range of ideal Bingham fluids relative to a Newtonian fluid.  Thus, dividing 
Eq. 16.97a by Eq. 16.99, we obtain: 
 

   0z, r * 2
z rel 0

z,Newt,max

v
v * 1 r* 2r * r* 1

v
     
 

  for 0r * r* 1   (16.100a) 

and 

 0 2z, r *,max
z rel,max 0

z,Newt,max

v
v * r * 1

v
     for 00 r* r *   (16.100b) 

 

Equation 16.100 gives the velocity profile behavior relative to a pure Newtonian fluid, with the 
same pressure gradient and fluid viscosity. Figure 16.19 shows a series of velocity profiles of 

z relv * vs. r*  for a range of 0r * values, 00 r * 1  .  
 

Figure 16.19 illustrates that fluid behavior does not initiate if the pressure gradient is less than 
the yield stress, 0r * 1  ( 0r * 1 , the green line, represents all cases for 0r * 1 ).  As the pressure 

gradient increases relative to the yield stress, 0 , 0r * is reduced, expanding the region of fluid 
behavior. This results in an increase in the maximum velocity, a reduction in the extent of the 
solid plug-flow region, and a commensurate increase in the volume flowrate. 
 
As a third comparison, we examine how the volume flowrate and pressure gradient of an ideal 
Bingham plastic fluid behave relative to a Newtonian flow. To do this, we calculate the volume 
flowrate, 

or *Q , by integration of Eq. 16.97 across the tube 0 r* 1  .  
 

0

o 0 0

0

r* r *r R r* 1
2 2

r * z z,r *,max z,r *
r 0 r* 0 r* r *

Q v 2 rdr 2 R v r*dr* 2 R v r*dr*
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0

o

0

r* r * r* 14
2 2

r * 0 0
B r* 0 r* r *

R pQ r * 1 r *dr * 1 r * 2r * r * 1 r *dr *
2 x

 

 

  
             

   

 

 
0

o

0

r* 1r* r *4 2 2 4 3 2
2

r * 0 0
B r* 0 r* r *

R p r* r* r* r* r*Q r * 1 2r *
2 x 2 2 4 3 2



 

        
            

          

 

 

Which yields a final solution for the volume flowrate, 
or *Q , as: 

 

o

4
4

r * 0 0
B

R pQ r * 4r * 3
24 x
 

      
 (16.101) 

 

 
 

Figure 16.19 Ideal Bingham plastic Poiseuille flow in a circular duct for a series of yield 
radii, 0r *; normalized on the maximum (centerline) velocity for a Newtonian 

fluid with the same pressure gradient and fluid viscosity.  0
0

2r *
pR
x




 
 
 

 

 

As a check on Eq. 16.101, we note that when 0r * 0 , the fluid would behave as a Newtonian 
fluid, so: 

 
4 4

Newt
B B

R p R pQ 3
24 x 8 x
   

   
   

 (16.102) 

Equation 16.102 is the same as Eqn. 6.62 in Section 6.4.1. 
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To compare the respective flow rates, I take the ratio of 
or *Q  to NewtQ : 

 

 0

0

r * 4
r *,rel 0 0

Newt

Q 1Q r * 4r * 3
Q 3

     (16.103) 

 

Equation 16.103 gives the volume flowrate for an ideal Bingham plastic relative to a Newtonian 
fluid with identical pressure gradient and fluid viscosity. A plot of 

0r *,relQ vs. 0r * for 00 r * 1   

is shown in figure 16.20(a). 
 

 
(a) (b)  

 
Figure 16.20 Comparisons of ideal Bingham plastic volume flowrate and pressure gradient 

to a comparable Newtonian fluid versus 0r *-- Poiseuille circular duct flow.   
(a) 

0r *,relQ , assuming identical pressure gradient and fluid viscosity;  

(b)  
rel

p z   , assuming identical volume flowrate and fluid viscosity. 

 
0

0
2r * R p z



 

 

 
To examine pressure gradient variations, we solve Eq. 16.101 for the pressure gradient, and let 

0r *Q Q : 
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 0

B
4 4

r * 0 0

24p Q
z R r * 4r * 3


 

   
 (16.104) 

 

For a Newtonian fluid, 0r * 0 , Eq. 16.104 gives: 
 

4
Newt

p 8 Q
z R
 

 
 

 (16.105) 

To compare the respective pressure gradient at identical volume flowrates, we again assume 
identical fluid viscosities, and take the ratio of Eq. 16.104 to Eq. 16.105: 
 

 
0r *

4
rel 0 0

Newt

p
zp 3Q

pz r * 4r * 3
z




 
  



 (16.106) 

A plot of 
rel

p
z



vs. 0r * for 00 r * 1   is shown in figure 16.20b. 

 
Figure 16.20(a) shows that the flowrate of an ideal Bingham plastic will always be less than that 
of a comparable Newtonian fluid with the same pressure gradient and fluid viscosity. The thinner 
the fluid region (larger 0r *, and larger yield stress, 0 ), the lower the flowrate. The explanation 
for this behavior is the same as for the parallel plate flow of section 16.5.1.2.  Applying a force 
balance at the wall of the duct, we can show that: 
 

 z
0 0

wall B B

dv 1 p R p R 1 r *
dr z 2 x 2

  
     
    

       for 0r * 1  (16.107) 

 

Equation 16.107 shows that the slope of the velocity profile at the wall ( r R ) will be 

z

wall

dv 0
dr

  (no flow) until 0
p R
z 2


 


 or 0r * 1 .  When the pressure gradient exceeds the yield 

stress, which makes 0r * 1 , a region of material adjacent to the cylinder wall, 0r * r* 1  , will 
behave as a fluid.  Eq. 16.107 indicates that the slope of the velocity at the wall will become non-

zero (the sign depending on the direction of the pressure gradient), z

wall

dv 0
dr

 , and the material 

(solid and fluid portions) will begin to move, collectively, as shown in figure 16.19.  As the 

pressure gradient, p
z



, increases further, the yield radius, 0r *, will decrease accordingly. This 

reduction in the yield radius results in an expanded region of fluid behavior – which allows the 
collective material to move more rapidly, as shown by the velocity profiles of figure 16.19, and 
the relative flowrate of figure 16.20a.  
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Of course, the larger the yield stress, 0 , the more the pressure gradient has to work to overcome 

0 , and the less work it can do to move the fluid.  This is shown clearly in, figure 16.20b, which 

illustrates that the thinner the fluid region (i.e. larger 0r * value), the larger the relative pressure 

gradient must be to maintain the same flow rate.  For example, if 0r * 0.6 , for which 64% of the 
material behaves as a fluid, the comparative pressure gradient is 4 times the Newtonian.  And by 

0r * 0.8 , where only 36% of the material behaves as a fluid, the comparative pressure gradient 
is more than 10 times the Newtonian.  Of course, as the yield radius approaches the duct wall, 
the pressure gradient required to maintain the same flowrate grows dramatically.  
 
Similar to the case of Poiseuille flow between parallel plates, Section 16.5.1.2, the power 

required to move the material will be roughly pPower Q
x





.  Therefore, the pumping power 

required to maintain a constant flowrate will behave essentially the same as the pressure gradient 
in figure 16.20b. 
 
16.6 Flat-Plate Laminar Boundary Layers 
 
Because of the non-linearity of the shear stress behavior in non-Newtonian fluids, computation 
of boundary layer behavior becomes much more involved, and exact solutions of the equations 
of motion require the use of advanced numerical techniques. However, we can make use of the 
momentum integral equation that we developed in Section 14.2, and a similarity velocity profile 
approximation like the one we applied in Section 14.2.2, to develop approximate solutions for 
the boundary characteristics for both power law and ideal Bingham plastic fluids.  Moreover, 
while these solutions are not exact, they have been shown [Acrivos et al.(1960)] to compare to 
the results of exact solutions to within 10%. 
 
Applying the same order-of-magnitude analysis approach we employed in section 13.2.1 to Eqs. 
16.122a (continuity), 16.122b (x-direction momentum), and 16.122c (y-direction momentum), 
we can reduce the equations to: 
 

 yxu u 1 P 1u v  
x y x y

  
   

     
 (16.109a) 

and 

 0
y
v

x
u









  (16.109b) 

 

These are the boundary layer equations for a non-Newtonian fluid, but the shear stress will be a 
non-linear function of velocity.  However, integrating Eq. 16.109a across the boundary layer, as 
we did in section 14.2, we can derive a momentum integral equation for a non-Newtonian fluid 
as: 
 

https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690060227
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2
w

Udx
dU

U
12

dx
d





 




 )( *  (16.110) 

 

Note that Eq. 16.110 is the same as Eq. 14.11 for a Newtonian fluid. Why aren’t Eqs. 16.110 and 
14.11 different? Recall that in section 14.2 we integrated the momentum equation across the 
boundary layer from y = 0 to y = . Performing the same integration for a non-Newtonian fluid 
yields the same results for the momentum change terms. Integrating the shear stress term, the last 
term in Eq. 16.120a, across the boundary layer gives: 
 

y
yyx

yx yx yx w wy 0 y y 0
y 0

dy 0
y




  



         

  

 

Since the shear stress limits of a non-Newtonian boundary layer are the same as those for a 
Newtonian fluid, this term integrates to the same term, the wall shear stress, w ,  like in Section 

14.2.  A transposition in Eq. 14.10 makes the sign of  w positive in Eq. 16.110.  
 
As we did in section 14.2.2, we will employ an approximate similarity velocity profile assuming 

a similarity parameter of y
 


 , calculate the respective boundary layer parameters in term of , 

and then use the appropriate non-Newtonian relationship for w to integrate Eq. 16.110 for the 
development of a flat-plate boundary layer thickness, f x( )  . 
 
Our Table 14.1 in Chapter 14 shows that for a Newtonian fluid the approximate similarity 
velocity profile that that best compares to the exact Blasius solution was a third order equation of 
the form: 
 

3
3u y y1 5 0 5 1 5 0 5

U
. . . .



   
        

    
 (16.111) 

 

We will assume that this will be an equally good approximation for our non-Newtonian fluids as 
well. Employing Eq. 16.111, we calculate the relative displacement and momentum thickness as: 
 

1

0 0

u u1 dy 1 d
U U

*
 

 

   
         

   
   where 




dyd  and   ddy  

 

 
11

3 2 4

00

3 1 3 1 31 d
2 2 4 8 8

   
                 

   
  (16.112a) 

Likewise,  
 

1

0 0

u u u u1 dy 1 d
U U U U
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1
3 3

0

3 1 3 1 391 d
2 2 2 2 280

  
             

  
  (16.112b) 

If we only consider a flat plate boundary layer, then U constant

 , and thus dU 0

dx
  , this 

reduces Eq. 16.110 to:  
 

w
2

d
dx U







 (16.113) 

 

Substituting Eq.16.112b into Eq. 16.113 gives: 

w
2

39 d
280 dx U







 (16.114) 

 

To integrate Eq. 16.114 for , we need to employ the appropriate constituent equation for w , 
which we do in the next two sections for (1) a power-law fluid ,and (2) an ideal Bingham plastic. 
 

16.6.1 Flat Plate Boundary Layer for a Power-Law Fluid 
 
In order to integrate Eq. 16.114, we need to have a constitutive equation for the wall shear stress 
in terms of the velocity behavior, which for a power-law fluid (in Cartesian coordinates) is Eq. 
16.4, for y = 0: 
 

n

w yx y 0
y 0

uK
y



 
     

 
 

  

We determine the derivative, 
y 0

u
y






, from our assumed third-order velocity profile of Eq. 16.110 

as: 
 

y 0

1 5Udu
dy

.







 

  

Thus, the wall shear stress becomes: 
 

n

w
1.5UK  

   
 

  (16.115) 

 

Substituting Eq. 16.115 into Eq. 16.114, we have: 
 

 
nn

2 2 n n

K 1 51 5U39 d K
280 dx U U

..
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n

n
2 n

280K 1 5
d dx

39 U
.




  


 

 

Letting  = 0 at x = 0, and integrating: 
 

 
nn 1

2 n

280K 1 5
x

n 1 39 U
.








 
 

or 

  
1

n n 1

2 n

280K n 1 1 5
x

39 U
. 





 
   

  

 

 

Scaling  on x, we have: 
 

  
  

1 1
n 1n 1 n 1n n 1

2 n n 2 n n

7 179K n 1 1 5 K7 179 n 1 1 5
x U x U x

. .
. .

 


 

 

                 

 

 

While this equation looks quite ugly, the first term is simply a function of n, and the second term 
is a Reynolds number for a power-law fluid. Thus, we define a relationship as: 
 

 
1

n 1
x pl

F n
x

_Re 


    where      

1
n n 1F n 7 179 n 1 1 5. .   

 
   and  

2 n n

x pl
U x

K_Re





  (16.116) 

For a given K and n, we can calculate 
x
  for any x pl_Re  using Eq. 16.116.  Note that the form of 

the Reynolds number for a power-law fluid appears different from a Newtonian flow. However, 

this is the result of K having units of Pa sn  n
2

Fi e t
L

. . 
 
 

 , where F = force, L = length, and t = 

time. So, if we consider the units of x pl_Re  for Eq. 16.115 2

MLnoting that F
t

 
 

 
 , we have: 

 

 
2 n

n
2 n n 3 2 n

x pl
n

2 2 2 n

M L ML
U x L t Lt 1

F ML MK t
L Ft Lt

_Re



 




    
           
    
    
    

 

 

So, x pl_Re  is a dimensionless power-law Reynolds number. To verify that Eq. 16.116is correct, 

if we let n = 1 and K = , which is a Newtonian fluid, Eq. 16.116 becomes: 

Newton

x Newton

4 641
x _

.
Re


         and   x Newton

U x
_Re 
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This is the same result we obtained for a Newtonian flow in Table 14.1 using the same similarity 
velocity profile of Eq. 16.110.  
 
To determine the wall shear stress for a power-law fluid we substitute Eq. 16.116 back into Eq. 
16.115: 

   

n1 n
nn n 2n 1 n 1

x _ pl x _ pl
w n 2

1.5U Re KU Re1.5U U1.5K K
F n x F n x U
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x _ pl 12 n n
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This gives a friction coefficient, cf, of: 
 

 

n

wall
f 1

2 n 1
x pl

1 5 1c 21 F nU
2 _

.

Re 


 
   

      
   

 

    where  
2 n n

x pl
U x

K_Re





  (16.117) 

 

To check Eq. 16.117, we again let n = 1 and K = , a Newtonian fluid, and get: 
 

       
1 1

n 1n 1 2 1F n 7 179 n 1 1 5 7 179 1 1 1 5 4 641. . . . .        
   

 

and, 
2 n n 2 1 1

x PL x Newtonian
U x U x U x

K_ _Re Re
 

  
  

   
 

 

So, 

f Newtonian
x Newtonian

0 646c _
_

.
Re

  

 

This is identical to the cf shown in table 14.1 obtained for a Newtonian fluid with the same 
assumed similarity velocity profile, as it should be. 
 
To examine the effect of n on the boundary layer and shear stress for power-law fluids, figure 

16.21 shows plots of both 
x
  vs. x pl_Re   (Eq. 16.116) and cf vs. x pl_Re  (Eq. 16.117) for selected 

n values.  While the non-dimensional property behavior shown in figure 16.21 would seem to be 
relatively clear, the irksome properties of power-law fluids make it a bit hard to make clear 
assessments of comparative behavior, since the n and K values can greatly affect dimensional  
properties, such as absolute shear stress and physical boundary layer thickness. 
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(a) 

 

 
(b) 
 

Figure 16.21 Comparisons of boundary layer characteristics of a power-law fluid as a 

function of Reynolds number ( 
2 n n

x
U x

K
Re






  ) for selected n values.  

 (a) 
x


 vs. xRe   (b) cf vs. xRe . 
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What we can observe from figure 16.21 is that at comparable Reynolds numbers, boundary 
layers for shear thinning fluids (n < 1) are thinner and have correspondingly lower friction 
coefficients than a Newtonian fluid. Conversely, boundary layers for shear thickening fluids (n > 
1) are thicker and have higher friction coefficients than a Newtonian fluid, again at comparable 
Reynolds numbers. However, how this relates to comparable distances along a flat plate is not 
intuitive, since the variations in the K and n values significantly affect the shear stress, making 
each fluid unique.  So, figure 16.21 is suggestive, but not an ideal comparison of power-law 
fluids. Such comparisons, as pointed out in our examination of power law fluids in section 16.4, 
require the examination of the specific values of K and n. 
 
An additional observation, is that for shear thickening fluids, /x remains greater than what we 
specified for the approximations we made to reduce the continuity/momentum equations to the 
boundary layer equations (i.e. /x < 0.01), so the shear thickening fluids may not quite satisfy 
those approximations. 
 

16.6.2 Flat Plate Boundary Layer for an Ideal Bingham fluid 
 
For an ideal Bingham plastic, the constitutive equation for the wall shear stress (in Cartesian 
coordinates) is Eq. 16.44b, for y = 0: 
 

w B 0
y 0

u
y



 
     

 
 

 

We again determine the derivative, 
y 0

u
y






, from our assumed third-order velocity profile of Eq. 

16.110 as: 
 

y 0

1 5Udu
dy

.







 

 

So, the wall shear stress becomes: 
 

B
w 0

1.5 U
   


 (16.118) 

 

However, Eq. 16.118 is misleading.  When an ideal Bingham plastic is in contact with a flat 
plate, the wall shear stress must exceed 0  in order for the fluid to move and develop a boundary 

layer.  So, a shear stress of w 0    must be present in order for the outer region material to 

move at U
.   Additionally, since the shear stress away from the wall must be less than or equal to 

the wall shear stress, the Bingham plastic will not behave as a fluid until w 0   .  Until that 
criteria is met, the Bingham plastic will remain stationary over its entirety.  Thus, the outer edge 
of the boundary layer will be where 0   , not 0  ; the latter is the case only for a 
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continuously deformable fluid, such as a Newtonian or a non-Newtonian power-law fluid. Thus, 
the simplified momentum integral equation, Eq. 16.110, must be modified by reassessing the 
integrated shear stress term in our Eq. 16.109a.  Recall that for a fluid with 0  at y = , 
(Newtonian or power-law fluid) we showed that: 
 

y
yyx

yx yx yx w wy 0 y y 0
y 0

dy 0
y




  



         

   

 

However, for a Bingham plastic, the upper boundary condition on the integration will be 0    

at y = , so our integrated shear stress term will be: 
 

y
yyx

yx yx yx 0 wy 0 y y 0
y 0

dy
y




  



        

  

 

This integration makes the momentum integral equation for a Bingham plastic: 
 

0 w
2

dUd 12
dx U dx U

*( ) 

 

  
    


 (16.119) 

 

Thus, the simplified flat plate equation, assuming the same similarity velocity of Eq. 16.111, and 
substituting from the Bingham plastic constituent Eq. 16.118 into Eq. 16.119 gives: 
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Again, letting  = 0 at x = 0, integrating, and solving for (x): 
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    where    x B
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and 
 

x B

4 641
x _

.
Re


  (16.120) 

 

Note that Eq. 16.120 is identical to that obtained for a Newtonian fluid with the same assumed 
similarity velocity profile, as shown in Table 14.1. While the comparative boundary layer 
development will be the same as for a Newtonian fluid, as shown on the power-law graph of 
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figure 6.21, the behavior of the shear stress will differ quite significantly.  If we substitute Eq. 
16.120 back into Eq. 16.118, the wall shear stress is given by: 
 

2
B x _ B x _ BB

w 0 0 0

B

1.5 U Re 0.323 U Re1.5 U
4.641x U x

 



 
         

  
 

 

 

or 
2

w 0
x _ B

0.323 U
Re


     

 

Which gives a friction coefficient, cf, of: 

wall 0
f

2 2x B

0 646c 1 1U U
2 2

_

.
Re

 

 
  

 

 (16.121) 

 

Note that Eq. 16.121 is the same equation for cf as for a Newtonian flow, with the additive 
resistance due to the material yield stress, 0 , which is the wall shear stress required for the 
Bingham fluid adjacent to the wall to fluidize.  Once the boundary layer region “fluidizes,” an 
ideal Bingham plastic will behave like a Newtonian fluid within the fluid region, but the actual 
wall shear will be that due to a combination of the fluid shear stress plus the material yield stress

0 .   
 
16.7 Conclusion 
 

As illustrated by the examples in sections 16.4, 16.5, and 16.6, non-Newtonian fluids behave 
markedly different that Newtonian fluids.  In addition, the modeling of non-Newtonian fluids can 
give rise to anomalies, such as the flow consistency index, K, for power-law fluids, which has 
fractional property units (as a result of fractional values of the fluid behavior index n). This 
makes it hard to compare power-law fluids, to either a Newtonian fluid or other non-Newtonian 
fluids, particularly pressure gradient variations for Poiseuille flows, as was discussed at the end 
of Sections 16.4.1.2 and 16.4.2.2, and comparative boundary layer behavior, as discussed in 
Section 16.6.1. 
 

Relative comparisons of non-Newtonian fluids to a Newtonian fluid is important, if one is to 
understand differences in flow behavior.  What constitutes an effective presentation of relative 
effects is reflected by figure 16.16 in Section 16.5.2.1.  In that figure, I chose to normalize the 
relative velocity behavior of Bingham plastic Couette flows for rotating, concentric cylinders to 
the Newtonian wall velocity, rather than the wall velocity for the particular Bingham plastic 
material. Recall that since we could not specify a common wall velocity, by necessity we had to 
assume a value of torque, from which we educed the corresponding wall velocities.  Since the 
torque was the common parameter for those flows, it seemed most logical to show how the 
velocity behavior varies relative to a Newtonian fluid under the same applied torque.  This form 
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of presentation in figure 16.16 illustrates both the variation in the shape of the velocity profiles 
and the retardation of the wall velocity due to the presence of a Bingham plastic yield stress  
( 0 0  ).   
 

So, what if we were to normalize the velocity behavior of the Bingham plastic materials on the 
respective wall velocities for those materials, instead of on the wall velocity for a comparable 
Newtonian fluid?  Would that form of presentation be as instructive?  Figure 16.22 shows a 
comparison, for ir * 0.5 , of normalizing Bingham plastic velocity behavior on each material’s 

moving wall velocity  0wall, r *i.e. v / V  versus normalizing on the moving wall velocity for a 

Newtonian fluid  wall,Newtoniani.e. v / V .   
 

 
Figure 16.22 Alternative scaling for Couette flow of an ideal Bingham plastic, ir * 0.5 .  

Both moving outer wall (left plots) and inner wall (right plots) are shown. 
Upper plots scaled on wall,NewtonV  for a Newtonian fluid.  
Lower plots scaled on 

0wall,r *V  for each particular Bingham plastic. 
 
The top row of figure 16.22 shows the normalization of the velocity profiles with respect to the 
comparable Newtonian wall velocity, as was done in figure 16.16.  Using this form of 
normalization, it is easy to discriminate between the two regions of the flow process—fluid 
versus solid behavior—and to understand the degree of velocity retardation the moving wall 
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experiences due to the material yield stress of the Bingham plastic. In contrast, scaling on the 
actual material wall velocity, as is done for the bottom row of figure 16.22, does not clearly 
reveal the changes in the velocity behavior between solid and fluid behavior, and does not show 
the degree of retardation of the wall velocity under the same applied torque.  Also, this latter 
scaling approach cannot effectively represent the stationary material behavior when 0 ir * r *  (for 
which 

0wall,r *V 0 ).  This velocity scaling issue illustrates the importance of understanding the 

method of presentation of relative flow behaviors in order to reveal important physical 
behavioral changes. 

 
 

Figure 16.23 Comparison of similar Poiseuille velocity profiles for a power-law fluid and 
an ideal Bingham plastic flow in a circular duct. Velocities are normalized on 
the respective centerline velocities for selected values of the power-law fluid 

behavior index, n, and the Bingham plastic yield radius, 0
0

2r *
pR
x




 
 
 

. 

 

In Sections 16.4.1.2 and 16.4.2.2, I mentioned that certain non-Newtonian fluids might 
demonstrate behavior that could be reasonably described by either a power-law or an ideal 
Bingham plastic.  For example, shear-thinning fluids often display Poiseuille behavior that could 
be approximated by either model.  Figure 16.23 shows such a comparison for Poiseuille flow in a 
circular tube.  Note how the red lines (n = 0.5 and 0r * 0.2 ) and the blue lines (n = 0.2 and 

0r * 0.5 ) display similar velocity profiles, suggesting that either model might be applicable.   
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However, while the profiles appear similar, a shear thinning fluid (n < 1) will always behave as a 
fluid under any pressure gradient, whereas if the pressure gradient for a Bingham plastic is 
reduced such that:  
 

0
0

2pr * 1
x R

 
   

 
 

 

the Bingham plastic will behave as a solid.  So, one must be careful to assess the type of 
behavior the fluid will assume under all conditions. 

 
Additionally, the literature on non-Newtonian fluids is fraught with inconsistencies, due to 
testing of supposedly similar materials, but which give often markedly different properties, and 
which may be represented by significantly different models.  As pointed out earlier, materials 
cited in the literature are often subject to variances due to the method of creating the material, the 
distribution of particle sizes (e.g. in food slurries, such as tomato paste), or vagueness in the 
constituents (e.g. the composition of particular types of paints).  Therefore, caution must be 
exercised in using tables, such as Table 1 at the end of this chapter, or any other generic table of 
properties. From a practical sense, it is important to have reliable empirical test results for a 
particular non-Newtonian material in order to assure the accurate prediction of the material 
behavior in a particular flow system. 
 
I will close this chapter by noting that we have only touched on two types of rather simple non-
Newtonian fluid models, and have examined only simple types of steady state flows.  You 
should be struck by how much more involved the “simple” solutions for a non-Newtonian fluid 
are than for a Newtonian fluid.  Clearly, if we consider more complicated flows, such as exact 
boundary layer solutions, time-dependent flows, drag, and flows in multi-dimensions, solutions 
are generally possible only using numerical approaches. The literature is full of such solutions, as 
well as other manifold non-Newtonian fluid models.  Hopefully, understanding the simpler 
examples covered in this chapter will prepare you to examine, and appreciate, more complicated 
non-Newtonian flows. 
 
Speaking of complicated flows, we will now transition back to Newtonian fluids, and examine 
what is the most complicated type of flow behavior, turbulence, which along with the process of 
transition from laminar to turbulent flow will be the topic of the next, and last, chapter of this 
book. 
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16.8 The Governing Equations for Non-Newtonian Fluids 
 

16.8.1 Stresses on a Non-Newtonian Fluid: Cartesian and Cylindrical Coordinates 
 

Note: stresses are listed in terms of the generic deformation rate  , and the effective  
viscosity, e , which is dependent on the non-Newtonian model employed. 

 
xx e xxp 2         xy e xy yx       

yy e yyp 2         xz e xz zx       

zz e zzp 2         yz e yz zy       

 
rr e rrp 2         r e r r         

ep 2          z e z z         

 zz e zzp 2           zr e zr rz       
 
 

16.8.2 Continuity and Momentum Differential Equations in Cartesian Coordinates 
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16.8.3 Continuity and Momentum Differential Equations in Cylindrical Coordinates 
 

  0
z
vv

r
1rv

rr
1 z

r 












   (16.123a) 

 

  






 


















































rzr
1r

rr
11g

r
p1

r
v

z
vvv

r
v

r
vv

t
v

zrr
rrr

2
r

z
rr

r
r

 (16.123b) 

 

  






 



















































rzr
1r

rr
11gp

r
1

r
vv

z
vvv

r
v

r
vv

t
v

rrz
r

2
2

r
zr

 (16.123c) 

 

  























































zr
1r

rr
11g

z
p1

z
vvv

r
v

r
vv

t
v

zzz
rzz

z
z

zz
r

z

 (16.123d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 16 
 

 605 

Table 16.1 
 Select properties of power law and ideal Bingham plastic non-Newtonian fluids 

 

       Power Law Bingham Plastic 

Material 
Temperature 

(C) n K (Pa sn) 0 (Pa) B (Pa s) 
            
Applesauce 27 0.45 7.3     
Chicken (minced) 23 0.1 900     
Chocolate 30 0.5 0.7 35 1 
Cornstarch in water (17%) 25 1.42 6.9E-04     
Cornstarch in water (45%) 25     0.35 0.3 
Human Blood 27 0.9 0.004     
 Lubricating grease  25 0.1  1000      
Mayonnaise 25 0.131 100 30 0.13 
Nail Polish 25 0.86 750     
Paint (latex) 25 0.6 21.5 15 0.065 
Peanut Butter 30 0.07 500     
Raspberry Jam 25 0.34 12.6     
Shaving Cream 25     17.5 0.015 
Sunscreen Lotions 25 0.28 75     
Synovial Fluid 37 0.4 0.5     
Tomato Juice (6% solids) 20 0.56 0.19     
Tomato Ketchup 30 0.24 33 13 0.15 
Tomato Paste (25% solids) 25 0.5 1.5 104 0.3 
Toothpaste 25 0.28 120 200 10 
Water 25 1 0.0089     
Wheat Batter 30 0.75 110     
Whipped Butter 30 0.057 312     
      
49 %Fine coal slurry in water  -     1 0.005 
7.5% Kaolin slurry in water -     7.5 0.005 
32% Kaolin slurry  in water -     20 0.005 
14% Sewage sludge -     3.1 0.025 
39% Red mud slurry -     23 0.030 
40% Drilling mud - 0.51 1.3 11 0.030 
Fresh water mud - 0.8 0.319     
72% Pulverized fuel ash in water - 0.46 9.3     
Cement Slurry - 0.36 3.0 5.4 0.029 
20% Sand/Water mixture - 1.48 0.000313     
40% Sand/Water mixture - 1.21 0.0269     

  Power law:       
n n 1

PL app appK , K 
               Ideal Bingham Plastic:    BP B 0     
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Study Problems 
(note: obtain all material/fluid properties from Table 1) 

 
1.  Consider Couette flow between parallel plates, the lower plate fixed and the upper plate moving at 

U=1 m/s.  If the gap between the plates is 1 mm, what are the values of shear stress for the following 
power law fluids: applesauce, tomato paste, and synovial fluid?   

 
2.  Consider Couette flow between parallel plates, the lower plate fixed and the upper plate moving at 

velocity U.  If the gap between the plates is 1 mm and a shear stress of 35 Pa is applied to the upper 
plate, what will the velocity U be for the following Bingham plastic materials: mayonnaise, tomato 
ketchup, paint, and 40% drilling mud?   

 
3.  Consider Poiseuille flow between parallel plates spaced 4 cm apart.  If a pressure gradient of 30 

Pa/cm is applied, what are the values of flowrate per unit depth in cm2/s for the following power law 
fluids: applesauce, tomato ketchup, and raspberry jam? Note: the flowrate will be negative for a 
positive pressure gradient. 

 
4.  Consider Poiseuille flow between parallel plates spaced 1 cm apart.  If a pressure gradient of 100 

Pa/cm is applied, what are the values of flowrate per unit depth in cm2/s for the following Bingham 
plastic fluids: mayonnaise, tomato ketchup, paint, and 40% drilling mud?   

 
5. Consider Couette flow between concentric circular cylinders, with diameters of 20 cm and 16 cm, 

and one meter long. If the inner cylinder is fixed, and the outer cylinder rotates at a velocity of 10 
cm/s, determine the torque in N-cm required to rotate the outer cylinder for the following power law 
fluids: applesauce, tomato paste, and synovial fluid. 

 
6.  Consider Couette flow between concentric circular cylinders, both 2 m long with diameters of 20 cm 

and 12 cm. The inner cylinder is fixed, and a torque of 200 N-cm is applied to the outer cylinder. 
Determine the steady state velocity of the outer cylinder for the following Bingham plastic materials: 
mayonnaise and 40% drilling mud.   

 
7.  Consider Couette flow between concentric circular cylinders, both 2 m long with diameters of 20 cm 

and 12 cm. The inner cylinder is fixed, and a torque of 1000 N-cm is applied to the outer cylinder. 
Determine the steady state velocity of the outer cylinder in m/s for the following Bingham plastic 
materials: tomato paste and toothpaste.   

 
8.  Consider Poiseuille flow in a 4 cm diameter tube.  If a pressure gradient of 10 Pa/cm is applied, what 

are the values of flowrate in cm3/s for the following power law fluids: applesauce, tomato paste, and 
40% drilling mud?  Note: the flowrate will be negative for a positive pressure gradient. 

 
9.  Consider Poiseuille flow in a 2 cm diameter tube.  If a pressure gradient of 100 Pa/cm is applied, 

what are the values of flowrate in cm3/s for the following Bingham plastic materials: mayonnaise, 
tomato paste, and paint?   

 
10.  Mayonnaise and paint have properties that can be modeled as either a power-law fluid or a Bingham 

plastic.  Consider Poiseuille flow between parallel plates spaced 1 cm apart.  If a pressure gradient of 
100 Pa/cm is applied, what are the comparative power-law vs. Bingham plastic values of flowrate 
per unit depth in cm2/s for each of the fluids (i.e. what are Qpowerlaw vs. QBingham for each fluid?).   
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11.  A cement slurry can be modeled as either a power law fluid or a Bingham plastic. Consider 
Poiseuille flow in a 20 cm diameter tube.  If a pressure gradient of 10 Pa/cm is applied, what are the 
comparative power-law vs. Bingham plastic values of flowrate in m3/s (i.e. what are Qpowerlaw vs. 
QBingham?).   

 
12.  40% drilling mud can be modeled as either a power-law fluid or a Bingham plastic. Consider 

Poiseuille flow in a 20 cm diameter tube.  If a flowrate of 1 m3/s is be achieved, what are the 
comparative power law vs. Bingham plastic values of pressure gradient in Pa/m required to achieve 

this flow rate (i.e. what are 
powerlaw

p
z



 vs. 

Bingham

p
z



?).  Note that you will need to assume that Q < 0 

for the power law model. And since 0
0

2r
p
z




 
 
 

 for a Bingham plastic, you will have to iterate to 

determine 
p
z



 and the appropriate 0r *  value.   

 
13. Consider Couette flow of peanut butter between concentric circular cylinders, with diameters of 20 

cm and 16 cm and lengths of 1 m. If the inner cylinder is fixed, and the outer cylinder rotates, 
determine the respective torques in N-m required to rotate the outer cylinder at velocities of 10 cm/s 
and 50 cm/s. 

 
14.  Peanut butter is pumped 100 m through a 12 cm diameter pipe from the processing area to the 

bottling area of a plant.  If a pressure gradient of 200 Pa/cm is required, and Poiseuille flow is 
assumed, determine the flowrate in cm3/s through the pipe, and the total power required for the 
pumping process in kWatts.  What is the change in flowrate and power requirements if the pressure 
gradient is increased to 250 Pa/cm? 

 
15.  A 49% fine coal slurry in water is pumped 400 m from a mine site to a railroad tank car through a 30 

cm diameter pipe as a Poiseuille flow.  If we want a flowrate of 3 m3/s, determine the pressure gradient 

required, in Pa/m, and the power required in kWatts. Since 
02

0 p
z

r 





  for a Bingham plastic, you will 

have to iterate to determine 
p
z



 and the appropriate 0r  value.   

 
16.  A 40% sand in water mixture is pumped 1000 m from a mixing site to a processing plant through a 

40 cm diameter pipe as a Poiseuille flow.  If a flowrate of 1 m3/s is be achieved, what pressure 
gradient in Pa/m is required to achieve this flowrate? Note that you will need to assume that Q < 0 
for the power law model.  Also, how much power will be required for this process? 

 
17.  If the sand-water mixture in problem 16 is diluted to 20% sand in water mixture, and the flowrate 

increased to 2 m3/s (which will keep the amount of sand delivered the same), will this reduce or 
increase the pressure gradient required and the power required? Again note that you will need to 
assume that Q < 0 for the power law model.   

 
18.  If latex paint behaves as a Bingham plastic, how thick can a paint layer be before it starts to run down 

a vertical wall?  How thick would a layer of toothpaste (using its Bingham plastic properties ) have to 
be before it would flow down the wall?  Note the density of paint is 1200 kg/m3, and the density of 
tooth paste is 1300 kg/m3. 
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19.  Using basic principles, similar to Section 16.4.1, derive an 
equation for u(y) of a power-law fluid flowing down a vertical 

wall, where 
p 0
x
 

 
 

 and gx = g (where g acts in the x-

direction, toward the ground, and y is oriented outward from the 

wall, as shown).  Equation 16.7 simplifies to yxg 0
y


  


, 

where 
n

yx
uK
y

 
   

 
, with boundary conditions u = 0 at y = 0, 

and 
u 0
y





 at y = t, where t is the fluid layer thickness. What 

will the velocity at y = t be? 

20.  Using basic principles, similar to Section 16.5.1, derive an equation for u(y) for a Bingham plastic 

material flowing down a vertical wall, where 
p 0
x
 

 
 

 and gx = g (where g acts in the positive x-

direction, toward the ground, and y is oriented outward from the wall). See problem 19 schematic.  

Equation 16.108b simplifies to yxg 0
y


  


, where yx B 0

u
y

 
     

 
 when 0yx   (and  

u 0
y





when yx 0   ).  The boundary conditions are u = 0 at y = 0, and 
u 0
y





 at y = t, where t is 

the fluid layer thickness.  Here, you will have to use a variation on Eq. 16.55 as 0
0y t

g


 


, since 

gravity is the driving force, not the pressure gradient. 

21. A polymer solution of density 1000 kg/m3 flows at a free stream velocity of 1 m/s along a flat plate 
30 cm long.  The solution is listed as being modeled as either a power law (K = 0.3 Pa-sn and n = 0.5) 
or an ideal Bingham plastic ( 0  = 2.28 Pa and B = 7.22 mPa-s).  Compare the results of these 
models for calculation of the boundary layer thickness and the wall shear stress at the end of the plate.  
Do the calculations support a preference for either model? 

22. In a manufacturing plant, tomato paste at 25 C, and density of 1300 kg/m3, flows across a flat plate 2 
meters long.  Other than within the boundary layer the tomato paste flows uniformly at 1 m/s.  
Assume that the boundary layer thickness is zero at the leading edge of the plate. Using the properties 
given in Table 1, determine the boundary layer thickness and the shear stress at the trailing end of the 
plate if the tomato paste is modeled as (a) a power-law fluid, and (b) an ideal Bingham plastic.  
Compare the results of these models for calculation of the boundary layer thickness and the wall shear 
stress at the end of the plate.  Do the calculations support a preference for either model? 

23. 40% drilling mud of density of 2750 kg/m3, flows across a flat plate 2 meters long and develops a 
boundary layer.  Outside the boundary layer the mud flows uniformly at 1 m/s.  Assume that the 
boundary layer thickness is zero at the leading edge of the plate. Using the properties given in Table 
1, determine the boundary layer thickness and the shear stress at the trailing end of the plate if the 
drilling is modeled as (a) a power-law fluid, and (b) an ideal Bingham plastic.  Compare the 
calculated results of these models for the boundary layer thickness and the wall shear stress at the end 
of the plate.  Do the calculations support a preference for either model? 
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17.1 What is Turbulence?   
 
Anyone who has flown in a commercial aircraft has probably heard the word "turbulence" used 
to describe the bumpy, unsteady behavior often encountered during a flight.  This unsteady flight 
behavior is caused by unsteady lift and drag forces, which are the result of the aircraft 
encountering pockets of large velocity variations in the surrounding air due to proximity to 
terrain variations (such as mountains) or strong thermally-induced density variations, such as 
those associated with thunderstorm activity.  The result is generally large, somewhat random 
fluctuations in velocity, which in turn interact with the surfaces of the aircraft, resulting in 
comparable fluctuations in lift and drag.  The result is a bumpy, disconcerting ride, caused by 
what is termed clear-air turbulence. 
 
However, turbulence occurs in most practical flows passing over, around, and through 
engineering systems.  While the large regions of clear-air turbulence create a sometimes 
harrowing ride, turbulence is also always present in the boundary layer flow over the aircraft 
surfaces.  In fact, all vehicles, whether they are cars, trucks, trains, or ships, experience and are 
impacted by turbulence. So are all internal fluid transport systems such as pipelines, air handling 
ducts, or waterways. 
 

So, what is turbulence?  The short answer is a state of seemingly random fluctuations of a 
flowing fluid, which results in intense mixing of mass and momentum, and dissipation of kinetic 
energy. There are basically two types of turbulence: non-sustaining and self-sustaining. Non-
sustaining turbulence is generated by fluid-solid interactions, but then dissipates after it leaves 
the surface, like shedding from a cylinder, high-shear fluid interactions, or by strong density 
variations. However, once generated, non-sustaining turbulence will dissipate due to vortex 
interaction and viscous dissipation. Turbulence is always in a state of energy dissipation, and 
when it is removed from bounding surfaces it will gradually dissipate. Think of a jet of water 
entering a swimming pool—turbulence will be generated almost immediately at the boundaries 
of the jet, but the mixing and strong interactions of the turbulence will slowly die out as the jet 
flows further into the pool. On the other hand, self-sustaining turbulence is generated adjacent to 
solid, continuous boundaries, like flow over a flat plate or an airplane wing or fuselage. Here, the 
turbulence will both dissipate, and be regenerated adjacent to the bounding surface (within the 
boundary layer). Thus, continued regeneration balances the dissipation, creating a self-sustaining 
process of new turbulence generation adjacent to older turbulence dissipation.  Such self-
sustaining turbulent behavior, as is experienced in boundary layers, results in a continuation of 
turbulent behavior downstream within a boundary layer, with the strong mixing interactions near 
the bounding surface resulting in a significant increase in surface friction. Of course, when self-
sustaining turbulence leaves a surface, such as when a boundary layer exits an airfoil, it will 
become non-sustaining. 
 

http://en.wikipedia.org/wiki/Clear-air_turbulence
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Now for the hard question: where and why does turbulence occur, and how does one characterize 
it and its effects on the fluid and the fluid interactions with bounding surfaces?  To answer this 
question, we will take the next multiple pages, and some admitted arm waving, to address the 
process even cursorily.  In addition, we will again only be able to give the short answer, which, 
although it may seem expansive, will be somewhat incomplete.  The reason for this vagueness is 
that next to the origin of the universe, or the establishment of a unified field theory of physics, 
turbulence is probably the most perplexing problem in physics.  In fact, numerous giants of the 
fields of physics and fluid mechanics have often, in their later years, commented that turbulence 
remains, and will probably remain, the most difficult physical process to truly understand.  
Moreover, this remains true, despite a continual improvement in the tools to study turbulence 
(e.g. 3-D velocity measurement systems, and continually more powerful computers).   
 

So, where to begin?  First, let us review the general process by which a flow becomes turbulent.  
In a naturally occurring self-sustaining turbulent process, a flow will generally begin as a laminar 
flow.  As the flow develops, either along a surface or moving within a quiescent surrounding 
fluid, small instabilities (think small, wave-like behavior) will develop within the flow.  Under 
the appropriate conditions, these instabilities will begin to amplify (i.e. grow in amplitude).  As 
the instabilities amplify and grow, they will eventually undergo a transition to a complex, three-
dimensional behavior, manifested by the development of localized concentrations of time-
dependent vorticity.  Finally, this transitional behavior will grow into a complicated, three-
dimensional distribution of vorticity of extended scales, which both (1) entrains additional mass 
and momentum from adjacent non-turbulent fluid, and (2) dissipates local fluid kinetic energy by 
intense local viscous action.  Over a bounded surface, this process of entrainment, mixing, and 
dissipation becomes self-sustaining, continuing to entrain surrounding fluid, and dissipate local 
fluid energy at a much more elevated rate than a comparable laminar flow.  A crude 
representation of this evolution from laminar to turbulent flow for a flat plate boundary layer is 
shown schematically in figure 17.1. 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 17.1 A generic schematic of the evolution of turbulence from a laminar flat plate 
flow (not to scale). 

Laminar Transition Turbulence 
Instability 

amplification 
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While turbulence is characteristic of almost all flows of practical engineering interest, a concrete 
description is elusive—we generally discuss generic characteristics, since it is difficult to 
describe the exact characteristics that will apply to all types of turbulent flows.  I once paid a 
visit to A.D. Young, a famous Queen Mary University of London fluid dynamicist, and noted on 
a corner of his office blackboard he had written the following statement:  "When we measure a 
fluid behavior, and we don't know what is happening, we call it turbulence."   
 
While there are many descriptions of turbulence, many short and many long, we will use a set of 
characteristics summarized by R.W. Stewart in his narration of the educational film, 
"Turbulence."  This film (converted to a YouTube video), although old, provides a practical 
display of the visual characteristics of turbulence and a good, generic description of the 
turbulence processes.  I recommend you view the video.  
 
In the film, Stewart cites the following basic characteristics: "disorder (randomness); enhanced 
mixing; and three-dimensional motions involving angular momentum (i.e., vorticity)."  Most 
researchers would agree with these, and probably add to or modify the list.  However, we will 
use these as our basis for our discussion of turbulence. Turbulence is the epitome of a process 
that is described by the statement: "I don't know what it is, but I know it when I see it (or 
measure it)."  
 
 

 (a) Laminar B.L.  
 
 
   
(b) Shedding Cylinder   
 
 
  
(c) Turbulent B.L.  

 
 

Figure 17.2 Typical hot-wire anemometer velocity measurements of the temporal velocity 
behavior in: (a) a laminar boundary layer, (b) the wake of a shedding cylinder, 
and (c) a fully-turbulent boundary layer. 

 
As an illustration of what is and what isn’t turbulence, consider the instantaneous measurement 
of the local velocity behavior in three different types of flow, within otherwise steady flow 
fields, as shown in figure 17.2.  Such measurements can be made with an instrument known as a 
hot-wire anemometer, which employs a very fine electrically heated wire, and the changes in the 

u 
time 

u 
time 

u 
time 

https://en.wikipedia.org/wiki/Alec_David_Young
http://www.youtube.com/watch?v=1_oyqLOqwnI&list=PL0EC6527BE871ABA3&index=12&feature=plpp_video
http://www.youtube.com/watch?v=1_oyqLOqwnI&list=PL0EC6527BE871ABA3&index=12&feature=plpp_video
https://en.wikipedia.org/wiki/Anemometer#Hot-wire_anemometers
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wire temperature due to local velocity fluctuations, to measure changes in local velocity behavior 
using the relationship between electrical resistance and the temperature of the wire.  The benefit 
of employing a hot-wire anemometer to measure turbulence is that it has a very fast response 
time, so it can accurately measure flows that vary very rapidly with time, such as turbulence. 
 
The first of the measurements shown, figure 17.2a, is within a laminar boundary layer, which 
shows essentially no temporal changes in the velocity at a point, since laminar flows move in 
layers (lamina), and from an Eulerian view are steady.  
 
 The second measurement shown, figure 17.2b, is in the wake of a laminar flow over a cylinder, 
with the separating boundary layer forming an unsteady, but periodic, set of shedding Strouhal 
vortices (as we discussed in Section 15.4).  As these vortices pass the velocity-sensing probe, 
they cause a periodic variation in the velocity.  While such flows may be turbulent, such periodic 
variations can also occur in otherwise laminar flows, and can maintain two-dimensionality.  
Therefore, a lack of randomness and three-dimensionality would disqualify this flow as a 
turbulent flow.   
 
The third measurement shown, figure 17.2c, represents the local velocity behavior within a 
turbulent boundary layer.  Here, the velocity will vary in an apparently erratic, temporal manner, 
displaying the apparently random behavior that is characteristic of turbulence.  Note that we 
cannot discern whether the measured velocity is three-dimensional, or is the result of vorticity 
variations, but a researcher encountering such a velocity behavior would presume that this is a 
measurement of turbulence (note the supposition that anything not reflecting laminar or pure 
periodicity is turbulence, as per A.D. Young's blackboard quote). 
 
However, what conditions are necessary for a laminar flow to transition to a turbulent flow?  
Again, this is a debatable area, but most turbulence researchers would agree to three primary 
criteria: 
 

 1)  High Reynolds number (inertia/viscous imbalance)  

 2) Velocity gradients  

 3) The presence of flow disturbances 
  

The necessary levels or magnitudes of these criteria that are sufficient to produce a transition 
from a laminar to a fully-turbulent flow differ, depending on the type of initial flow (i.e. 
boundary layer, jet, pipe flow, etc.).  For a given type of flow, there is generally a critical 
Reynolds number that must be reached (based on a characteristic length appropriate to the flow, 
such as the boundary layer thickness) before a flow will begin the process of transitioning to 
turbulence.  Velocity gradients are also particularly important; the stronger or sharper the 
gradient is, the sooner turbulence will develop.  In addition, to initiate the process of transition to 
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turbulence requires the presence of disturbances, either preexisting within the flow or created by 
irregularities of a bounding surface. 
 
17.2 Initiation of Turbulence: Flow Instabilities 
 
As was indicated in figure 17.1, the initiation of turbulence begins with the development of an 
instability within the flow.  Now, many types of flows can undergo flow instability, and in many 
cases this instability is simply a transition from one stable laminar state (i.e. behavior) to another 
stable laminar state.  In such a transition process, some effect causes a flow to change from one 
type of flow behavior to another.  A good example is flow over a cylinder at low Reynolds 
numbers, as shown in figure 17.3.   
 

 
 

Figure 17.3 Laminar states for flow over a cylinder.  (a) 0 <  ReD < 1, symmetrical flow;  
  (b) 4 <  ReD < 40, attached vortices; (c) 40 <  ReD < 60-100, laminar vortex 

shedding. 
 
As pointed out in Chapter 15, at very low Reynolds numbers (ReD < 1), the flow around a 
circular cylinder will behave very much like a potential flow (see Section 9.8.1), with the 
streamlines passing evenly and symmetrically around the cylinder (figure 17.3a).  However, as 
the Reynolds number increases to ReD > 4, the flow takes on a different character, where two 
attached, counter-rotating vortices appear adjacent to the downstream surface of the cylinder 

(a) 

(b) 

(c) 
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(figure 17.3b).  Then, for ReD > 40, the flow transitions to an unsteady flow, with laminar 
vortices shed periodically from the rear of the cylinder (figure 17.3c).  Thus, the flow over a 
circular cylinder undergoes instabilities with increasing Reynolds number, which cause a sudden, 
and marked change in the character of the flow field.  See this link for images of the flow states 
for a circular cylinder. 
 

There are many other types of flows for which a small change in the Reynolds number leads to a 
marked change in behavior from one stable state to another.  Another example is changes in flow 
behavior with increased rotation.  Consider a fluid contained within the annulus formed by two 
concentric cylinders, as shown in figure 17.4.  If the inner cylinder is rotated steadily and the 
outer cylinder held fixed, at low rates of rotation the flow in the annulus will form a steady, 
Couette flow, with a two-dimensional velocity profile, as characterized by equation 6.55a: 
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critical level, the flow will spontaneously undergo transition from a two-dimensional Couette 
flow to a Taylor flow.  A Taylor flow is a three-dimensional, relatively steady flow comprised of 
a series of steady, laminar vortices engirdling the annulus, with their axes of rotation in the 
azimuthal direction, as shown schematically in figure 17.4b .  See also visualizations of Taylor-
type flows here. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                          

(a) Laminar Couette flow (b) Laminar Taylor flow 
 

Figure 17.4 Transition from stable laminar Couette flow to stable laminar Taylor flow in 
the annulus of concentric cylinders due to increased rotation. 

Ω Ω State transition 
to Taylor flow 
with increased 

rotation 

Taylor 
vortices 

https://www.google.com/search?q=flow+over+a+cylinder+reynolds+number&newwindow=1&sa=X&biw=1920&bih=1066&tbm=isch&tbo=u&source=univ&ved=0ahUKEwizy8mZ-MPMAhUJ1B4KHfB6AjkQsAQIJg
https://en.wikipedia.org/wiki/Taylor%E2%80%93Couette_flow
http://serve.me.nus.edu.sg/limtt/TCF_0.8.JPG
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Both for flow over a cylinder and flow in a concentric cylinder annulus, a small change in the 
appropriate Reynolds number results in a marked change of the flow state.  Recall that the 
Reynolds number is a measure of the ratio of inertia forces to viscous forces.  So, as inertia 
effects increase, the less stable the original flow becomes, and the greater the probability of a 
change in the flow state.   
 
To understand this loss of stability of one state, and transition to an alternative state, consider the 
stacking of children’s blocks.  If we have a set of children’s wooden blocks scattered on the 
floor, the blocks would be in a stable state, since if they are disturbed (e.g. by giving them a push 
with your hand), they will not change their state (all the blocks will stay on the floor level), other 
than to move across the floor.  However, if we stack several of the blocks, one upon the other, as 
shown in figure 17.5, we know from our childhood experience that a small disturbance can cause 
the blocks to tumble back onto the floor.  Of course, if the stack of blocks is rather low (say two 
to three), a larger disturbance will be required to knock the stack of blocks over than if the stack 
of blocks is higher (say 5 to 7).  Moreover, if one continues to stack the blocks to even higher 
heights, they eventually reach a height where the addition of another block, no matter how 
carefully done, will cause the stack to spontaneously collapse due to the inherent irregularities of 
the individual blocks. 
 
 
 
 
 
 
 
 

Figure 17.5 The stability of stacked blocks.  The higher the stack of blocks, the more 
unstable the process becomes.  

 
What is happening as we stack the blocks higher is that we are creating an unstable state, which 
is subject to small disturbances or perturbations from its surroundings.  When the disturbance is 
of sufficient magnitude, the blocks will suddenly transition from one state (the stacked state) to 
another state (with all blocks on the floor).  We might consider that the stacked state is 
marginally stable, which can sustain some disturbance when the stack is low, but becomes 
unstable as the stack grows in height, until it is unable to tolerate any level of disturbance. 
 
The same process of stability is true for a laminar flow.  In the case of a fluid, it is generally the 
Reynolds number that dictates the level of stability of a flow, and when a transition to another 
state (i.e. turbulence) can be expected.  Since the Navier-Stokes equations govern all Newtonian 
fluids, both laminar and turbulent, an examination of the stability of a laminar flow using the 
Navier-Stokes equations would seem to be a reasonable approach to determine when and how 

Decreasing Stability 
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transition from a laminar to a turbulent flow occurs, and the sensitivity of the process to both 
Reynolds number and the type of disturbance.  However, the non-linear nature of the Navier-
Stokes equation makes the process of analysis not only complicated, but also necessitates some 
sweeping approximations.  In particular, it is assumed that a flow is locally parallel, and for the 
simplest situation, two-dimensional.  
 
 Thus, in a two-dimensional x-y Cartesian coordinate system, we assume that we can write the 
equations for u and v as: 
 

 u = U+u' and  v = V+v' (17.1) 
 

Here, U and V are the mean values of the velocity, and u' and v' represent the fluctuation or 
perturbation velocities (i.e. velocity components that fluctuate about the mean value).  Note that 
the assumption of parallel flow (i.e. parallel in the x-direction) also assumes that the mean flow 
is fully developed, such that U(y), which means (via continuity) that V = 0.  The fluctuating 
velocities are, however, considered functions of x, y, and t (time). 
 
Now, substituting Eq. 17.1 (with V = 0) into the two-dimensional continuity equation, Eq. 5.46a, 
gives: 
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If we now assume a stream function  such that Eq. 17.2 is identically satisfied, we have: 
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This is very much the same process we used for potential flow theory.   However, since u' and v' 
are functions of x, y, and t, this means that  t,y,x . Since we want to investigate how a 
disturbance develops within a flow, we further assume the perturbation can be expressed as a 
traveling wave with amplitude varying with y and the wavelength varying with x and t.   The 
general form of an appropriate function for the stream function is: 
 

     ctxiexpyF   (17.3) 
   

In Eq. 17.3, α is termed the wave number (proportional to 1/wave length) and c is termed the 
wave or phase velocity.  This expression assumes the behavior of the amplitude F(y) will either 
grow or shrink, depending on the respective values of α and c.  Since α and c are arbitrary 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 17 
 

618 
 

constants, the idea is to explore a range of values of α and c, and determine which will give rise 
to a growth of F(y), which will damp F(y), and particularly where F(y) will remain constant.  
What we surmise is that: a growth in F(y) will lead to a breakdown of the flow, leading to 
turbulence; a damping of F(y) will result in the flow remaining in a laminar state; and the 
combination where F(y) remains constant will be where the flow is marginally stable (i.e. the 
boundary of stability).   
 
Now to complicate the matter further, we note that for a traveling wave, the wave velocity is 
assumed complex, such that: 

 

 r ic c ic , where i 1    ,  (17.4) 
    

If we substitute Eq. 17.4 into 17.3, we have: 
 

          r i r iF y exp i x c t ic t F y exp i x c t exp c t                
  

Clearly, the term  tcexp i  controls whether the stream function (and thus the velocities) grows 
or is damped.  If ic > 0, the stream function grows exponentially; if ic < 0 the stream function 
is damped exponentially.  Now, since 0 , this means that the sign of ic controls the stability 
of the flow, and that ic can be considered as a coefficient of amplification .   
 
Therefore, if we can develop and solve an appropriate governing equation for the stream 
function, we can determine which values of α and c yield stable behavior, and which yield 
unstable behavior, for a particular velocity profile. The appropriate governing equation is the 
Navier-Stokes equation, into which we substitute the derivative functions of  , which represent 
the appropriate velocity relationships.  To do this properly we use non-dimensional properties to 
write F(y) as: 
 

 0F y U f( ) * ( )    where   */y   
 

Here, 0U  is a representative velocity of the mean flow (such as the velocity at the edge of a 
boundary layer, or the mean velocity in a pipe flow), *  is the displacement thickness for a 
given mean velocity, and time is non-dimensionalized as *tU*t 0  .  We also linearize the 

process by retaining only first-order perturbation terms (i.e. products of u', v', and u x  ).  
After substituting into the x- and y-direction Navier-Stokes equations, differentiating, and 
consolidating to eliminate pressure terms, we end up with (note that it is not an easy process): 
 

     
*

42
2

Rei
f''f2''''ff''Uf''fcU




  (17.5) 
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In equation 17.5, 





*U
Re 0

* , is the Reynolds number based on the boundary layer 

displacement thickness.  Equation 17.5 is known as the Orr-Sommerfield equation, named for the 
two scientists, W. Orr (1907) and A. Sommerfeld (1908) who independently derived it.  See 
White (1990), pp.342-345 for details of the derivation.  
 
Equation 17.5 looks pretty complicated, and it is.  Some early solutions of this equation were 
developed analytically by Tollmien (1929) and Schlicting (1930).  By the 1950’s, solutions using 
numerical computational approaches were possible, with recent solutions improving markedly as 
computational power has increased.  However, the basic strategy for solving the equation has 
remained the same.  While the mathematical details of the solution are too complicated to discuss 
here, and are better described elsewhere (Wazzan, 1975), the key elements are as follows.  
 
Equation 17.5 is a homogeneous equation (all terms in the equation are functions of f and its 
derivatives).  Additionally, the boundary conditions are that the disturbances, u' and v', and 
appropriate derivatives (all of which are reflected in the function f) must vanish at infinity and 
bounding surfaces.  This makes all the boundary conditions for f() also homogeneous.  Thus, 
we have a homogeneous differential equation with homogeneous boundary conditions, which 
means this is an eigenvalue problem. What this means is that for any given mean velocity profile 
 U  there are select combinations of the parameters *Reand,c,   that will be a solution for 

Eq. 17.5 and its boundary conditions.  The sequence of *Reand,c,   combinations which yield 

valid solutions are then the eigenvlaues of the eigenfunction  f . 
 
Still with me?  After a lot of computations, we can determine a functional relationship for the 
eigenvalues of the form: 
  

  *Re,cc   
 

Or, since c is complex, and we are really concerned with which combination of parameters 
(eigenvalues) cause the disturbances to grow, damp, or remain constant, what we are really 
interested in is the value of ci.  Thus, we can develop a functional relationship for ci of the form: 
 

  *ii Re,cc   (17.6) 
 

So, referring back to our discussion above about ci, if ci > 0 the disturbance will grow (become 
unstable), and if ci < 0 the disturbance will diminish (remain stable).  Therefore, the key value 
we are interested in is ci = 0, which is the demarcation between unstable and stable behavior. As 

Eq. 17.6 suggests, the easiest way to display this stability behavior is using a graph of *Re.vs   
on which we plot lines of constant ci.   

http://en.wikipedia.org/wiki/Orr%E2%80%93Sommerfeld_equation
http://en.wikipedia.org/wiki/William_McFadden_Orr
http://en.wikipedia.org/wiki/Arnold_Sommerfeld
http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
http://en.wikipedia.org/wiki/Walter_Tollmien
http://en.wikipedia.org/wiki/Hermann_Schlichting


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 17 
 

620 
 

 
17.2.1 Stability of Bounded Flows 

 
Flows that are bounded by solid surfaces are the more stable of laminar flows, maintaining their 
laminar state to higher values of Reynolds number.  Such flows are Poiseuille flows between 
plates and in pipes, and boundary layer flows over flat or curved surfaces. 
 
Figure 17.6 is a stability graph for a Blasius flat-plate boundary layer, which displays lines of 
constant ci for a laminar flat plate boundary layer flow, as determined by solution of Eq. 17.5.  
Of particular interest on this graph is the ci = 0 line, shown as a heavier line.  What this line 
represents is a demarcation between disturbances that will grow, and those that will be damped.  
Recall that α is the wave number, or the inverse of the wave length of the disturbance.  So, as α 

increases, the wave length decreases.  Note that 





*URe 0
*  is fixed by the parameters of the 

flow.    
 

 
Figure 17.6 A stability graph, showing curves of constant temporal amplification rate for a 

Blasius laminar boundary layer.  The values associated with the curves are  
 ci x 102.  The black line bounding the shaded area is the line of neutral stability.  

Values of ci < 0 are in the stable regime, and ci > 0 are in the unstable regime 
(shaded). [after Wazzen (1975)] 
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On figure 17.6, note that for low *Re  the flow is stable to disturbances of all wave numbers, and 
thus the flow will damp out any disturbance and remain laminar. However, above a certain 
critical *Re  (for a Blasius-type boundary layer profile critRe  520) there is a certain range of 
disturbance wave numbers that the flow will amplify, thus producing an instability (i.e. causing 
the flow to transition to another state).  As figure 17.6 shows, this range of amplified wave 
numbers is limited, and this range shifts from higher to lower α (i.e., longer wavelengths) as 

*Re  increases. 
 
Note that in Eq. 17.5 the right hand side of the equation reflects the viscous terms of the Navier-
Stokes equation, and is inversely proportional to *Re .  Thus, when *Re  is small, viscosity has a 

strong damping effect on the flow.  However, as *Re  increases, the impact of viscosity is 

reduced, and a given flow will be more susceptible to unstable behavior.  This effect of *Re  is 

clearly shown in figure 17.6, which illustrates that disturbances are damped at low *Re , and 

amplified as *Re  increases beyond critRe . 
 
One might think that by judicious control the region of unstable growth (the shaded region in 
figure 17.6) might be avoided, and the flow could remain laminar to quite large *Re .   However, 
while this might be possible in theory, disturbances in real flows will generally contain a broad 
set of wavelengths (i.e. wave numbers), and thus one or more of the wave numbers will likely be 
amplified as *Re  increases.  Additionally, although not shown in figure 17.6, as *Re , the 
range of unstable wave numbers tends to zero.  Again, while this suggests that we might be able 
to finesse the flow to high Reynolds numbers by judicious control of the disturbance type, in 
practice a real disturbance generally will pass through a Reynolds number where at least one of 
its wave numbers will become unstable. 
 
When one considers internal duct-type Poiseuille flows, similar stability graphs can be 
established.  For a two-dimensional Poiseuille flow between parallel plates of spacing t, 

calculations by Nachtsheim (1964) showed that crit,tRe = 5767, where 



tURe 0

t .  This crit,tRe  

based on linear stability theory is quite large, since experimental studies indicate transition 
generally occurs around 1000Re t  .  Additionally, for a Poiseuille flow in a pipe, where 




DURe 0
D , numerous studies using linear stability theory indicate the flow should remain 

stable for all DRe , and that there is no crit,DRe value where one should anticipate an instability.  

In contrast, experiments indicate transition occurring at 2000ReD   in practice.  Although 

practical transition Reynolds numbers can be pushed higher (on the order of 5
D 10Re ) by 
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careful control of inlet disturbances and surface roughness, it is generally assumed that the 
stability of such ducted flows is subject to a stability process not properly modeled by linear 
stability theory.  For an nice review of boundary layer stability and transition see (Zaric, 1990).                                                                         
 

17.2.2 Stability of Unbounded Flows 
 

Using Eq. 17.5, it can be shown that if a laminar velocity profile  U  contains an inflection 

point, such that 0
dy

UdU 2

2

 , this significantly reduces the stability of the flow.  Consequently,  

flows with natural inflections in their mean velocity profile, such as jets, wakes, and boundary 
layers with an adverse pressure gradient, will become unstable almost immediately, whereas 
flows without an inflection, such as boundary layers with a favorable pressure gradient will 
remain stable to higher *Re .  
 
Unbounded flows such as jets, wakes, and shear flows (two adjacent flows moving at different 
mean velocities), as shown in figure 17.7, all have inflections in their respective velocity profiles, 
and thus are subject to an almost immediate development of instabilities.  A wake, such as 
encountered in the flow behind a bluff body, and a jet impinging into a quiescent or lower 
velocity flow have critRe  4, so these are inherently unstable for all practical flows.  Moreover, 

linear stability theory predicts that shear flows have a critRe  0, and are unstable under all 
conditions.  Thus, all unbounded flows will immediately begin the process of transition to 
turbulence.  

 
 

Figure 17.7 Typical unbounded laminar flow velocity profiles:   
 (a) jet flow, (b) wake flow, (c) shear flow, (d) grid flow 

 
A subset of unbounded flows is the stability of flows in the wake of a grid placed normal to an 
impinging uniform flow.  These types of flows consist of a series of transverse jets and wakes, as 
shown in figure 17.7d.  These flows again have a critRe  4, and again are almost immediately 
unstable.  These types of flows, and thus cross-stream grids, are commonly employed at the 
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entrances of wind tunnels to actually reduce the scale of entering flow disturbances and promote 
lower flow disturbances in the downstream flow.  More on this in Section 17.3.  
 

17.2.3 Effect of a Pressure Gradient on Flow Stability 
 
As mentioned in section 17.2.2, a velocity profile containing an inflection is very susceptible to 
instability.  We noted in section 14.5.2 that a Blasius flat-plate boundary layer has an inflection 
point located at the boundary surface.  As was illustrated in figure 17.6, a flat plate flow may 
become unstable starting at critRe  520.  However, as we illustrated in Section 14.6, if a 
boundary layer is subject to an external pressure gradient, this can strongly influence the 
behavior of the mean boundary layer velocity profile.  For a boundary layer flow subject to an 
adverse pressure gradient (increasing stream-wise pressure), the inflection point will move away 
from the surface, which will make the flow strongly unstable.  In contrast, for a boundary layer 
flow subject to a favorable pressure gradient (decreasing stream-wise pressure), there will be no 
inflection point in the velocity profile, and the flow will be more stable. 
 
For example, consider the Falkner-Skan boundary layer flows we examined in section 13.6, 
which were boundary layers developing under the effect of pressure gradients ranging from 
strongly adverse to strongly favorable.  A linear stability evaluation of critRe for the two most 

extreme cases [Wazzan (1975)] indicates that for m = - 0.0905 (strongly adverse) the critRe  67, 

whereas for m = 1 (strongly favorable) the critRe  12,500.  Thus, an adverse pressure gradient 
boundary layer is very unstable, and will usually break down to turbulence almost immediately; 
in contrast, a  strong positive pressure gradient boundary layer is very stable, and is unlikely to 
transition to turbulence, even in the presence of strong disturbances.  Thus, the stability of a 
boundary layer depends quite strongly on the level and the direction of the external pressure 
gradient. 
 
So what do these stability concerns mean in terms of a flow degenerating to turbulence?  Well, it 
should be clear that a laminar flow, unless it is a bounded flow either at low Reynolds number or 
under the influence of a favorable pressure gradient, will encounter disturbances (e.g. due to 
surface roughness or extraneous disturbances, such as acoustic noise, thermal gradients, etc.) that 
will naturally lead to an unstable change of the flow.   
 
So, what happens when a laminar flow becomes unstable?  As we discussed earlier in section 
17.2, the flow will transition to another state, which eventually leads to what is known as a 
turbulent flow.  However, how that happens is again (of course) quite complicated, and subject to 
significant study.  In the following section we will discuss this generic process of transition from 
a laminar to a turbulent flow. 
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17.3 The Transition to Turbulence 
 
As was illustrated in Section 17.2, as the Reynolds number increases a flow is more susceptible 
to amplification of disturbances, and subsequent degeneration to turbulence.  However, this 
process of transition may be a relatively sudden process when there is an inflection point in the 
velocity profile; or it may be a less well-defined and more projected process, as with bounded 
flows.  Part of the problem is that once disturbances start to grow, they give rise to additional 
inflections in the mean velocity, which can modify the way the original wave number amplifies, 
which may allow other wave numbers to amplify.  As you can imagine, the process of 
disturbance growth becomes very complicated very quickly.  The process of transition is 
dependent on the types of initial disturbances to the flow; even carefully designed flow systems 
are subject to variances in the initial disturbances due to small temporal variations in sound, 
vibration, density, and thermal gradients, among other external influences.  Thus, the 
amplification of disturbances, and the transition to turbulence can occur in markedly different 
ways on the way to a turbulent state.   
 

17.3.1 Transition of Unbounded Flows 
 
The transition in unbounded flows is complicated, but is generally consistent in the way in which 
it occurs.  In the vicinity of an inflection point in the mean velocity profile, a process known as a 
Kelvin-Helmholtz instability develops almost immediately.  This instability is initially an 
inviscid process, modeled as a pressure-driven instability developing at the sharp velocity 
interface between two dissimilar flow streams, such as encountered at the initiation of a jet, a 
shear layer, or a separating wake.  These types of inflectional flows are unstable to all 
disturbances, with instabilities initiating as transverse waves within the shear layer, and rapidly 
rolling up into a sequence of transverse (or azimuthal, in the case of a circular jet) vortices.  Once 
the vortices form, viscosity begins to play a role as well, which we will discuss.   
 
Once transverse Kelvin-Helmholtz vortices form, they will translate at roughly the average 
velocity between the adjacent stream velocities.  So, for a jet of velocity U exiting into a 
quiescent environment, these vortices will initially travel at roughly 0.5 U.  As figure 17.8 
schematically illustrates, once formed, a complicated process of both amalgamation and 
distortion of the vortices takes place, with combinations of sequential vortices rolling up 
(amalgamating) into larger vortical structures, while the vortices (and their associated vorticity) 
simultaneously undergo three-dimensional distortion due to vortex stretching by the rotation of 
the larger-scale vortical structures.  This leads to both (a) a spatial growth in the size and 
complexity of the vortex structures, and (b) a stretching and concentration of the vorticity 
comprising the amalgamated vortices.  The growth to larger scales is important, since this growth 
process causes the entrainment of additional fluid from bordering non-turbulent flow, which 
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results in both the rapid mixing of the adjacent flows, and lateral spreading of the initial 
disturbances.  The stretching and concentration of the vorticity within the amalgamated 
structures accomplishes two things: (1) a transfer of kinetic energy from the motion of the larger 
rotating structures to smaller three-dimensional vortices contained within or adjacent to these 
larger structures, and (2) reduction in scale and rotational intensification of the smaller vortices. 
This process is again important since the smaller scale vortices will contain very large shear 
gradients, which will cause their kinetic energy to dissipate as heat through viscous effects.  
 

 
 

Figure 17.8 Schematic illustration of the simultaneous processes within a turbulent flow of 
(A) small-scale to large-scale amalgamation, (B) entrainment of outer region 
fluid/energy into the turbulent region by the large-scales, and (C) stretching of 
small-scales by large-scales leading to energy dissipation. 

 
To illustrate how the stretching of smaller-scale vortices passes energy from larger-scale flow 
structures to smaller scales, consider a simple illustration.  Assume that the smaller scale vortices 
are modeled as a vortex tube with solid body rotation, as shown in Figure 17.9.  
 

 

 

 

 

 

Figure 17.9 The effect of stretching on a vortex tube of constant cross-section.  
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For simplicity, consider the angular momentum of the vortex tube to be modeled as a rotating 
rod with a constant angular velocity (i.e. vorticity) throughout the tube, such that: 
 

 Angular momentum = I 
and  

 Kinetic energy = 2I
2
1
   

Here 2mr
2
1I   is the moment of inertia a rod rotating along its axis, and m is the rod mass, and r 

is the rod radius.  Now, let an initial section of the rotating vortex tube of radius r1, and length L1 
be stretched to a length L2, where L2 > L1.  Assume (ideally) that angular momentum is 
conserved during the stretching process, such that: 
 

 2
2
221

2
112211 rm

2
1rm

2
1II   

 

Since the mass of the tube will remain constant, m1 = m2, we have: 
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Note that we would also get this result assuming that circulation is constant during the process. 
 
Since the volume of the stretched tube will remain constant, we can also write that: 
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Substituting into the previous equation, we have: 
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So, as the ideal vortex tube is stretched, the vorticity is increased (we showed this previously in 
section 10.3.1). 
 
Now, the angular kinetic energy of the initial vortex tube and the stretched vortex tube will be: 
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Thus, when the vortex tube is stretched such that L2 > L1, the kinetic energy will increase 
proportional to the increase in length. 
 
Since kinetic energy is fed from the larger rotational structures to these smaller vortices, the 
dissipation process within the small vortices provides a mechanism for the transfer and 
dissipation of the kinetic energy of the overall flow.  Because this process is like a waterfall 
dissipating its energy in a cascade of scales as it plunges into a quiescent pool, the process of 
dissipation of the initial kinetic energy of a laminar flow by turbulence is generally known as the 
energy cascade.   
 
Interestingly, this process contains two divergent, but symbiotic processes: (1) the growth of 
larger, complex scales, which extract energy from the main flow, coupled with (2) the generation 
of continually smaller scales, which subsequently dissipate the extracted energy.  As any 
turbulence expert would argue, this is an oversimplification of the process, but it does capture the 
essence of what nature is physically trying to achieve.   
 
An excellent example of these processes of scale change and energy dissipation in action is the 
dissipation of the kinetic energy of a wall jet in a hot tub or swimming pool.  If you place your 
hand in front of one of the jets, you will notice that when your hand is very close to the jet's 
origin, you will feel a pressure on your hand that is relatively uniform, with some small scale 
fluctuations.  However, as you move your hand away from the origin, your hand will experience 
larger and more intermittent pulsations in the pressure (due to the growth in the larger vortical 
structures), but a reduction in the average pressure, as the jet kinetic energy is dissipated by the 
smaller vortices.  As you move your hand even farther from the origin, the pulsations will 
become of even larger extent, but also weaker, as the large scales grow, but the total energy of 
the jet is dissipated.  Eventually, at a distance well removed from the origin, this vortex 
interaction succeeds in both distributing the concentrated energy of the initial jet over a very 
broad area, and dissipating it via the small scales through this complicated energy cascade.  At 
that point, it is unlikely that your hand can detect much of the previous momentum of the initial 
jet. 
 
A similar type of process applies for wakes, which are generally created by flows around bluff 
bodies.  However, wake flows are often dominated by large scale inviscid instabilities, which 
may initiate as periodic vortex shedding, prior to a change of state to a randomly turbulent flow.  
For example, the vortex shedding from a circular cylinder, as shown in figure 17.3c and 
discussed in Section 15.4, will develop and remain laminar well before turbulent behavior 
develops.  And when turbulent behavior does develop (generally around Re > 200, where Re is 
based on the width of the bluff body), it will first develop within the shed vortices, rendering 
them subject to small-scale three-dimensional vortex stretching, leading to kinetic energy 
dissipation within the shed vortices.  At much higher Reynolds numbers (roughly Re > 3x105), 

https://en.wikipedia.org/wiki/Energy_cascade
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the shear layer exiting the bluff body will break down to turbulence prior to formation of the 
shedding vortices, and thus mediate, and eventually eliminate the periodic shedding process. 
 
Recall that wakes, like jets, were predicted by linear stability theory to become unstable at  
Re  4.  As figure 17.3 illustrates, the flow over a cylinder does just that—but it transitions to a 
different stable state, not to turbulence.  Thus, a transition from an initial laminar flow of one 
state can result in a different, but still laminar, state.  Turbulence is not always the result of a 
transition of a laminar flow, but it is the most likely state. 
 
Flow across a grid of wires presents an interesting process.  One can think of this as producing a 
spatially periodic distribution of jets and wakes, like that shown in figure 17.7d, and thus a 
condition very sensitive to instability.  However, unlike a jet, wake, or shear flow, the scales of 
this type of flow start basically at the spacing of the grid and slowly decay with distance, and do 
not extract additional kinetic energy from the mean flow (once passing through the grid).  The 
reason for this is that all initial inflections and grid-created shear layers are off setting, and there 
are no significant velocity differences beyond the scale of the grid.  Thus, the vortex structures 
within the flow are generated initially at the scale of the grid, and while they may expand and 
grow with distance, there can be no entrainment of additional kinetic energy from the mean flow.  
Additionally, the vorticity within this flow will quickly reorient in three-dimensions such that 
energy dissipation takes place in an almost isotropic manner (i.e. kinetic energy will be 
dissipated uniformly by vortices/vorticity oriented roughly uniformly in all three-dimensions).  
Since the substantive vortex stretching occurring in jets, wakes, and shear layers does not occur 
with grid turbulence, the initial kinetic energy imparted to the instabilities by the flow interaction 
with the grid will dissipate slowly with downstream distance. 
 

A nice aspect of a grid flow is that if a flow approaching a grid contains disturbances/instabilities 
(e.g. large vortices) that are greater than the grid scale size, after passing through the grid these 
disturbances will be reduced to the scale of the grid instability, and will dissipate out of the flow 
at a rate corresponding to that of the grid disturbances.  This process of disturbance reduction is 
put to good use in reducing the level of disturbances and turbulence entering wind tunnels, or 
any other ducted flows, where minimal flow fluctuations are required.  That is the reason why all 
good wind tunnel facilities are built with both flow straighteners (closely-packed collections of 
tubes oriented in the streamwise direction), followed by a set of several screens, often of 
sequentially smaller grid size.  This NASA technical brief discusses the use to screens to control 
the inlet turbulence levels in wind tunnels. 
 

Note that jets, wakes, shear layers, and grids generate initial turbulence of some form, which (in 
the absence of adjacent solid surfaces) then advects with the main flow, eventually undergoing 
viscous dissipation.  As such, these type of flows are non-sustaining turbulence, as discussed in 
Section 17.1.  Anytime generated turbulence does not encounter subsequent solid surfaces or 
other dissimilar fluid streams, the turbulence is generally not sustained. 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810020599.pdf
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17.3.2 Transition of Bounded Flows: Natural 

 
Although the initiation of transition for unbounded flows begins essentially at their point of 
formation (due to their very unstable nature), the initiation point and extent of transition for 
bounded flows is less well defined.  Referring back to figure 17.1, the precise location of the 
point where transition begins and where it ends is very fuzzy, and dependent on the initial 
conditions of the flow, the adjacent surface roughness, and the type of disturbance(s) present.  
However, a remarkable observation, both experimentally, and more recently computationally, is 
that the end state of turbulence for most flows is quite consistent, and somewhat predictable for a 
wide variety of initially laminar conditions.  Once a full-turbulent flow has developed, the 
statistics and the behavior of the flow are remarkably consistent, and in most cases ignorant of 
the initial conditions which precipitated the development of the turbulent flow.  In other words, 
once a bounded flow achieves a developed state of turbulence, the method by which the flow 
evolved to a turbulent state is generally irrelevant. 
 
So, what does happen during the transition process, and how does a bounded flow go from being 
fully laminar to fully turbulent?  To understand the beginning of transition, it would help to 
know what actually happens as a disturbance amplifies within a laminar bounded flow.  In 
section 17.2 we modeled the disturbances as traveling waves, with specific wave number and 
wave velocity.  This allowed the development of a stability graph, such as figure 17.6, showing 
regions of damping and amplification of such waves for a specific type of flow.  To test the 
validity of the traveling wave model, and the resultant theoretical predictions of wave growth, 
Schubauer and Skramstad (1947) performed some very meticulous experiments on laminar 
boundary layers in a large wind tunnel facility. Using a thin, magnetically-excited metal ribbon 
located close to the boundary surface, they generated periodic waves of varying wave number 
and amplitude, and demonstrated the validity of stability graphs like that shown in figure 17.6.  
The single wave number disturbances Schubauer and Skramstad generated, and tracked, are 
known as Tollmien-Schlicting waves, after the two researchers who developed the first stability 
solutions of Eq. 17.5.   
 
An important, if not more important experimental study, was that done by Klebanoff et al. 
(1962), where they showed that following the wave generation, initially two-dimensional 
Tollmien-Schlicting waves very rapidly develop into three-dimensional waves, developing a 
transverse peak-and-valley velocity profile very near the bounding surface, as shown 
schematically within regions 2 and 3 in Figure 17.10.  It was subsequently shown that this peak-
valley behavior is the result of the longitudinal (stream-wise) tilting and stretching of initially 
transverse boundary-layer vorticity into vortices in the stream-wise direction.  This three-
dimensionality is accentuated with stream-wise distance, until the stretched vortices begin to 
interact to form larger three-dimensional agglomerations of vorticity, while simultaneously 

https://archive.org/details/jresv38n2p251
http://en.wikipedia.org/wiki/Tollmien%E2%80%93Schlichting_wave
http://fluidos-lfa.usuarios.rdc.puc-rio.br/mecflu2-pos/Bibliografia_Near_Wall/Klebanoff_Tidstron_Sargent_1961.pdf
http://fluidos-lfa.usuarios.rdc.puc-rio.br/mecflu2-pos/Bibliografia_Near_Wall/Klebanoff_Tidstron_Sargent_1961.pdf
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breaking down into smaller units of vorticity, as shown in region 4 of figure 17.10.  This process 
is similar to that noted for the breakdown of unbounded flows, with (1) the larger structures 
interacting with the outer flow at the edge of the boundary layer to entrain kinetic energy, while 
(2) the smaller vorticity units are stretched to a small enough scale where effective viscous 
dissipation of the kinetic energy can take place. 
 

 

Figure 17.10  Transition mechanism on a flat plate. (Source: H. Schlichting et al, "Boundary 
–Layer Theory", McGraw-Hill, 2006). Note: Obergang = Transition 

 

The experiments by Schubauer and Skramstad (1947) and Klebanoff et al. (1962) were done in 
extremely controlled environments, starting with two-dimensional, single wave-number 
disturbances.  In most real systems, as we discussed, naturally occurring disturbances within a 
laminar flow are neither two-dimensional, nor of a single wave number.  Consequently, 
transition does not start uniformly at a specific *Re .  Thus, the breakdown to turbulence in a real 
laminar flow will begin somewhat sporadically, developing in what are termed turbulent "spots", 
shown schematically as region 5 of figure 17.10.  Turbulent spots were first observed by 
Emmons (1951) as localized regions of turbulence, which develop naturally and apparently 
randomly as localized regions of turbulence. Once formed, these turbulent spots travel 
downstream, expanding in both the stream-wise and span-wise directions.  Interestingly, the 
leading edge of a spot travels more rapidly (0.9 U∞, where U∞ is the velocity of the outer edge of 
the boundary layer) than the trailing edge (0.5 U∞), thus expanding the stream-wise extent of the 
spot.  A spot also acts as a moving disturbance, which entrains, disturbs, and otherwise interacts 
strongly with fluid adjacent to it, resulting in a transverse expansion of the spot, spreading at half 
angles of 8° to 12º relative to its steam-wise axis.   
 
As turbulent spots develop and expand, both in the stream-wise and transverse directions, the 
manifold spots that initially develop will eventually join, or coalesce.  When all regions of the 
flow are encompassed by turbulent behavior, the flow is considered fully turbulent, shown 
schematically as region 6 of figure 17.10, and transition to turbulence is considered to have been 

https://archive.org/details/jresv38n2p251
http://fluidos-lfa.usuarios.rdc.puc-rio.br/mecflu2-pos/Bibliografia_Near_Wall/Klebanoff_Tidstron_Sargent_1961.pdf
https://arc.aiaa.org/doi/10.2514/8.2010
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completed.  At the end of transition (a rather fuzzy demarcation), boundary layer turbulence is 
remarkable in that it becomes what we discussed in Section 17.1 as self-sustaining turbulence.  
What this means again is that once a flow becomes fully turbulent, the flow will remain 
turbulent, and perpetuate the complex three-dimensional generation, agglomeration, and 
breakdown of vorticity which is turbulence, as long as the flow remains bounded.   
 
Now figure 17.10 may seem a bit busy, and possibly confusing.  However, it is a simplification 
of the complicated processes of transition to turbulence. To see a simulation of the process of 
initial transition from turbulent spots to early turbulence, view this video by Lee and Zaki 
(2015). It is a remarkable numerical simulation that shows the manifold complexity of the 
transition of a flat plate boundary layer from laminar to early turbulence.  Although a simulation, 
I am guessing that this is close to what actually happens in reality.  I’m sure you will find this 
simulation impressive, fascinating, and very intimidating with regard to the complexity of the 
behavior. 
 

17.3.3 Transition of Bounded Flows: Forced 
 
While naturally transitioning bounded flows depend on the initial presence of disturbances to 
initiate the process, the point of initiation will be somewhat sporadic.  However, the process of 
transition can be forced to occur by the use of surface roughness, either natural or artificially 
applied.  One can generally categorize roughness into two types (White (1991)):  (1) two-
dimensional roughness, usually a wire or rod placed on the bounding surface transverse to the 
flow direction, and (2) three-dimensional roughness, which can consist of small spheres, 
hemispheres,  sand grains, or similar elements, located either singly or multiply distributed on 
the bounding surface. These roughness elements, when artificially placed on a surface to force 
transition to turbulence, are typically termed “boundary layer trips.” Interestingly, the effect of 
two- and three-dimensional roughness on transition is quite different.   

Generally, small amounts of roughness of any type will not affect the transition process or 
location unless it is of significant height relative to the local displacement thickness, *.  Letting 
the height of the roughness be given by k, for a two-dimensional roughness, if  k/* is less than 
0.3, the roughness will have essentially no effect on the location of transition.  However, for  
k/* > 0.3, the point of transition will move upstream closer to the roughness element.  It has 
been shown that the minimal Reynolds number based on the roughness height for "tripping" a 
laminar flat plate boundary layer to initiate transition is (roughly) [White (1991)]: 
 

 850UkRe k 


  
 

However, as kRe  increases, the point of transition will move back toward the trip.  To have 
transition occur immediately following the roughness element requires 2800Re k  .  These are 
only rough rules of thumb, since there is no consistent agreement in the literature. 

https://www.youtube.com/watch?v=wXsl4eyupUY
https://www.youtube.com/watch?v=wXsl4eyupUY
http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
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For three-dimensional roughness, little effect on transition is expected before k/*  0.6, about 
twice that for two-dimensional elements. 
 
17.4 The Character of Turbulence 
 
As you can guess, once a flow transitions to turbulence, the behavior is, as we pointed out in 
section 17.1 (after R. W. Stewart), a process of "disorder, enhanced mixing, and three-
dimensional motions involving angular momentum (vorticity)".  The character of turbulence, 
often called the "structure,” is such that it does satisfy these characteristics.  However, as we 
discussed in section 17.3, there are identifiable ways that turbulence evolves which have a 
particular rhyme and reason.  In this section, we will review a bit of this structure, which will 
help motivate our approach to modeling the turbulence process.  Be aware, however, that the 
study of turbulent structure is a topic that is still widely studied and debated, and that the small 
amount that we discuss here is just the tip of a very complicated iceberg. 
 

First, through hypothesis and experiment turbulence has been shown to have a flow structure that 
extends over a range of scales of motion.  After the breakdown of a laminar flow, turbulence 
results in the generation of both large- and small-scale flow structures, both of which have a 
purpose.  Following either the inviscid-type (Kelvin-Helmholtz) breakdown of unbounded shear 
layers, or the amplification of Tollmien-Schlicting waves in a boundary layer, the initial flow 
structures (usually vortical) proceed in two somewhat divergent directions: (1) amalgamation 
with other structures, to yield larger scale structures, and (2) stretching, tilting, and 
intensification, to yield progressively smaller scale vortical structures.  The larger scale 
structures usually develop adjacent to the interface between the turbulence region and the main 
outer flow (which is generally non-turbulent).  These larger scales interact with the outer flow to 
entrain more fluid into the turbulent region, which increases the extent of, and adds kinetic 
energy to, the turbulent region.  
 
While the large scales are of the order of the thickness of the turbulent region (e.g. the boundary 
layer thickness, ), the small dissipation scales, known as Kolmogorov length scales, are of size: 
 

  
4
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     or      
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Here,  is the thickness of the turbulent region (e.g. the boundary layer thickness for a turbulent 
boundary layer).  To give this some perspective, a boundary layer of thickness  = 3 cm in water 
flowing at 1 m/s and kinematic viscosity of 10-6 m2/s has a 000,30Re  .  For this flow the 

corresponding scale of the dissipating flow structures is 00044.0L



, or L = 0.013 mm.  Small 

scales indeed! 

https://en.wikipedia.org/wiki/Kolmogorov_microscales
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In section 17.3.2, we mentioned that a turbulent boundary layer flow is a self-sustaining flow.  
What this means is once a boundary layer flow achieves a turbulent state, it not only remains 
turbulent, but also sustains the turbulent state, as opposed to dissipating away like an unbounded 
flow.  We mentioned that the larger scales of boundary layer turbulence facilitate the 
introduction of new kinetic energy into the boundary layer from the outer flow; but while this is 
necessary, it is not sufficient to sustain the continuing turbulence.  The sustaining mechanism of 
boundary layer turbulence is a process of interaction of the fluid adjacent to the solid boundary 
known as "bursting".  Bursting is an intermittent process of fluid ejection from very near the 
boundary that introduces additional vorticity into the boundary layer.  Note that since the total 
vorticity (i.e. the circulation) within the boundary layer must remain essentially constant, this 
bursting process introduces, on average, a balanced quantity of vorticity of both signs into the 
flow.  This offsetting collection of discrete vorticity (1) is eventually stretched and intensified, 
subsequently dissipating the energy at these smaller scales, or (2) undergoes a complicated 
process of amalgamation with other structures of both like and opposite signs of rotation, which 
supports the development and growth of the larger outer-region structures.  Despite the fact that 
these bursting processes initiate at relatively small scales, the process is so prolific near the 
boundary surface that collectively it becomes the source of continuing new vorticity to sustain 
boundary layer turbulence.    
 
So, what causes the generation of this “new” vorticity? As we showed in section 11.5, the only 
source of vorticity in a flow adjacent to solid, stationary boundary is the presence of a pressure 
gradient. Thus, the development of new vorticity to sustain a turbulent boundary layer must 
come from variations in surface pressure.  Since the mean pressure gradient for a flat plate flow 
is zero, the new vorticity must be the result of local pressure variations very near the solid 
boundary.  What is the cause of such local pressure variations?  As we showed in sections 7.5 
and 7.6, flow curvature gives rise to pressure increases in the direction of the curvature.  So, 
curvature of the streamlines near the bounding surface must be present, which will be the case 
when vortices are adjacent to the surface.  Additionally, locally impinging flows from the outer 
region or local flows away from the surface will also be the result of local pressure variations, 
and thus sources of new vorticity. 
  
As mentioned, the bursting process occurs intermittently, in a somewhat random, but repetitive 
process, with fluid appearing to erupt from very near the boundary into the boundary layer fluid.  
Of course, if fluid is ejected from the boundary, by conservation of mass there must be a 
comparable amount of fluid that moves toward the surface. The large outer region flow 
structures entrain high-energy fluid from the edge of the boundary layer, which penetrates down 
to the bounding surface, creating what is termed a high-speed "sweep".  Moreover, although 
Stewart speaks of disorder in turbulence, the process of fluid moving toward the surface, and the 
bursting of fluid away from the surface, are somewhat organized processes. The turbulence 
production process near the surface develops as almost parallel flows both toward and away from 
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the surface, which gives rise to what appears to be a "streak" like pattern very near the surface, 
with higher-velocity regions flanked by low-velocity regions.  This is not dissimilar from the 
three-dimensional distortion of Tollmien-Schlicting waves during the transition process, 
discussed in section 17.3.2.   
 

 
(a) Side-view 

 

 
 (b) Plan-view 

 

Figure 17.11 Hydrogen bubble flow visualization of a low Reynolds number turbulent 
boundary layer.  Water flow: Rex = 2.2x105 and Re* = 746.  (a) Side view 
illustrating turbulent "bursting" near the bounding surface, and development of 
large outer structures.  (b) Plan-view illustrating alternating low-speed "streak" 
like behavior [indicated by arrows ] near the surface (visualization wire 
located at y+ = 5 — see section 17.6.1 for discussion of y+ scaling). 

Outer Region Structures 

Turbulent Bursting 
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Now, since the low-velocity streak regions are adjacent to higher-velocity flows immediately 
above the streaks, this creates an inflection in the local mean velocity profile, which is of course 
unstable.  The breakdown of this velocity inflection results in the "burst" of fluid and vorticity 
into the boundary layer.  This breakdown is very sporadic, but repetitive, providing the new 
vorticity to sustain the boundary layer.  Additionally, although the process is still widely debated, 
the resulting interaction adjacent to the boundary during the streak destabilization process is such 
that it sustains the continuing re-formation of the high- and low-velocity streak regions. 
 
Figure 17.11 shows two hydrogen bubble visualization pictures (in a water flow) which reveal 
some of the flow structure of a turbulent boundary layer discussed in this section (click here to 
see an in depth presentation on hydrogen bubble flow visualization--a video from an older film, 
so a bit grainy, but informative).  Very fine time-lines of hydrogen bubbles are generated at high 
frequency by electrolysis from a very thin (0.025 mm) wire (on the far left of each picture).  
Illumination of the subsequent lines of bubbles reveals the deformation of the local flow within 
the boundary layer.  Figure 17.11(a) is a side-view, with a wire oriented vertically from the 
bounding wall and spanning the boundary layer. Here, the bubble time-lines reveal patterns 
characteristic of both bursting behavior (combined with vortex stretching) near the surface, and 
larger outer-region vortical structures. Figure 17.11(b) is a plan-view, with the wire stretched 
transverse across the plate and very near the surface. This bubble time-line image reveals the 
stream-wise streak-like behavior, indicative of the vertical inflow and outflow of fluid adjacent 
to the plate boundary. 
 
Figure 17.12 is a simple model illustrating the basic behavior within a turbulent boundary layer 
that outlines the basic processes, which sustain and maintain the turbulence process.   
 
As illustrated, the six key elements of this sustaining process are:  
 

(1) The bursting process occurring near the boundary, which sustains the turbulence; 
(2) Formation of wall-region vortices from the vorticity in the ejected boundary fluid;  
(3) Amalgamation of these initial burst-generated vortical structures to form larger, outer 

region flow structures; 
 (4) Three-dimensional stretching of small-scale turbulence by the larger outer region 

structures, which both reduces the scales and dissipates energy;  
(5) Inward entrainment of free-stream fluid, which is manifested as a sweep of higher-speed 

fluid toward the boundary to replace the ejected bursting fluid.   
(6) “New” vorticity generated at boundary by local pressure gradients due to flow curvature 

near boundary (vortices/sweeps/ejections). 
 
 

http://us.yhs4.search.yahoo.com/yhs/search?hspart=iry&hsimp=yhs-fullyhosted_003&type=wny_wnzp_15_24&param1=1&param2=f%3D4%26b%3DFirefox%26cc%3Dus%26pa%3DWinYahoo%26cd%3D2XzuyEtN2Y1L1QzutDtDtBtCzy0BtB0FtBtA0C0E0E0ByDyEtN0D0Tzu0StCtByDyCtN1L2XzutAtFtCtDtFtCtDtFtDtN1L1Czu1TtN1L1G1B1V1N2Y1L1Qzu2StD0FtC0D0EzytCtAtGtA0EzyyCtGyBtDzztDtGyEtCtC0EtGtAzztCyDyE0BtAtByBtDyC0D2QtN1M1F1B2Z1V1N2Y1L1Qzu2StDzz0AtD0AyB0E0AtGtBtBtDyDtGyE0EtAtAtG0B0Dzz0DtG0D0C0FyB0DyCyE0DtAtC0D0B2QtN0A0LzutB%26cr%3D1264630345%26a%3Dwny_wnzp_15_24%26os%3DWindows%207%20Ultimate&p=hydrogen+bubble+flow+visualization
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Figure 17.12 A hypothesized general model of the basis processes sustaining the 

development and energy dissipation within a turbulent boundary.  
 Not to scale. 

 
Thus, boundary layer turbulence sustains itself by creating both large- and small-scale flow 
structures, which respectively entrain more fluid/kinetic energy and ultimately dissipate this 
kinetic energy.  A quasi-organized process of fluid bursting/streak formation adjacent to the 
bounding surface introduces new vorticity to the boundary layer, which is stretched, yielding 
small scales that dissipate kinetic energy, and/or amalgamate into larger flow structures that 
maintain the entrainment process. This is a bit of a simplistic description of a very complex 
process, but it captures the essence of the turbulence process in a bounded flow, and the 
growth/dissipation process is not dissimilar from the process for an unbounded turbulent flow.  A 
more detailed discussion of the hypothesized processes and structure of a turbulent boundary 
layer can be found in Smith and Walker (1997). 
 
17.5 Mathematical Modeling of Turbulent Flow  
 
So how do we take this generic, and complicated, flow process discussed in Section 17.4, and 
model it such that we can predict properties of engineering interest, such as mean velocity 
behavior and surface shear stress? Obviously, turbulence is not a steady environment, yet it is not 

(6) “New” Vorticity Generation 
at Surface 

(1) 

(3) 

(4) 

(5) 

(2) 

https://www.researchgate.net/publication/281746466_Sustaining_Mechanisms_of_turbulent_boundary_layers_the_role_of_vortex_development_and_interactions
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exactly unsteady.  Early experimental measurements of local velocities in turbulence, such as 
those illustrated in figure 17.2 for a turbulent boundary layer, revealed that the collective 
behavior of a turbulent flow created velocity behavior that appeared as somewhat random local 
fluctuations about some average, or mean, value.  Therefore, a very simplified modeling 
approach that views the velocity behavior within a turbulent flow as a combination of a mean 
part and a fluctuating part seems promising, and reflective of the "disorder" or randomness of 
turbulence.  Now this approach of course discounts all the flow structure we alluded to in section 
17.4.  However, modeling such a semi-organized process of three-dimensional vortical flow 
structure is quite complicated, and very computationally intensive.  Therefore, we opt to make 
our model of turbulence as simple as possible.  This approach, by the way, is the same approach 
suggested by Osborne Reynolds (1883), who was the first to observe and document the 
breakdown of turbulence (and for whom the Reynolds number is named). Reynolds did this 
initial research from detailed observations of dye injection into the flow of water in a pipe. 
To model these random fluctuations in the local velocity, we use a statistical approach, which 
assumes that the velocity at a point in a turbulent flow can be modeled as a set of random 
velocity fluctuations about a local mean value. Employing Cartesian notation, for a velocity 
probe measuring only the x-direction component, u, we would characterize the velocity as shown 
in figure 17.13. 
 

 
    tuUtu    

 

 

  

Figure 17.13 Representation of turbulent velocity as combination of a mean component, U, 
plus a fluctuating component, u . 

 
Thus, the mean component of the velocity, U, is the time average over a time period T, where T 
is a sufficient time for the mean to reach a constant value, given as: 
 

 

T

0

udt
T
1U  

 

The fluctuating component of the velocity, u , is the instantaneous velocity variation about the 
mean value, which can be viewed as     Ututu  .  Since u  is assumed to be a random 
function of time, we often use the root mean square of u  to characterize the level of the 
unsteadiness, such that: 
 

u 

time 

 time  

 fluctuation about the mean  

average fluctuation 

http://en.wikipedia.org/wiki/Osborne_Reynolds
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rmsu  is generally termed  the turbulence intensity, and is often used, particularly in experimental 
measurements, to characterize the magnitude of the turbulence fluctuations. 
 
Similar to the way we chose to characterize the u velocity, we use the same approach for the y 
and z direction velocities, such that: 
 

 vVv   , wWw    
 

Recall that we applied a similar approach to the velocity behavior in section 17.2, where we 
considered the stability of laminar flows.  For the case of stability, we made an assumption that 
the unsteady velocity components are periodic and subject to either damping or amplification.  
For turbulence, we cannot make an assumption of periodicity or amplification/damping, but only 
that the fluctuating velocity components are time dependent.   
 
Since we want to determine the average mean velocity behavior of a flow, and the resultant 
average stresses associated with the flow, our approach is as follows: 
 

1) Substitute the time-dependent velocities into the differential equations of motion 
  (i.e. continuity and Navier-Stokes) 
 

2) Time-average the equations 
 

3) Drop terms which average to zero 
 

 e.g.  
T

0

0dtu
T
1u   and     

T

0

T

0

0dtu
T
UdtuU

T
1uU  

 

4) Solve the resulting equation. 
 

This process of averaging is known as Reynolds averaging (often termed RANS, for Reynolds-
Averaged Navier-Stokes equations), after the work by Osborne Reynolds (1895), and results in a 
set of equations that can potentially be solved for the average turbulent velocity behavior for a 
flow of interest (more on this later). 
 

17.5.1 Reynolds Averaged Equations 
 

In this section, we will develop the Reynolds averaged equations in two dimensions for a 
Cartesian system.  This approach is, of course, generically expandable to three dimensions (see 
Eqs. 17.18 below), and can be done similarly in other coordinate systems (i.e., cylindrical and 
spherical).  However, the results for two-dimensions will suffice for our purposes of 
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introduction.  Here, we develop the x- and y-component equations, where U and V are the mean 
velocity components, and u' and v' are the fluctuating components.  We make the same 
assumption for the pressure, such that we can write the total velocities and pressure for a two-
dimensional turbulent flow as: 
  

 'uUu  ,      'vVv  ,    'pPp    (17.7) 
 

Substituting Eqs. 17.7 into the x-direction Navier-Stokes equation, Eq. 5.46b (reduced to two 
dimensions, steady in the mean), gives: 
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Expanding this equation, we have: 
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If we time average this equation -- an overbar indicating time averaging of the indicated term(s) -
- the time averages of fluctuating terms and the product of a mean term and a fluctuating term, 
will all average to zero, such that: 
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Notice that the product of two fluctuating terms, since they are assumed to be unrelated, will not 
average to zero.  Since U, V and their derivatives are time-mean terms, this means that we can 
drop the overbar on terms that contain only mean velocity values.  Therefore, we are left with: 
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Moving the time-averaged fluctuation terms to the right side of the equation gives: 
 

0 0 0 0 

0 0 0 
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  (17.8) 

Now, substituting Eqs. 17.7 into the two-dimensional continuity equation, Eq. 5.46a (reduced to 
two dimensions), and expanding gives: 
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Time averaging Eq.17.9 gives: 
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Since the time averages of the mean velocity derivatives must also satisfy continuity, we have: 
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Subtracting Eq. 17.10 From Eq. 17.9 gives: 
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Now, we rewrite the last two terms of Eq. 17.8, by adding and subtracting 
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Substituting 
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 from Eq.17.11 into Eq. 17.12, and rearranging the terms gives: 
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Substituting Eq. 17.13 back into Eq. 17.8 gives: 
 

    
x
'u

y
'v'u

y
U

x
U

x
P1

y
UV

x
UU

2

2

2

2

2



































   (17.14) 

 

Similarly, if we apply the same assumptions of fluctuating properties and time averaging to the 
y-direction Navier-Stokes equation, Eq. 5.46c (in two-dimensions), we get: 
 

0 0 
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Assuming that our fluctuation model is appropriate, Eqs. 17.14 and 17.15 are equations for the 
mean velocity components U and V.  Note that these equations differ from those for a laminar 
flow by the last two terms in each equation.  These last two terms account for the effects of the 
velocity fluctuations on the mean flow due to cross-stream momentum exchange due to the 
fluctuations.  We learned in Section 6.3.3 and in Section 11.4.1, that the introduction of a flow 
normal to the direction of the mean flow, by suction through a porous surface, results in an 
increase in the local shear stress at the suction surface due to additional momentum changes.  
Recall that the shear stress developed in section 6.3.3 for a Poiseuille-type flow with transverse 
injection/suction, was a rather complicated term, which included both the effects of conventional 
shear and the effects of cross-stream momentum exchange due to the fluid suction.  Also recall 
in section 11.4.1, Eq. 11.33 showed that the wall shear stress for a fully-developed boundary 
layer with wall suction could be reduced to the cross-stream momentum changes across the 
transpiration boundary layer.  The last two terms in Eqs. 17.14 and 17.15 are of a similar 
origin—cross-stream momentum exchanges resulting from time-dependent variations of u and v 
from the local mean velocities, U and V. 

Note that the first of these two terms in Eqs. 17.14 is due to cross-stream momentum exchange 
(since v' is normal to u'), whereas the second term is due to in-line fluctuations , 
where the momentum changes are due to the fluctuations in the direction of the mean flow.  
Normally, cross-stream momentum changes dominate in-line momentum changes, but not 
always, as in the case of isotropic grid flows (i.e. flows in the wake of a crossed-wire grid).  
However, for most boundary layer,  jet, and simple wake flows, where the u-velocity changes 

most strongly in the y-direction (cross stream) it is can be shown that    
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 .   To illustrate this, recall our order of magnitude analysis for a 

boundary layer (Section 13.2), where we argued that we could neglect certain negligible terms 
from the two-dimensional Navier-Stokes and continuity equations to yield the two-dimensional 
boundary layer equations: 
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Now, consider a similar order of magnitude analysis of the latter two fluctuation velocity terms 
of Eq. 17.14 for a boundary layer-type flow.  We first assume that the velocity fluctuations in 
both the x and y directions are of comparable order, since the fluctuating velocity components in 
turbulence are somewhat isotropic.  Similar to what was done in section 13.2, we now make the 
assumption that: 
 

 )('),('),(),( L0v  L0u  0y  L0x   
 

Here L is a characteristic length of development along the boundary layer surface, and  is the 
corresponding boundary layer thickness at that location, such that 0(L) >> 0(),  
Thus, we can assess that: 
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 .  This assessment has been 

proven to be valid experimentally, with the exception of grid turbulence flows and boundary 
layer flows with a large adverse pressure gradient.  Therefore, to a good approximation we can 

neglect the  
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  term, and write Eq.17.14 as: 
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Likewise, it can be shown that  
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This reduces Eq. 17.15 to: 
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Note that when we consider all three dimensions of a turbulent flow, we must consider an 
additional velocity component in the z (transverse) direction, given by 'wWw  .  For such a 
three-dimensional flow we have three component equations given by: 
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17.5.2 Turbulent Reynolds "Stresses" 
 
Equations 17.18 are the Navier-Stokes equations with nine additional terms due to the time-
averaged unsteady velocity components.  Recall that these nine additional terms originate from 
the momentum terms in the Navier-Stokes equation.  As we alluded to above, these fluctuation 
momentum terms result in additional forces on the fluid, which significantly modify the mean 
velocity profile.  However, we do not know what these fluctuation terms are, so we have a 
quandary, with many more unknowns than we have equations.  Since we only have four 
equations (continuity and the three Navier-Stokes components), we must find some way to solve 
for, or model, the nine (actually six, as we will discuss below) fluctuation terms.  Trying to add 
higher-order equations, such as the energy equation, just makes the process more complicated, 
and doesn't lead to closure (i.e. a closed form solution). 
 
So, how do we proceed with modeling the fluctuation terms?  Well, moving the fluctuation terms 
to the right side of the Navier-Stokes equation reveals a strong similarity to stress components.  
To examine this, let's consider Eq. 17.16, the x-direction N-S equation applied to a boundary 
layer-type flow.  We note that the last two terms in Eq. 17.16 can be written as: 
 

 
 

 





























 'v'u

y
U

y
1

y
'v'u

y
U
2
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 (17.19) 

 

Since for a laminar flow 
y
U

lamyx



 , we could infer that the other component of Eq. 17.19 

could be construed as a "turbulent" component of stress due to the fluctuating behavior, or: 
 

  'v'u
turbyx   (17.20) 

 
This approach was taken by early turbulence researchers, initiated by Osborne Reynolds, and 
thus these apparent stresses due to the fluctuating velocity components are typically known as 
"Reynolds" stresses.  Now for three-dimensional flows, the x-direction Eq. 17.18a contains three 
Reynolds stresses: 
 

  2
turbxx 'u ,       'v'u

turbyx  ,      and       'w'u
turbzx          

 
Collectively, in all three Eqs.17.18, there are a total of six different Reynolds stresses: 
 
 

  2
turbxx 'u ,     2

turbyy v' ,      2
turbzz w'  

 
  

turbxyturbyx 'v'u  ,   
turbzyturbyz 'w'v  ,  

turbxzturbzx 'w'u          
 

http://en.wikipedia.org/wiki/Reynolds_stress
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Note that using the equilibrium argument of section 5.6 allows the equating of the shear in 

adjacent planes (i.e.  yx xyturb turb
u v' '     ), which reduces the Reynolds stresses from nine 

to six.  However, this still leaves us far from a tractable set of equations.  
 

Now, let's examine how fluctuations in velocity give rise to these added stresses.  To do so, let's 
just consider a two-dimensional boundary layer-type flow, such that the x-direction stresses can 
be modeled as the sum of the laminar and turbulent stresses, as shown in Eq. 17.21:  

 

 yx yx yxlam turb

U u v
y

____
        


 (17.21) 

 
 
Using the simplified model of turbulent fluid motions shown in figure 17.14, we can infer how the 
motion of a fluid particle through a velocity gradient results in the generation of an added “stress”.  
 

 
 

Figure 17.14   Motion of a particle:  (a) upward from a region of  low u-velocity (1) to a 
region of high u-velocity (2), or (b) downward from a region of high u-
velocity (2) to a region of low u-velocity(1). 

 
First, consider a fluid particle moving upward from (1) to (2).  Since v > 0, and u1 < u2 ,  then the 
fluctuating velocities for this particle would be:  
 

 0v    
 0u    (since the arriving particle has a velocity deficit i.e. )uuu 21    

 turb  u v 0 u v 0           
 

Thus, a particle arriving from (1) will be accelerated to the u-velocity at (2).  This requires 
momentum being transferred from the flow to the particle, which is the result of an applied stress 
equivalent to vu  on the particle by the flow at (2).  Conversely, the flow at (2) will be 

2 

1 

u' 

v' 

y 

x 

a 
b 

Reynolds stress 
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decelerated by the arrival of the velocity-deficit particle from (1), which is the result of an equal 
and opposite stress applied by the particle on the flow at (2). 
 
Since continuity requires that every outflow must be balanced by an inflow, the upward 
movement of a particle from (1) to (2) must be balanced by a corresponding downward 
movement of a separate fluid particle from (2) to (1).  For this downward movement, (b) in 
figure 17.14, we have v < 0, and  u2 > u1,  such that the fluctuating velocities for this particle 
would be:  
 

 0v    
 0u    (the arriving particle now has a velocity excess i.e. )uuu 12  ) 

 turb  u v 0 u v 0           
 

Thus, while the process is reversed, a positive stress again results from the arrival of the particle.  
In this case, the particle from (2) arrives at (1) with an excess of velocity relative to the 
surrounding flow, and thus will be decelerated to the velocity at (1), which is the result of an 
applied stress on the particle equivalent to vu   by the flow at (1).  And the local flow at (1) 
will be accelerated by the arrival of the velocity-excess particle from (2), which is again the 
result of an equal and opposite stress applied by the particle on the flow. 
 

So, what is to be inferred here?  That whenever there is fluid movement normal to a shear flow 
(i.e. across a velocity gradient), this results in momentum exchange and resultant additional 
stresses within the fluid. 
 

To exemplify this process further, consider two trucks carrying rocks, running at different 
speeds, and passing each other on a highway, as shown in figure 17.15.  If passengers in the back 
of the trucks throw rocks from one truck to the other, the residual momentum in the rocks will 
change the overall momentum of the opposing truck.  Thus, the rocks from the slow truck will 
cause the fast truck to decelerate, and the rocks from the fast truck will cause the slow truck to 
accelerate.   
 

 
  
 
 
  

 
Figure 17.15  Model of momentum exchange due to the tossing rocks between a slow truck 

and a fast truck, resulting in the acceleration of the slow truck, and 
deceleration of the fast truck--an emulation of the process by which Reynolds 
stress is created. 

 

Slow Truck 

Fast Truck 

Fast rocks 
accelerate truck 

Slow rocks 
decelerate truck 
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17.5.3 Phenomenological Equations 
 
As pointed out in in section 17.5.2, Reynolds stresses are pseudo-shear stress variables that arise 
from the Reynolds averaged Navier-Stokes equation, and are in addition to the conventional 
variables of mean velocity and pressure. Thus, when we include the Reynolds stresses as 
unknowns in the time-averaged equations, we have a mathematical dilemma: 
 

Too few equations:  4 
 Too many unknowns:  10  
 
This is of course for three-dimensional flow.  For a simplified, and idealized, two-dimensional 
flow we would of course have three equations and seven unknowns--still too many unknowns. 
So, to develop solutions for the mean velocity and pressure for a turbulent flow requires that we 
develop other equations that provide relationships between the Reynolds stresses and the mean 
motion of the fluid.   
 
Since we don't have appropriate equations for our Reynold's stress terms based on first 
principles, such as continuity or Newton's first law, we most commonly rely on what are termed 
phenomenological equations to allow closure (i.e. provision of enough additional equations 
relating mean flow variables to the required Reynolds stresses such that a solution is possible).  
Because of the immense complexity of turbulence, these equations are generally very simplified 
interpretations of the observed, or measured, characteristics of turbulent behavior.  Frequently, 
these are little more than curve fits of particular data that relates measured stresses to mean flow 
behavior.  In other cases, they are extrapolations of known relationships for a laminar fluid, such 
as the proportionality of shear stress to the velocity gradient for a laminar flow.  The most 
sophisticated approaches utilize the Reynolds averaged differential equation of energy to provide 
a further degree of flexibility in calculating mean flow properties. However, despite the added 
complexity of this latter approach, other phenomenological relationships must still be assumed to 
solve the increased set of equations.  Note that while there have been many attempts at 
developing such phenomenological equations, with varying effectiveness, we will only examine 
a couple of these approaches, and only for boundary layer-type flows.  For further discussion of 
the basics of more sophisticated techniques, see F. A.White (1991), W.C. Reynolds (1976), and 
G.C. Speziale (1991) as starting points. 
 

17.5.3.1 Eddy Viscosity  
 
The use of an eddy viscosity is a simplistic attempt to create an artificial property, or function, 
that approximates the Reynolds stresses by modeling them like a laminar flow.  This process, 
originally introduced by Joseph Boussinesq, assumes a fictitious “turbulent” or "eddy" viscosity.  
We know that laminar shear stresses (Newtonian) are phenomenologically proportional to the 
local gradient of velocity, i.e. for a boundary layer type flow:  

Need to determine a way to 
approximate the Reynolds stresses 

http://physics.stackexchange.com/questions/75695/what-is-phenomenological-equation-and-phenomenological-model
ftp://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
http://iodlabs.ucsd.edu/falk/reading/reynolds76.pdf
https://pubweb.eng.utah.edu/~rstoll/LES/Handouts/Speziale_ARFM91.pdf
https://en.wikipedia.org/wiki/Joseph_Valentin_Boussinesq
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Accordingly, it seems reasonable to hypothesize a “turbulent” viscosity that will relate the 
turbulent Reynolds stresses to the gradient of the mean velocity, such that: 
 

 turbulent
U u v
y

____
     


    or u v

U
y

____
 

 




 (17.22) 

 

Here,  is known as the “eddy” viscosity, or sometimes "eddy" diffusivity, where the term eddy 
refers to the eddying interlayer mixing characteristic of turbulence.  We note in general that the 
eddy viscosity for a turbulent flow is much larger than the comparable kinematic viscosity, with 
 >> . 
 
Our basic problem is how do we model ?   For some cases, experiments reveal that y  for 
roughly 20y . (except very near the boundary), and  constant for 20y . (for a flat plate 
flow).  For other types of flows, models of  vary in myriad ways.  In general, many attempts 
have been made to develop generic models for eddy viscosities. Several of the better models are 
outlined in White (1991). However, the models tend to be restricted to specific types of flows 
and geometries, and there has yet to be a generic model that works effectively over a range of 
flow geometries and conditions.  In the following section, we examine a simple eddy viscosity 
model for boundary layer flows. 
 

17.5.3.2 Mixing Length Concepts (near a flat plate) 
 

The mixing length concept, and the subsequent phenomenological equations, was first proposed 
by Ludwig Prandtl [Prandtl (1925)], and was one of the early attempts at modeling an eddy 
viscosity for turbulent boundary layer flow.  Drawing on flow visualization studies, like our 
previous figure 17.11, Prandtl made an analogy between the large-scale motions (that carry 
energy within the flow, not the dissipating scales) and molecular motion in gases, which is 
modeled by mean-free paths (i.e. the distance a molecule will move, before interacting with 
another molecule).  Prandtl's idea was similar to our previous analogy of throwing rocks between 
trucks; i.e. a lump of fluid mixes after traveling a certain length (i.e. a normal distance from the 
boundary), with the distance the fluid travels dependent on its initial starting distance from a 
surface.  The model assumes that as the fluid moves a distance, l, it conserves its momentum 
over that distance, and then mixes out.  So, if a fluid moves from some level y to y  l, the 

change in the velocity, u, over l will be 
y
uu



 l .  Thus, as a crude approximation we can say 

http://glossary.ametsoc.org/wiki/Eddy_viscosity
http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
http://en.wikipedia.org/wiki/Ludwig_Prandtl
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that the fluctuation velocity, similar to our model in figure 17.14 will be 
y
Uu



 l .  We 

additionally need a model for v' to complete the analysis.  Prandtl, on a leap of faith, 

hypothesized that v' should be roughly proportional to u', or 
y
Uv



 l as well.  So, Prandtl's 

model of the Reynolds stress and eddy viscosity for a two-dimensional boundary layer-like flow 
was: 
 

    
2

2 2
turbulent

U U U- u v const const
y y y

____

. .     
              

     
l l  (17.23) 

 
 

Equation 17.23, while conceptually appealing, still leaves the modeling process in limbo, since 
we do not know how l varies with the mean velocity, nor the constant of proportionality. Prandtl, 
through an evaluation of experimental data, made some conjectures on the behavior of l, which 
would allow Eq. 17.23 to model the behavior of the mean velocity profile U(y).  However, as we 
will discuss in the following section, Prandtl could not determine a universal model for l, but 
realized that the modeling of l, and thus the eddy viscosity, depended on the specific regions of 
behavior within the boundary layer. 
 
17.6  “Universal” Velocity Distribution Laws (for boundary layers) 
 
Similar to laminar boundary layers, when one examines experimental data for turbulent flat plate 
boundary layers, clear characteristics of the mean velocity profiles are quite evident, as illustrated 
in figure 17.16.  When plotted in linear form, a turbulent boundary layer velocity profile appears 
somewhat flat over the span of the boundary layer, with most of the change between 0 < U < U∞ 
(with U∞ the velocity at y = ) occurring very close to the bounding surface.  This is much different 
than a laminar boundary layer, where the change is more distributed (see figure 13.4).  The reason 
for this more uniform velocity profile is a result of the production and sustaining mechanisms of 
turbulence, as we discussed generically in Section 17.4.   
 
Very near the bounding surface a process of turbulent "bursting" or breakdown of the local flow 
occurs, which generates turbulent eddies of small scale.  These initially small eddies, grow 
quickly by amalgamation to larger scales, which subsequently entrain energy from the outer 
flow.  What this process suggests is that flow at and very near the bounding surface will be 
dominated by viscosity and very high shear rates. However, the region just beyond this viscous 
region will be where the initiation of the bursting behavior and rapid growth in scales will take 
place, and where Reynolds stresses will begin to dominate laminar stresses.  Further out, the 
growth of scales will slow, and the turbulent mixing process will become more uniform, and 
energy dissipation will ensue at the smallest scales. The consequent effect of these varied 
processes will be the rapid transition within the boundary layer from essentially laminar-like 
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behavior very near the boundary to a Reynolds-stress dominated behavior over the bulk of the 
outer region of the boundary layer. 
 
The modeling of the actual processes of the boundary layer can be quite complicated.  However, 
by using an assumption of "regions" of behavior, and some rather simple mathematical 
approximations, relatively simple equations can be derived that are very effective in modeling 
the mean velocity behavior.   
 
The delineation of the regions and layers of a turbulent boundary layer was first proposed by 
Ludwig Prandtl (1933) and Theodore von Karmen (1930), and the characterization of these 
regions has not significantly changed to the present day.  Basically, they deduced that the 
velocity profile within a turbulent boundary layer consists of a thin, viscosity-dominated near-
wall region, a Reynolds-stress dominated outer region, and an overlap region, where both types 
of stresses are important.  In this way, Prandtl and von Karmen sought simple ways to model 
these regions, and develop "universal" mean velocity profiles, which would apply to a broad 
variety of boundary layer-type flows. 
 
To simplify the description of the regions of behavior, Prandtl and von Karmen divided the 
velocity profile into several “layers” of behavior, depending on the relative dependence (based 
on experimental results) on viscous stresses and Reynolds stresses.  They determined that a 

region near to the bounding surface (or wall), within 2.0y



, could be described by two distinct 

layers, with a connecting layer, all of which are dependent on the wall shear stress.  The 
remainder of the boundary layer could be described as a single region or layer, whose behavior 
was modified by external conditions, such as the external pressure gradient.  These two regions 
are generally termed the "Inner Region" and the "Outer Region" of the boundary layer, and are 
comprised of: 
 

a) Viscous sublayer 

b) Buffer layer 

 c) Logarithmic layer 
   

 d) Outer (Wake) layer  Outer Region, 1y2.0 


  
 

Figure 17.16 shows the generic shape of the mean velocity profile for a turbulent boundary layer, 
illustrating the respective regions and layers of behavior, plotted in both linear (17.16a) and 
logarithmic (17.16b) distance scales.  Sections 17.6.1 through 17.6.3 discusses of each of these 
regions and how they are modeled. 
 

Inner Region,  2.0y



 

https://en.wikipedia.org/wiki/Ludwig_Prandtl
http://en.wikipedia.org/wiki/Theodore_von_K%C3%A1rm%C3%A1n


Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 17 
 

650 
 

 
 
 

Figure 17.16  Typical averaged turbulent velocity profiles, plotted in non-dimensional 

coordinates, of 
u

uu   and 

 yuy  .  a) plotted on linear scales. b) 

plotted with a logarithmic y+ scale. 
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17.6.1 The Inner Region 
 

Within a relative small region adjacent to the bounding wall, roughly 2.0y



, a turbulent 

boundary layer transitions from being dominated by purely viscous stresses very near the 

bounding surface to Reynolds stress dominated behavior as 2.0y



.  This region within 

2.0y



, is known as the "Inner Region", and is actually modeled as two distinct layers, with a 

transitional layer, or buffer layer, linking the two. Since this inner region is influenced most 
strongly by the wall shear stress, w , and not the outer region free stream velocity, U , it is 
argued that the local mean velocity, U, has a functional relationship of the form:  

 y,,,fU winner  .  Dimensional analysis indicates that the functional equation for this set of 
parameters is:  

 


































y
fU

w

inner
w

  (17.24) 

Note that 


w  has the dimensions of velocity.  What this combination of shear stress and 

density represents is a characteristic velocity based on the wall shear stress.  So, if w is the shear 

stress adjacent to the wall or solid boundary, we hypothesize a velocity, u , which represents a 
momentum flux equivalent to the local shear stress.  
   

 i.e.       



 

w2
w uu   (17.25) 

 

Therefore, u  is a “velocity” representing the change in momentum per unit area equivalent to 
the shear stress w .  Utilizing this shear velocity, we can rewrite Eq. 17.24 as: 
 

 











 



yuf
u
U

inner  

or 
  

    yfu inner   (17.26) 

where, 






 



 yuyu
y   and

u
Uu .  Here, the plus superscript simply indicates that this is 

a non-dimensional property.  Also note that the non-dimensional displacement, y+, is a positional 
Reynolds number based on u . 
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The inner region has been found to scale well on the “wall” variables, u+ and y+, as described by 
Eq. 17.26.  However, to properly reflect the variations in the viscous stress and Reynolds stress 
across this region, this inner region is broken into three sub-regions described as the “viscous 
sublayer,” the “buffer layer”, and the “logarithmic layer.”  As we will discuss in Section 17.6.2, 
the outer region scales on the actual boundary layer thickness, , and is comprised of both the 
outer portion of the logarithmic layer (an overlap region) and a layer described by a “velocity 
defect law,” which also displays logarithmic behavior based on the actual boundary layer 
thickness, .  This probably sounds a bit confusing, and to some degree it is.  
 

 However, the use of inner variables (u+ and y+) for the inner region, and outer variables (U∞ and 
) for the outer region, has proven to be a sound method to model the particular mean velocity 
characteristics of the regions of the boundary layer, as shown in figure 17.16 in both linear and 
semi-logarithmic scales.  The latter semi-logarithmic presentation (figure 17.16b) is the preferred 
manner for representation of the velocity across a turbulent boundary layer, since it expands and 
emphasizes the inner region, within which the major effects of profile deformation and 
turbulence interaction take place.  In the following, I discuss and demonstrate the modeling 
processes employed for each of the layers comprising the inner region. 
 

17.6.1.1 The Viscous Sublayer 
    
Very near the wall, viscous effects dominate such that the flow will behave in a highly-stressed, 
but laminar-like, manner.  Within this very thin region, the shear stress across this layer is 
essentially constant at the boundary (y = 0) value, such that we can approximate that w .  
Thus, we can write the equation for the shear stress as: 
 

  wdy
dU  shear stress @ boundary        

 

Rearranging, and making use of Eq. 17.25: 
 

 




















 

2
www u1

dy
dU  

 

Integrating gives: 
 

 Cy
u

U
2




   (C = 0, since 0U   at y = 0) 

Dividing through by u : 
 

 



 


 y
yu

u
Uu  (17.27)  
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Equation 17.27 has been shown to be quite accurate for this very thin viscous sublayer, which 
experiments have shown to exist for roughly 75y  .  Note that this region of viscous stress is 
very thin.  On a light aircraft traveling at about 200 miles per hour, this layer would only be 
about 0.025 mm (0.001 inch ) thick. 
 

17.6.1.2 Logarithmic Layer  
 
Farther from a solid boundary, a turbulent boundary layer transitions from the viscosity 
dominated, laminar-like viscous sublayer, to a Reynolds stress dominated layer within the inner 
region.  The mean velocity within this layer is observed and modeled as a layer in which the 
velocity scales logarithmically with distance from the boundary.  This layer can extend from y+  
30 to 300-500, with the outer extent of this layer dependent on the maturity of the boundary 
layer.  The maturity of a boundary layer is quantified by the Reynolds number based on either 
plate length or boundary layer thickness.  Generally, as the Reynolds number increases, the 
extent of the logarithmic region expands (although non-linearly).   The characterization of this 
logarithmic region is roughly modeled by the Prandtl mixing-length concept as described by Eq. 
17.23.  Since this logarithmic layer is well removed from the wall, the Reynolds stresses due to 
turbulent mixing are found to dominate viscous stresses, such that the stream-wise shear can be 
approximated as: 
 

 

________

turblam vuvu
y
U





  

  

To determine a functional form for the Reynolds stress, we employ the mixing length concept of 
Prandtl from Eq. 17.23: 
 

 
   

2
2 2

turbulent
U U U- u v const const
y y y

____

. .     
              

     
l l  

 

As we discussed in section 17.5.3.2, the modeling of the mixing length, l, is problematic, since it 
depends on the type of turbulent behavior present.  However, for a turbulent flow adjacent to a 
surface, Prandtl and Von Karmen hypothesized that a lump of fluid near the wall would mix after 
traveling a distance proportional to its original distance from the wall, yl , or kyl , where k 
is an undefined constant.  This was to acknowledge that Reynolds stresses appeared to increase 
with distance from the surface within the inner region.  Thus, 
 

    
2

22
2

2
2

2

dy
dUyk

dy
dUky

dy
dUconstvu 


























 l.

____
  (17.28) 

 

Note that the constant in Eq. 17.23 is assumed to be incorporated into the constant k in Eq. 
17.28. 
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We now assume, as we did for the sublayer region, that w , i.e. that the shear stress across 
the inner region is equivalent to the shear stress at the wall.  This has been shown to be the case 
experimentally, such that the inner region is often referred to as the "constant stress" region.  
Employing this additional assumption, we write: 
 

 

2
2 2 2 2

w
dU dUk y k y
dy dy

   
         

   
 

 

Rearranging, to solve for the mean velocity derivative (and substituting from Eq. 17.25): 
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ky
u

dy
dU    (17.29) 

 

We assume that Eq. 17.29 holds from a region starting somewhere above the viscous sublayer, at 
y0, where U = U(y0). Thus, we integrate from y0 to y: 
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 (17.30) 
 

Dividing Eq. 17.30 by u, we get:  
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 (17.31) 

 
 
 

The indicated terms in Eq. 17.31 are an unidentified as an unknown constant, B, such that Eq. 
17.31 becomes: 
 

 yuU 1 1ln B or u ln y B
u k k

 



   


 (17.32)
 

 

B = constant 
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Fitting Eq. 17.32 to experimental measurements was done originally by Prandtl based on 
measurements in a turbulent pipe flow by J. Nikuradse, and k and B were determined to be 
approximately 0.5B  and  40.0k  .  Using more recent measurements, Coles and Hirst (1968) 
suggest values of 5.5B  and  41.0k  . However, even more recent work at high Reynolds 
numbers by a group of researchers, Marusic et al. (2010), suggests that the Karman constant (k) 
may range from 0.37 to 0.42, depending on the type of flow (with corresponding variations in the 
constant B).  Accepting the recommendations of Marusic et al., based on data which is quite 
comprehensive, we will assume values of k = 0.385 and B = 4.2 in this text.  For more detailed 
assessment of the arguments for one value over another, the reader is referred to Marusic et al.   
 
The thickness of the turbulent boundary layer that constitutes the logarithmic layer has also 
undergone much debate — on both its lower and upper limits.  The lower limit is general 
accepted as roughly 30y  , although limits of 50y   have been suggested.  The outer limit 
is dependent on the Reynolds number of the flow, and increases with increasing local Reynolds 
number (i.e. as the flow progresses downstream).  However, a range of 600300y30    for 
the logarithmic layer seems to be reasonable, although arguments are also made for a narrower 
range.  So, in general we will assume the equation for the mean velocity within the logarithmic 
layer, and its range of applicability, as: 
 

600300y30for  24y62u24yu
3850
1

u
U 










 



.ln..ln
.

 (17.33) 

 
17.6.1.3 Buffer  Layer  

 

This layer lies roughly between 30y5   , and is the transition zone between the viscous 
sublayer and the logarithmic layer.  While this is a relatively narrow region, it is particularly 
important because of the high-velocity fluctuations and Reynolds stresses that develop in this 
region.  Basically, it is within this layer that the boundary layer generates new vorticity 
concentrations by means of the bursting process discussed in section 17.4.  It is these vorticity 
concentrations that subsequently propagate away from the buffer layer, create the constant 
Reynolds stress region of the logarithmic layer, and amalgamate to form the large, outer region 
structures.  Modeling this layer has not been particularly successful from a physical perspective.  
There are models that can predict the velocity transition from the viscous sublayer to the 
logarithmic layer, but these are essentially hindsight relationships, which essentially use 
complicated curve fits to match experimental results.  These approaches generally use mixing 
length or eddy viscosity models, or a combination of both. We will discuss two successful curve-
fit models using these approaches.    
 
 
 

http://en.wikipedia.org/wiki/Johann_Nikuradse
http://people.eng.unimelb.edu.au/imarusic/publications/Journals/Marusic_PhysFluids_2
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17.6.1.4 Models of the Entire Inner Region 
 

van Driest Damping Factor 
 

First, for the inner region, we use the idea of the "viscosity" being a combination of the fluid 
viscosity, , and the turbulent, or "eddy" viscosity, , as defined by Eq. 17.22.  Thus, for the 
inner region we can write: 
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 (17.34)  

 

In Eq. 17.34, the eddy viscosity is intended to "model" the Reynolds stress, which can be related 
to a Prandtl-type mixing length, or other approach.  To use the mixing length approach, let's 
reconsider Eq. 17.28, where we assumed (incorporating the constant into the mixing length  l ): 
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From Eq.17.28, we can relate the eddy viscosity to the mixing length as: 
 

 
dy
dU2l    (17.35b) 

 

If we now substitute Eq. 17.35a into Eq. 17.34, noting that within the inner region the shear 
stress is essentially constant, 2

w u  ,we get: 
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Which we can expand and rearrange as a quadratic equation for dU/dy as: 
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Using the quadratic formula, we can solve for dU/dy as: 
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Retaining only the positive value of the root, and using some judicious algebraic manipulation, it 
can be shown that (try this as an exercise): 
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Now, within the viscous sublayer viscosity dominates, such that there is no mixing length and  
0l , and Eq.17.36 reduces to: 

 

 




dy
du 1    yu  which is Eq.17.27 for the viscous sublayer. 

However, within the logarithmic layer the mixing length is large such that 1l , Eq. 17.36 
then reduces to: 
 

 





l
1
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du    Byln

k
1u       (Eq.17.32, for a Prandtl mixing length kyl ) 

 

Clearly, one could create a model of the entire inner region if one could provide a model of the 
mixing length, which would make a smooth transition from the viscous sublayer to the 
logarithmic layer. One model that effectively did this was published by Van Driest (1956), who 
suggested an asymptotic, decaying exponential model for the transition from pure viscosity to the 
Prandtl mixing length, kyl .  His model was: 
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He termed this l  as a "damping factor", since it gradually increased the mixing length across 
viscous - buffer - logarithmic layers. Substituting Eq. 17.37 into Eq.17.36 and integrating for u+  
gives: 
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Since there was no boundary condition to apply to determine van Driest's constant A, he 
basically fit Eq. 17.38 by varying the constant A until the integrated Eq.17.38 matched the 
logarithmic layer equation for large values of u+.  van Driest suggested a value of A = 26 as the 

https://arc.aiaa.org/doi/abs/10.2514/8.3713
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appropriate value, but this was using the then accepted mixing length constants of k = 0.41 and B 
= 5.5 in Eq. 17.32.  However, using our most recent values of k = 0.385and B = 4.2, a value of A 
= 21 is a better fit.  A comparison of the numerically integrated van Driest equation (there is no 
closed form solution) with the sublayer and logarithmic layer equations is shown in figure 
17.17a, and is shown to match both equations quite well.   
 

Spalding's Single Inner Region Equation    
 

Another example of a model covering the entire inner region was suggested by Spalding (1961).  
His model is based indirectly on the mixing length concept, using a modification of Eq. 17.32 
which will satisfy both the logarithmic behavior within the logarithmic layer, and the linear 
behavior within the viscous sublayer.  To do this Spalding rewrote Eq.17.32 as follows: 
 

 By
k
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 kB

yku
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Expanding the exponential for kB as a series: 
 

           ...expexpexp   3
6
12

2
1 kukuku1kBkukBy  (17.39) 

 

This reverses the dependency from Eq.17.32, making y+ the dependent variable, and u+ the 
independent variable in Eq.17.39.  As shown on the right bracketed portion of Eq.17.39, 
Spalding also wrote the second exponential as a series expansion of  kuexp in four terms, 
which is applicable when ku+ is small.  However, he noted that when ku+ became large, greater 

than roughly 10, the higher order terms in the expansion (e.g.   ... 4
24
1 ku ) , which were 

neglected in the expansion, would become dominant.  So, he reasoned that by adding back the 
exp(ku+) inside the { } brackets and subtracting the four-term series expansion would create a 
function that was negligible when ku+ was small, and returned to essentially the logarithmic 
relationship of  Eq.17.32 when ku+ exceeded roughly 20.  To have the equation yield the viscous  
 
sublayer equation for small ku+, Spalding also added a u+ to the equation, which would yield the 
viscous sublayer equation, Eq.17.27, when ku+< 7 or so.  Spalding's resulting inner region 
equation is: 
 

        3
6
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2
1 kukuku1kukBuy   expexp  (17.40)  

 

 

https://asmedigitalcollection.asme.org/appliedmechanics/article-abstract/28/3/455/386110/A-Single-Formula-for-the-Law-of-the-Wall?redirectedFrom=PDF
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 (a) 

 
 (b) 
 

Figure 17.17  Comparison of:  (a) van Driest and (b) Spalding inner region equations with 
the viscous sublayer and logarithmic layer equations. 
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Figure 17.17b shows Eq.17.40, Spalding's inner region equation, in comparison with the viscous 
sublayer and logarithmic layer equations.  As shown, Spalding's inner region equation matches 
both equations quite well.   
 
So, like Van Driest, Spalding used some judicious reasoning and the empirical equations for the 
viscous sublayer and the logarithmic layer to create a function that matches both equations in 
their regions of applicability.  Note that Spalding did not rely on the on eddy viscosity 
arguments, although one can derive an eddy viscosity by taking the derivative of Eq. 17.40.   
One important issue with Equation 17.40 is that u+ is implicit in this equation, as well as being 
quite complicated.  Consequently, use of such equations is of limited utility, other than for 
comparison with experimental data.       
 
To see other ways of generalizing the inner region equation, in order to account for such effects 
as pressure gradients and roughness, I recommend you read the NASA technical memorandum 
by Shih et al.(1999) or the assessment of various inner region models by M. M. Gibson (2015).                                                                                             
  

17.6.2 The Outer Region 
 
The outer region, extends over the bulk of the boundary layer, from 0.2 < y/ < 1, overlapping on 
the lower end with the logarithmic layer, and at the upper end with a “wake” region.  This outer 
region is dominated by Reynolds stresses, with significant turbulent mixing.  However, this 
vigorous mixing creates a mean velocity profile that does not change rapidly, and is somewhat 
uniform in appearance.  The argument is that within this region viscosity is a secondary agent in 
establishing the mean profile.  Although viscosity is the mechanism for the final energy 
dissipation (at very small scales), the mixing of the larger scales is what gives rise to the 
redistribution of momentum within this region.  Within the outer layer, we view the effect of the 
Reynolds stresses as creating a "defect" of the mean flow from the driving velocity at the edge of 
the boundary layer, U∞.  However, the level of the Reynolds stresses is still characterized by the 
wall shear stress, w , and fluid density, , which characterize the shear velocity, u , as defined 
in Eq. 17.25.  Thus, we can reason that the functional relationship for the mean velocity in the 
outer region should be:    
 

 







  dx

dp,,y,,,UfU w  

Here,  is the boundary layer thickness, and 
dx
dp  is the pressure gradient, which is of course 

related to U∞.   Von Karman in 1930 showed that the most effective functional relationship for 
the outer region was a modeling of the "defect" of the mean velocity, U, from the external 
velocity, U.  Employing this defect concept (i.e. UU  ), dimensional analysis yields a 
relationship for the velocity defect of the form: 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990081113.pdf
http://thermopedia.com/content/1225/
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 , a dimensionless pressure gradient (17.41) 

 

Equation 17.41 turns out to be a good functional relationship for the outer region.  However, 
determining a universal relationship for this equation has proven quite challenging, since the 
function changes with flow geometry and history.  In reality, the process has been more of an 
exercise in curve fitting of empirical data, rather than development by some a priori 
mathematical model.  The simplest way to approach a model is to assume a self-preserving or 
equilibrium boundary layer (i.e. one where the velocity defect function of Eq. 17.41 is the same 
function of y/ for all x locations). This assumption, while convenient, is not exact, and only 
becomes a good approximation when the Reynolds number becomes large. 
 

The problem is to determine the functional relationship 










,yf in Eq. 17.41.  The approach is a 

combination of empirical curve fitting, and the understanding that the inner and outer region 
must overlap and give identical results within that overlap region.  In order for the logarithmic 
layer and outer layer to overlap, Eq. 17.41 must asymptote to Eq. 17.32 within this overlap 
region.  Thus, Von Karmen suggested that the equation for the mean outer region velocity should 
be of the form: 
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Here we assume that  A  is a function of the external pressure gradient, and 











y is a function 

that varies with the location within the boundary layer.  Now, if we set y = , where U = U∞,  Eq. 
17.42 gives: 
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Subtracting Eq.17.42 from Eq. 17.43, gives us a functional form for the velocity defect equation, 
Eq.17.41, as: 
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Now, within the overlap of the inner and outer regions, if Eq. 17.42 is to match Eq. 17.32, then 

0y











  as 0y




.  Thus, in the overlap region, where 0y



, Eq. 17.44 becomes: 

 

    1Ay
k
1

u
UU

















 ln  (17.45) 

 

Solving Eq. 17.45 for 
u

U , and equating it to Eq. 17.32 and rearranging, we have: 
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And solving for    1A  , we have: 
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What we have in Eq. 17.46 is the difference between the velocity at the edge of the boundary 

layer, and the value predicted by the logarithmic law, Eq. 17.32.   If we assume that 











y is a 

function such that   11  at the edge of the boundary layer, then we have: 
 

   




















 



 Buln
k
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u
UA  (17.47) 

 

So, the value of  A  is a measure of the difference between the actual external velocity, and 
that predicted by the law of the wall (the logarithmic layer).  Of course, recall that the value of 

 A  is a function of the pressure gradient imposed on the boundary layer, where 
dx
dp

w


 .   

The value of  A  varies with the applied pressure gradient, and often the particular geometry, 
but in general is a fairly constant value for a given pressure gradient.  Some selected values of 
 A , determined from experiment (White, 2011) are: 

 

 

Pressure Gradient   A  value 
Strong favorable -4.8 1.0 
Flat plate 0 2.5 
Mild adverse 6.3 5.6 
Strong Adverse 29 13 

http://johndfenton.com/Documents/White09.pdf
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Except for the flat plate value, these are representative of values obtained for a limited selection 
of experimental data.  Note that a linear curve fit of this data gives an approximate relationship 
of: 
   82360A ..    (17.48a) 
 

Thus, if  is relatively constant, Eq. 17.48a allows the approximation of the respective value of 
A(). 
 

The function 











y  has been debated for decades, and still is undergoing scrutiny.  However, 

Coles (1956) probably came as close as anyone to defining its functionality, in proposing what 
he termed the Law of the wake.  Here, the wake is the outer region of the boundary layer where 
the flow diverges from the logarithmic law of the wall.  Examining a broad set of data, Coles 

proposed that the wake portion of Eq. 17.43 
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function as: 
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Thus, to a good approximation we can now rewrite the outer region mean velocity profile of Eq. 
17.42 as: 
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and the velocity defect form of Eq. 17.41 as: 
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17.6.3 The Combined Universal Velocity Profile 

 

Figure 17.18, shown in both linear and semi-logarithmic coordinates, plots the mean turbulent 
velocity profile predicted by Eqs. 17.27 (sublayer), 17.33 (logarithmic layer), and 17.49 (outer 
layer).  The outer region is shown for a range of pressure gradients, from a strong favorable to a 
strong adverse; additionally, the outer region without a wake correction (A = 0) is shown for 
comparison. Note the significant variations in the outer region created by the application of an 
adverse pressure gradient. 
 
To gain further perspective on the effect of pressure gradients on turbulent boundary layers, the 
velocity profiles of figure 17.18a are replotted in figure 17.19 relative to the outer flow velocity,  

https://www.researchgate.net/publication/231892052_The_Law_of_the_Wake_in_the_Turbulent_Boundary_Layer
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 (a) Linear scale 

 
 (b)  Logarithmic scale 

Figure 17.18   Mean turbulent velocity profiles plotted using wall variables, 


 
u
Uu and 







  yuyuy , for sublayer (Eq.17.27), logarithmic (Eq.17.33), and outer 

regions (Eq. 17.49).  Shown for 3000
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Figure 17.19   Mean turbulent velocity profiles of figure 17.18a replotted relative to U and  .  

The profiles shown assume 3000
u





  . 

 
 

 
Figure 17.20   A comparison of flat plate boundary layer velocity profiles plotted relative to 

U  and  .  The laminar boundary layer is a Blasius boundary layer, plotted 
from table 13.1. The turbulent boundary layer profile is plotted using a 

combination of Eqs.17.27, 17.33, and 17.49 assuming 3000
u
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U , and the boundary layer thickness, .  As figure 17.19 shows, a favorable pressure gradient 
will result in a flatter velocity profile, while an adverse pressure gradient will cause a retardation 
of the profile. As the velocity profile for the strong adverse pressure gradient illustrates, while 
the outer region is strongly retarded, the near-wall region does not display as much obvious 
retardation (although the wall shear stress, w , is reduced).  For very strong adverse pressure 
gradients, a turbulent flow will undergo separation, although it is more robust than a laminar 
boundary layer, as we discuss below. 
 

17.6.4 A Shape Factor Comparison of Turbulent vs. Laminar Boundary Layers 
 

To illustrate how significantly the boundary layer mean velocity profile is modified by transition 
to turbulence, figure 17.20 shows a comparison between a turbulent boundary layer profile 
modeled by Eqs. 17.27, 17.33, and 17.49 for a turbulent flat plate flow, and a laminar Blasius 
boundary layer, as calculated from Table 13.1.  Both are plotted on linear axes, and referenced to 
the mean outer flow, U , and assume the same boundary layer thickness, .  Note the striking 
flatness of the turbulent profile versus the laminar profile.  This variation is characterized by the 

shape factor we discussed in section 13.6, defined by 





*H , the ratio of the displacement to 

the momentum thickness.  The shape factor, H, for the laminar Blasius boundary layer is 2.6, 
whereas H for the turbulent boundary layer shown is 1.3, illustrating how much "flatter" a 
turbulent boundary layer is, which makes it much less susceptible to flow separation.  
 

Generally, a decrease in H from the flat plate value indicates a more stable flow, whereas an 
increase in H indicates reduced stability.  For a laminar flow, a higher H value increases the 
likelihood of:  (a) transition to turbulence, or (b) a flow separation of the boundary layer.  For a 
turbulent flow, since the flow is already in a turbulent state, an increase in H from the flat plate 
value just implies a greater likelihood of flow separation.  Note that for a turbulent flow, a lower 
H value due to a favorable pressure gradient in some cases can result in a return of the boundary 
layer to a laminar state, termed "relaminarization"; for strong pressure gradients, relaminarization 
can occur quite quickly, in roughly 20-100 initial boundary layer thicknesses (depending on the 
physical situation).  Relaminarization can also occur due to rotation, suction, flow curvature, and 
heating [Narasimha and Sreenavasan (1979)]. It should be noted that the relaminarization 
develops from the wall outward, with the acceleration of the inner region by the favorable 
pressure gradient causing a cessation of the bursting behavior that feeds new vorticity and 
vortices into the outer region [Morkovin, (1988)].  Thus, while the inner region may appear 
laminar, the residual large-scale vortical flow structures within the outer region will not decay 
rapidly, delaying the return to complete laminar-like behavior for some distance.  Moreover, 
these outer region flow structures could provide sufficient disturbances to cause a retransition of 
the boundary layer to turbulence, should the favorable pressure gradient be relaxed. 

 

https://www.researchgate.net/publication/4681979_Relaminarization_of_Fluid_Flows
https://ntrs.nasa.gov/search.jsp?R=19880020695
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  (a) Laminar  (b) Turbulent  

Figure 17.21   A comparison of mean flat plate boundary layer velocity profiles plotted 
relative to U  and   for a range of shape factors, H:  
(a) Laminar boundary layers: 2.2 < H < 3.5 (laminar separation);  
(b) Turbulent boundary layers 1.3 < H < 2.4 (turbulent separation). 
[from White, 1991] 

 

Figure 17.21 shows a range of equilibrium velocity profiles for both laminar and turbulent 
boundary layers, due to a range of applied pressure gradients.  These pressure gradients range 
from favorable to strong adverse pressure gradients for the laminar profiles, and from a flat plate 
flow to a strong adverse pressure gradient for the turbulent profiles, and illustrate the range of 
possible shape factors. It is interesting to note that the shape factor for a laminar flat plate flow 
(H = 2.6) is twice that of a turbulent flat plate flow (H = 1.3).  This quantizes what is clearly 
shown in the comparative figure 17.20 --- that the displacement of the boundary layer fluid (*) 
is much greater than the loss of momentum () for a laminar flow as compared to a turbulent 
flow; and that shape factors are markedly higher for laminar vs. turbulent behavior. 

 

In Section 13.3, it was pointed out that for a Blasius flat plate flow an inflection in the velocity 
profile develops at the surface, and that such an inflection point is an indication of a marginally 
stable flow.  As figure 17.21(a) illustrates, as the pressure gradient becomes more adverse, and H 
correspondingly increases, the inflection in the laminar velocity profile develops away from the 
surface, which results in an increasingly less stable laminar boundary layer, quickly leading to 
rapid transition to turbulence and/or boundary layer separation.  Interestingly, figure 17.21(b) 
shows no apparent inflection points as the adverse pressure gradient increases.  This is because 
the resultant inflections will occur very near the boundary, within the viscous sublayer and buffer 
region, which are not plotted in the figure. It is worth noting that for a laminar boundary layer an 
increase in H by only 35% above the flat plate value will result in an immediate boundary layer 

http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
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separation. In contrast, for a turbulent boundary layer H must increase by 85% before 
immediately separation will occur.  This is another testament to the fragility of a laminar 
boundary layer, and the robustness of a turbulent one. 
 

While the velocity profiles shown in figures 17.18, 17.19, and 17.21(b) are reasonably close to 
measured turbulent boundary layer characteristics, these reflect basically equilibrium boundary 
layer flows, for which the conditions, such as the pressure gradient, remain relatively constant.  
In most real applications, such as airfoils, a flow will generally undergo significant changes in 
pressure gradient over the flow surface, and thus will not be an equilibrium flow.  Additionally, 
considerations of other effects such as surface roughness or surface transpiration require 
additional assumptions, and generally more sophisticated modeling [see White (1991)].   

 

However, for smooth, solid boundaries with gradual streamwise changes, the collective 
equations reflected by figure 17.18 do a reasonable job of modeling mean turbulent velocity 
behavior.  However, for more accurate predictions of turbulent boundary layer behavior, there is 
a great body of research and literature that attempts to provide more universal characteristics for 
turbulent boundary layers under varying conditions.  In addition, many sources exist that provide 
ever-improving capabilities for computational prediction of turbulence in general and turbulent 
boundary layer characteristics in particular.  Most of these prediction approaches require 
significant computational resources and sophisticated numerical techniques to determine 
significant engineering properties such as surface shear, drag, and separation behavior. Appendix 
B summarizes the generic way that modern turbulence computational programs modal and 
calculate practical engineering properties. 
 

For our present purposes, we will only consider a simple, approximate method, which employs 
the same momentum integral equation we applied to laminar boundary layers in Chapter 14.  
Here, we will adapt the momentum integral equation to predict averaged turbulent boundary 
layer characteristics.  By utilizing a simple model of a mean turbulent velocity profile, we can 
approximate the basic boundary layer characteristics relevant to engineering applications, using 
some fairly simple calculations. 
 
17.7   A Momentum Integral Analysis of a Flat Plate Turbulent Boundary Layer 
 

17.7.1  Transition to a Turbulent Boundary Layer on a Flat Plate 
 
As discussed in section 17.3.2, a laminar flow does not suddenly transition to turbulence, but 
does so by means of a complicated process that is still not clearly understood.  What is 
understood is that there is a Reynolds number range over which transition may occur.   
The Reynolds number at which transition to turbulence initiates is known as the critical Reynolds 
number, or Recrit.  Here, Recrit  can be based on the x-distance along a flat pate, or on the 
boundary, displacement, or momentum thicknesses.  This can make a discussion of the location 

http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
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of Recrit somewhat confusing, so for our purposes we will use 
critxRe , which is based on the 

location from the leading edge of a flat plate, as illustrated in figure 17.22.  
  

 

 
Figure 17.22   Schematic representation of transition to turbulent flow on a flat plate. 

 
Note that the transition process will not occur immediately, but requires some distance (i.e. 
Reynolds number range) over which a full transition from a laminar to a fully-turbulent flow will 
occur.  In addition, a number of things can affect the critical Reynolds number and the transition 
process, including surface roughness, external flow fluctuations, and pressure gradients. 
 
In general, increasing surface roughness, or an increase in the level of external flow fluctuations 
(measured by the rms of the velocity fluctuations relative to the mean flow velocity) will cause a 
flow to begin transition to turbulence at a lower critical Reynolds number.  An adverse 
(increasing) pressure gradient will also stimulate an early transition to turbulence; recall our 
discussion in Section 17.2.3 of how sensitive laminar flow stability is to an adverse pressure 
gradient.  However, a favorable (decreasing) pressure gradient will delay the transition to 
turbulence to a higher critical Reynolds number.  In addition, as pointed out in Section 17.6.4, 
strong favorable pressure gradients can actually cause turbulence to “relaminarize”, or revert 
back to laminar behavior. 
 
For an initially uniform flow over a flat plate, the accepted Reynolds number range for the 
initiation of transition is roughly 65

x 103  to103
crit

Re , where 5
x 105Re

crit
  is generally 

accepted as the critical Reynolds number for transition to turbulence under normal surface 
roughness and external flow conditions.   
 

In the following analysis of a flat plate turbulent boundary layer, we will examine two situations. 
The first assumes that the boundary layer is turbulent from the leading edge of a flat plate. The 
second assumes the flow is initially laminar, and then suddenly transitions to a fully-developed 
and self-sustaining turbulent boundary layer.  While both of these are idealized models, they 
provide reasonable predictions of boundary layer growth and wall shear stress, and illustrate the 
differences in behavior between turbulent and laminar boundary layers. 
 

 

x 

Laminar Transition Turbulence 

https://www.researchgate.net/publication/231829934_Relaminarization_in_highly_accelerated_turbulent_boundary_layer
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17.7.2 The Momentum Integral Equation for Turbulent Flow 
 

As discussed in Section 17.6.4, the detailed analysis of turbulence is a complicated process 
requiring very complicated mathematical modeling and substantial computational resources.  
However, we can develop some relatively simple relationships for the characteristics of a 
turbulent boundary layer using a momentum integral analysis similar to that done in section 
14.2.1 for a laminar flow.   We will do this using an assumed velocity profile, and shear stress 
information obtained from the outer region equation, Eq. 17.49. 
 

Consider the von Karman momentum integral equation, Eq. 14.11 developed in Chapter 14. 
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For a flat plate boundary layer, with no pressure gradient and constant U , this reduces to: 
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dU 2
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(17.51) 

 

Here,  is the momentum thickness, given by Eq. 13.27 as: 
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  (17.52) 

 
Eqs. 17.51 and 17.52 are equally applicable to turbulent boundary layers as well as laminar 
boundary layers, since they only require expressions for U, representing the approximation of the 
mean velocity profile, and w  , the wall shear stress.  As we show in the following section, a 
reasonable approximation for U exists.  However, determining the shear stress is problematic, 
since for a turbulent flow we cannot relate the shear stress to the gradient of the mean velocity, 
since the "stresses" in a turbulent flow must take into account the "Reynolds" stresses. Therefore, 
we have to seek an alternative relationship for the shear stress, which we do by employing the 
outer region velocity relationship from Eq. 17.49. 
 

17.7.3 The Mean Velocity Profile: Nikuradse Power Law 
 

Based on an extensive set of experimental studies of pipe flows, Nikuradse (1932) established 
that to good approximation the mean velocity profile of a turbulent flow in a fully-developed 
pipe flow (of radius R) can be approximated by: 
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U
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  where n  >  6 (17.53) 

 

Prandtl (1921) had previously suggested the use of a power-law mean velocity profile to 
approximate a flat-plate turbulent boundary layer, with Eq. 17.53 being recast for a flat plate as: 
 

https://en.wikipedia.org/wiki/Johann_Nikuradse
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 (17.54) 

 

Eq.17.54 presumes that since the pipe boundary layer would extend to the center of the pipe, that 
to a good approximation  = R, and rRy  can be substituted in Eq. 17.53 to obtain Eq.17.54.  
It has subsequently been shown that Eq.17.54 is a good approximate representation of a turbulent 
boundary layer velocity profile for use in the integral analyses of turbulent boundary layers, and 
we will use this relationship for our present integral analysis. 
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Figure 17.23 Comparison of mean turbulent boundary layer velocity and a Nikuradse n = 7 
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Note that while Eq.17.54 is a good approximation of the mean velocity shape, it t does not meet 
the boundary conditions exactly, as shown by figure 17.23.  Although Eq.17.54 does satisfy the 

first order boundary conditions U y0 at 0
U

 
  

 
, and U y1 at 1
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, it does not satisfy 

the appropriate second and higher-order derivative boundary conditions : 
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However, because of its simplicity, Eq.17.54 has been widely employed to effectively model the 
approximate shape of the mean velocity behavior. 
 
From empirical data, the value of the constant n was determined to be a function of Reynolds 
number, varying from roughly 7  n  9 for a flat plate flow.  Although there is no consensus, 
generally accepted values are: 
 

 7n   7
x

5 10Re10x5   

 n 8      7 8
x10 10Re   

 9n       8 9
x10 10Re   

 

We shall examine the difference these respective n values have on predicted boundary layer 
characteristics later in section 17.7.5. 
 

17.7.4 Assumed Shear Stress Relationship 
 

Determining an appropriate shear stress relationship to employ with Eq. 17.51 is a bit 
problematic.  Recall that for a laminar flow, we would simply apply the Newtonian relationship 
relating the viscosity to the rate of change of velocity normal to the flow direction at the wall  

(y = 0), such that 
0y

w dy
dU



 .  However, if we apply the Nikuradse-type velocity profile, we 

have: 
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As we will see, to appropriately integrate Eq. 17.51 we will require an expression for the wall 
shear stress which is a function of the boundary layer thickness, .  With this in mind, we make 
use of the empirical equation for the mean outer region velocity profile, Eq. 17.49, given as: 
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Letting y = , and U = U∞, we obtain: 
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Rearranging, we get: 
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 (17.55) 

 

Equation 17.55 relates cf  directly to Re, but the relationship is implicit.  To develop an explicit 
relationship, we assume a series of cf values from 0.0015 to 0.005, and then solve Eq.17.55 for 
the respective Re values using a root finding program.  We then use the cf  vs. Re values and 
develop a regression power law fit for cf as a function of Re, given by (using flat plate values of 

k = 0.385, B = 4.2, and   5.2A  ) : 
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17.7.5  Solution of the Momentum Integral Equation 
 

Solution of Eq.17.51 requires that we first determine the momentum thickness, , as a function 
of the boundary layer thickness, , via Eq. 17.52.  To facilitate the integration of Eq.17.52, we 
rewrite the Nikaradse relationship, Eq.17.54, as: 
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Thus, Eq.17.52 becomes: 
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After integration of Eq.17.57, we obtain: 
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Here,  is a constant, depending on the value of n. Note that we can also determine *, the 
displacement thickness as: 
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Now, we substitute Eqs.17.58 and 17.56 into Eq.17.51: 
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 ddxU00975.0 173.0
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(17.59) 

 

To integrate Eq. 17.59 requires that we assume the state of the flow from the leading edge of the 
flat plate.  The simplest approach is to assume that the boundary layer is turbulent from the 
leading edge of the plate.  This is a reasonable approach if the Reynolds number is large and a 
boundary layer tripping mechanism (such as a rod or large sand roughness) is applied very near 
the leading edge.  However, for the more general case, the boundary layer will be laminar from 
the leading edge of the plate, and then transition to a turbulent boundary layer.  This can be 
addressed by assuming laminar behavior up to a transition location, and performing the 
integration in two parts: integrating the laminar equation from the leading edge to the transition 
point, and then integrating Eq. 17.59 from that point onward assuming turbulent flow.  Here, we 
will examine both of these situations, and assess the difference in the predicted behavior.  
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17.7.5.1 Turbulent Flow from Leading Edge 
 
First, we will assume that the flow is turbulent from the leading edge, and thus start our 
integration of Eq.17.59 from  = 0 at x = 0. Thus: 
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Solving for  gives: 
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The friction coefficient is defined as:  

 
2

w
f

U
2
1

c



  

 

 

The wall shear stress, w , is determined from the simplified integral equation, Eq. 17.51, giving: 
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We obtain 
dx
d  in Eq.17.61 from Eq. 17.58 as 
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Finally, we determine 
dx
d by differentiating Eq. 17.60 and substituting into Eq. 17.62, giving the 

result: 
 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Chapter 17 
 

676 
 

0 1470 147
w

f 0 147
2 x x

d d 0 0368c 2 2 03681 dx dxU
2

..

.

. .
Re Re



     
       

 

 (17.63) 

 

For 9n7  , the values of , *


, *H 



, and the corresponding equations for 
x
  and cf 

are: 
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  * 0.125




 H=1.286 147.0
xRe

158.0
x




 
147.0

x
f Re

0261.0c   (17.64a) 

 

 n = 8    0889.0
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f Re
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Note that the difference in the friction coefficient between n = 7 and n = 9 is only 2.4%, which is 
less than the empirical accuracy used to establish the curve fits for the velocity profile and shear 
stress relationships used to develop Eq. 17.63.  This suggests that the selection of n for our 
modeling is not critically important. 
 
The total drag on a plate is obtained by integrating the shear stress over the plate surface, such 
that:  
 

  

L

0
w Wdx Drag     where W is the plate width, and L is the plate length (17.65) 

 

Note that we can perform this integration the hard way, by integrating using Eq. 17.63 for cf, or 
the easier way by noting that shear stress is directly related to the change in the momentum 
thickness through Eq. 17.51.  Therefore, substituting from the simplified integral equation, Eq. 
17.51, into Eq. 17.65, we have: 
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Equation 17.66 indicates that we only need to determine the value of the momentum thickness at 
x = L to establish the overall drag on the plate.  This is because  is a direct reflection of the 
momentum "lost" from the boundary layer (for a dp/dx = 0 flow). 

From Eq. 17.58 for the momentum thickness,  , which combined with Eq. 17.60 gives, for 
x = L: 
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To calculate the non-dimensional drag coefficient, CD, we divide Eq.17.66 divide through by 
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Now, substituting Eq. 17.67 into 17.68 for  at x = L, we get: 
 
 

 
0.1470.147

x L
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L L
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L Re Re


   

    
 

  (17.69) 

 
Equation 17.69 gives the predicted flat plate drag coefficient for a boundary layer that is 
turbulent from the leading edge of a flat plate. 
 

17.7.5.2  Laminar-Turbulent Transition at Critical Reynolds Number 
 
If we now consider a boundary layer that is initially laminar, which then transitions to turbulence 
at some critical Reynolds number, we can derive an approximate relationship for the boundary 
layer growth, cf, and CD for the combined processes.  However, we have two problems.  The first 
is that the critical Reynolds number, Recrit, at which transition from laminar to turbulent flow 
occurs is not a well-defined value.  It may change markedly, due to variations in the impinging 
flow conditions, such as turbulence intensity levels, mean profile non-uniformities, and surface 
irregularities and roughness.  The second is that transition, as we pointed out earlier, occurs over 
a finite length of the plate, yielding a sustaining turbulent boundary layer only after some 
development length.  However, to facilitate a solution, we will assume that the combined 
laminar-turbulent flow makes an immediate transition from laminar to turbulent behavior at a 
specified critical Reynolds number, and that our Eq. 17.59 we derived from the integral equation, 
applies immediately from that critical Reynolds number onward. 
 
We will assume that the flow over the first portion of the flat plate behaves according to the 
Blasius solution we developed in Chapter 13, and that the boundary layer for the laminar region 
develops according to Eq.13.29, given by: 
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Equation 13.29 assumes that the boundary layer initiates at the leading edge of the plate, such 
that  = 0 at x = 0.  If we assume that   = crit at x = xcrit or Rex = Rex,crit, we can integrate  
Eq. 17.59 to establish the behavior of the turbulent portion of the boundary layer, starting the 
integration at  = crit at x = xcrit as follows: 
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Solving for  gives: 
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With a bit of work, this can be shown to be: 
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In Eq.17.70, x
U xRe 


, crit
x,crit

U xRe 


, and 
crit

critURe 






.  Equation 17.70 will give the 

value of   for the turbulent portion of the boundary layer based on the respective Reynolds 
number, where Rex > Rex,crit.  However, we can simplify the variables required for Eq. 17.70 by 
using Eq. 13.29 to show: 
 

crit

0.5
x,crit Re 5Re   (17.71) 

 

So, Substituting Eq.17.71 into Eq.17.70 gives: 
 

 
0.853
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x

0.01144 Re Re 6.61Re

x Re

 
      (17.72) 

 

To obtain the friction coefficient, we differentiate Eq.17.72 and substitute into Eq.17.62, which 
after some manipulation gives: 
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 (17.73) 

 
 

To determine the drag coefficient, CD, for a combined laminar-turbulent flow over a plate, we

 
combine Eq.17.58 with Eq.17.68 and Eq. 17.72, applied at x = L to obtain: 
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17.7.5.3  Comparison: Laminar, LE Turbulent, and Transitional Boundary Layers 
 

Figures 17.24, 17.25, and 17.26 illustrate the growth of a flat plate boundary layer with distance, 
x, and the consequent behavior of cf(x) and CD(L), considering the flow is either (a) turbulent 
from the leading edge (TLE), or (b) a combination of laminar and turbulent (L-T), with a 
transition at a critical Reynolds number. For the turbulent portions, a value of n = 7 was assumed 
for the power-law velocity profile ( = 0.0972).   
 

To properly illustrate the non-dimensional change of boundary layer thickness relative to the 
plate length, we divide  in Eqs.17.60 and 17.72 by the plate length, L, which gives respectively: 
 
Turbulent from the leading edge: 
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Laminar-Turbulent Transition: 
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for n = 7,  = 0.0972 

for n=7, =0.0972 
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(a) ReL = 106 

 

 
(b) ReL = 5x106 

 

Figure 17.24 Comparison of predicted flat plate boundary layer growth (for n = 7) assuming: 
(1) turbulent from the plate leading edge (TLE) [Eq. 17.75] and 

 (2) transition from laminar to turbulent (L-T) [Eq.17.76] at Rex,crit = 5x105.   
  (a) ReL= 106  (b) ReL= 5x106. 

 
Figure 17.24 shows plots of (x)/L vs. x/L for (1) Eq.17.75 (TLE), and (2)  Eq.17.76 (L-T). We 
assume Rex,crit = 5x105 for the latter equation.   Results are shown for plate Reynolds numbers of 
both ReL = 106 and ReL = 5x106  to illustrate the variance of the boundary layer growth over the 
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plate as plate length is increased.  Note that the laminar boundary layer grows much more slowly 
than the turbulent, so for ReL = 106 the difference in the assumed growth modes is quite 
pronounced, with the L-T boundary layer being 32% thinner at the end of the plate than the TLE 
boundary layer.   
 
As the plate Reynolds number increases, this discrepancy in boundary layer thickness decreases, 
since the contribution of the laminar portion to the L-T boundary layer diminishes accordingly.  
So, for ReL = 5x106, the difference in the end of plate boundary layer is less than 5%.  For 
Reynolds numbers exceeding ReL = 107, which reflect most practical external flows, the 
difference drops to roughly 1%, which is essentially negligible. 
 

 
 

Figure 17.25 Predicted friction coefficient, cf(x) (for n = 7), assuming: 
 (1) turbulent from the plate leading edge (TLE) [Eq. 17.64a] and 
 (2) transition from laminar to turbulent (L-T) [Eq.17.73] at Rex,crit = 5x105.   

 
Figure 17.25 illustrates the behavior of the friction coefficient, cf, as predicted by Eqs. 13.33 
(laminar flow), 17.63 and 17.72.  Note that cf for a turbulent boundary is significantly greater 
than the cf for a comparable laminar boundary layer at the same Reynolds number.  This is a 
result of the more intense momentum exchange within a turbulent boundary layer, and the higher 
shear gradient at the surface.  In fact, for Rex = 5x105 (the Recrit value for the combined L-T), the 
cf for the TLE turbulent boundary is roughly four times greater than the comparable cf for a 
laminar boundary.  
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Note that the cf predicted by Eq. 17.73 (after transition) for assumed laminar-turbulent transition 
(L-T) is initially in excess of that predicted by Eq.17.64a for TLE.  At first, this may seem 
unusual, but consider the process of boundary layer growth.  At the point where the laminar 
portion of the L-T boundary layer transitions to turbulence, the boundary layer will be thinner 
than the comparable TLE boundary layer.  And as figure 17.24 illustrates, the thinner the 
boundary layer, the faster it grows.  Thus, when the boundary layer transitions from laminar to 
turbulent, the subsequent turbulent boundary layer will be growing faster, with a consequent 
higher cf, than that of the TLE boundary layer at the same Rex.  Of course, as Rex increases, and 
the growth rates of the L-T and TLE become comparable, and the difference in cf between the 
TLE and L-T predictions become minimal, as shown by figure 17.25. 
 

 
Figure 17.26 Predicted total drag coefficient, CD(L), for n = 7, assuming  
 (1) turbulent from the plate leading edge (TLE) [Eq. 17.69] and 
 (2) transition from laminar to turbulent (L-T) [Eq.17.74] at Rex,crit = 5x105.   

 
Figure 17.26 is a plot of CD(L) comparing the predictions for laminar, turbulent from the leading 
edge (TLE), and combined laminar-turbulent (L-T) boundary layers.  Note that for ReL < 107, a 
L-T boundary layer will have lower drag than the TLE boundary layer, since the initial laminar 
boundary layer will have significantly lower shear stress than a turbulent boundary layer.  For 
example, if Rex,crit = 5x105, and ReL = 106, the L-T drag will be roughly 30% less than for a TLE 
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flow.  However, as ReL increases, the difference between the L-T and the TLE drag will decrease 
until they are essentially equivalent at roughly ReL = 1.5x107.  
 
As an illustration of when one should be concerned with an initial laminar region, consider that 
the Reynold number for the wing width (the chord) of a small private plane traveling at 150 
miles per hour (220 ft/s or 67 m/s) is roughly 4 to 5x106.  So, from figure 17.26 there would be 
little reason to account for any initial laminar portion of such practical aerodynamic flows, since 
the CD values for the TLE and L-T predictions are essentially identical.  However, the flow over 
the rudder of a small boat moving at 15 ft/s or 4.5 m/s will be roughly 2x106, for which the 
consideration of an initial portion of laminar flow could have as much as a 10-15% reduction 
from a flow turbulent from the rudder leading edge.  The bottom line is that unless a practical 
flow is fairly slow, or small, adaptation for an initial laminar portion of the boundary layer is 
probably not warranted. 
 

17.8  Conclusion 
 

While this chapter is rather long, it is still a simplistic discussion of turbulence, and how it is 
modeled and predicted.  The literature on turbulence is quite extensive, and quite contentious.  
Because of the complexity of turbulence, the manifold approaches for the prediction of 
turbulence properties, which have been suggested and pursued, have met with varying degrees of 
success.  It was the intent of this chapter to introduce you to the generic characteristics of 
turbulence, and some simple and reasonably effective techniques for assessing turbulence 
properties for simple geometries. My hope is that having completed this chapter you have a 
reasonable grasp of what turbulence is, the basic methods for approaching solutions, and the 
difficulties that can develop when doing so.  For a more thorough discussion of semi-empirical 
approaches to prediction of turbulence properties, I suggest reading Chapters 5 and 6 of an 
excellent book, "Viscous Fluid Flow," by Frank White (1991).  However, recognize that even 
White's book just scratches the surface of our understanding, and does not cover the wealth of 
material subsequently available.   
 
For a comprehensive overview of the modern modeling and computational approaches used to 
predict turbulent flow behavior in practical engineering flows, I suggest you watch three short 
video lectures by Professor Kevin Cassel, which start at this link. These videos provide excellent 
descriptions of the three most common turbulence modeling approaches employed, their general 
effectiveness, limitations, and the differences in computational costs to make effective 
engineering predictions of turbulent behavior.  
 

In closing, I note that although there have been many marvelous computational and experimental 
studies, which have produced incredible: (1) computational simulations of turbulence behavior 
through massive numerical solutions of the time-dependent, three-dimensional Navier-Stokes 
equations, and (2) three-dimensional experimental measurements and visualizations of real 

http://ftp.demec.ufpr.br/CFD/bibliografia/viscous_fluid_flow_frank_m_white_second_edition.pdf
https://www.youtube.com/watch?v=IOm2v5k7NGM
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turbulent flows.  Despite these remarkable advances, we still struggle to understand the 
turbulence process better than it is described in this chapter.  Even though studies can 
demonstrate a variety of vortical and wave-like structures comprising turbulence, researchers are 
still trying to sort out the cause and effect of these structures, and to put that understanding to the 
development of prediction methods that do not require hours or days on a super computer.  
Hopefully, there is a von Karman or Prandtl out there who can synthesize the vast amount of 
information that has been developed, and subsequently develop effective universal prediction 
methods that can be run on a personal computer in hours, not days.  Time will tell. 
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Study Problems 

 

1. If 520crit  *ReRe  for a flat plate boundary layer, determine the corresponding value for 

xcrit ReRe  .You will need to make use of Eq. 13.30. 
 

2. Consider a flat plate boundary layer in water with 
s

cm10U   and 
s

cm10
2

2 .  If 

520crit  *ReRe , for a flat plate boundary layer, what will be the displacement thickness 
when critRe  is reached?  What will be the boundary layer thickness? At what x location will 
this occur along the plate? You will need to use equations for a laminar boundary layer from 
Chapter 13. 
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3. Consider a flat plate boundary layer in air with 
mU 10
s   and

s
m10x521

2
5 . .  If 

crit *Re Re 520  , for a flat plate boundary layer, what will be the displacement thickness 
when critRe  is reached?  What will be the boundary layer thickness? At what x location will 
this occur along the plate? You will need to use equations for a laminar boundary layer from 
Chapter 13. 

 
4. Using Eq. 17.32 for the logarithmic layer of the inner region, determine an expression for the 

eddy viscosity, , in terms of k, y, and u .   Next, determine an expression for , in terms of k, 
y+, and the kinematic viscosity, .   What is the value of / for y+ =300? 

   
5. Using Eqs. 17.36 and 17.37 for the van Driest model of the entire inner region, determine an 

expression for the eddy viscosity, , in terms k, A, y+, and the kinematic viscosity, .   What is 
the value of / for y+ =5, 21, and 300?  

 
6. Consider Eq. 17.55 where cf = f (Re), but the relationship is implicit.  Eq. 17.56 was determined by 

assuming flat plate values for k, B, and A(), determining Re values implicitly by assuming several 
values of cf from 0.0015 to 0.005 and using a root finding program to determine the corresponding 
Re values.  The resultant cf vs. Re were then fit to a power law curve to determine cf = f (Re).  
Repeat the curve fit process to verify Eq. 17.56 for a flat plate [A() = 2.5], and then determine the 
power law curve fit of cf = f (Re), for a strong favorable pressure gradient, with A() = 1.0.  Assume 
flat plate values for k and B for both flows.  It is suggested you use Excel and its function "Goal 
Seek" to determine cf vs. Re, and then "Trendline" on an Excel plot of cf vs. Re to establish the 
power law fit, giving cf = f (Re). Compare your results for A=1.0 to the flat plate Eq. 17.55. 

7. Consider a flat plate boundary layer in water with 
mU 0.2
s   , 

s
m10

2
6 , 3m

kg1000 , a 

plate length of 5 meters, and width of 2 meters.   
 

(a) If 520crit  *ReRe , determine the corresponding value for xcrit ReRe  .   
(b) Then determine the drag force on the plate assuming:  

(1) the flow is turbulent from the leading edge, or  
(2) that the flow transitions at the xcrit ReRe  you determined.   

Assume n = 7 in Eq. 17.54.  Is the difference between (1) and (2) substantial? 
 

8. Consider a flat plate boundary layer in air with 
s
m10U   , 

s
m10x521

2
5 . , 3m

kg21. , a 

plate length of 5 meters, and width of 2 meters.   
 

(a) If 520crit  *ReRe , determine the corresponding value for xcrit ReRe  .   
(b) Then determine the drag force on the plate assuming:  

(1) the flow is turbulent from the leading edge, or  
(2) that the flow transitions at the xcrit ReRe  you determined.   

Assume n = 8 in Eq. 17.54.  Is the difference between (1) and (2) substantial? 
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9. Consider a flat plate boundary layer in water with 
s

cm10U   , 
s

cm10
2

2 , and a plate length 

of 5 meters.  Assume n = 8 in Eq.17.54, and determine the displacement thickness (*) and 
momentum thickness () at the trailing edge if: 

(a) the flow is turbulent from the leading edge, or  
(b) the flow transitions to turbulence at 5

xcrit 10x3 ReRe .  
Is the difference between (a) and (b) substantial? 
 

10. Consider a flat plate boundary layer in air with 
s
m10U   , 

2
5 m1.52x10

s
  , and a plate length 

of 5 meters.  Assume n = 8 in Eq.17.54, and determine the displacement thickness (*) and 
momentum thickness () at the trailing edge if: 

 

(a) the flow is turbulent from the leading edge, or  
(b) the flow transitions to turbulence at 5

xcrit 10x6 ReRe .   
Is the difference between (a) and (b) substantial? 
 

11. Consider two flat plate boundary layer flows over a plate of length 5 meters. One flow is water 

with 
cmU 20
s   , 

s
cm10

2
2 , and the other is air with 

s
m10U   , 

2
5 m1.52x10

s
  .  Assume n = 9 in Eq.17.54, and determine the boundary layer thicknesses 

() at the trailing edge for both flows if they both transition to turbulence at
5

xcrit 10x3 ReRe .  Also, determine the Kolmogorov length scales at the trailing edge for 
both flows. 
 

12. Consider the flow of air over a flat plate, which has roughly the area of one wing of a Boeing 
777.  The plate is of span 30 meters and chord 5 meters.  The air flows at roughly a Mach 

number of 0.3, or 
s
m100U   with 

2
5 m1.52x10

s
   and 2m

kg21. . Assuming n = 9, 

and a flow that is turbulent from the leading edge, what is total shear drag (consider both sides) 
on the plate? (note the flow is across the chord of the plate, so L = 5 meters). 

 
13. Consider a uniform flow, u = U

 

entering a 2-D duct, which develops a 
turbulent a boundary layer from the 
leading edges, as shown below.  The 
duct height is h and the flow remains 
turbulent at all times through the duct.  
Assume the flow may be broken into 
viscous and inviscid regions as shown.  
Make use of the Nikuradse solution for 
* with n = 7 and determine: 

a) h = h(x) such that dP/dx = 0  (let ho be the initial duct height). 
 

b) the length, L, where your expression for h(x) ceases to be valid. 
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14.  Assuming an approximate velocity profile for a flat plate turbulent boundary layer modeled as 
U y1 0.119ln 0.00023

U

  
      

.  First, determine * and  as functions of  for this 

profile, and subsequently the shape factor H to show this is an acceptable approximation of the 
velocity profile.  This is a pretty messy integration, so I suggest you use Wolfram Alpha to 
integrate for * and .  Then, following a procedure similar to Section 17.7.5, integrate the 
Momentum Integral Equation to determine expressions for /x = f (Rex) and cf = f (Rex).  Again 
assume that cf = f (Re) is given by Eq. 17.56, and the flow is turbulent from the leading edge.  
Compare your results to the corresponding equations for /x = f (Rex) and cf = f (Rex) in 

Section 17.7.5.1.  Also, since 
y 0

dU
dy



is finite, assume laminar behavior at the wall and 

calculate /x = f (Rex) and compare it to that obtained using Eq. 17.56.  Why doesn’t this latter 
approach work? 
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A.1.  Viscosity tables 

 
 

Table 1: Viscosity of Water at Atmospheric Pressure 

    

Temperature 
Density 

Absolute 
Viscosity 

Kinematic 
Viscosity 

- t - -  - -  - -  - 

(oC) (kg/m3) (kg/m-s) x 10-3  (m2/s) x 10-6 

0 1000.0 1.787 1.787 

5 1000.0 1.519 1.519 

10 1000.0 1.307 1.307 

20 998.0 1.002 1.004 

30 996.3 0.798 0.801 

40 992.4 0.653 0.658 

50 989.2 0.547 0.553 

60 983.2 0.467 0.475 

70 978.2 0.404 0.413 

80 972.6 0.355 0.365 

90 966.3 0.315 0.326 

100 972.4 0.282 0.29 

 
Table 2: Viscosity of Air at Atmospheric Pressure 

    

Temperature Density 
Absolute 
Viscosity 

Kinematic 
Viscosity 

- t - -  - -  - -  - 

(oC) (kg/m3) (kg/m s) x 10-5   (m2/s) x 10-5 

-50 1.469 0.687 0.468 

0 1.295 1.736 1.341 

10 1.249 1.787 1.431 

20 1.206 1.837 1.523 

25 1.186 1.862 1.570 

30 1.166 1.886 1.617 

40 1.129 1.934 1.713 

50 1.094 1.982 1.812 

60 1.061 2.029 1.912 

70 1.030 2.075 2.014 

80 1.001 2.121 2.119 

90 0.974 2.166 2.225 

100 0.947 2.210 2.333 

150 0.835 2.423 2.900 

200 0.747 2.624 3.512 

300 0.617 2.994 4.854 

400 0.525 3.330 6.342 
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A.2.  Vector Operations and Identities 
Derivatives of unit vectors (r, θ, z) 
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î














      (x, y, z) 

r z
1ˆ ˆ ˆi i i

r r z

  
   

  
    (r, θ, z) 

Divergence 
yx zVV VV

x y z
 

   
  

 (x, y, z) 

  z r z r
r

V VV V V V1 1 1V rV
r r r z r r z r

    
       

     
              (r, θ, z) 

 

Temperature (deg C) 

K
in

em
at

ic
 V

is
co

si
ty

 (
1

0
-6

  m
2 /s

) 

Kinematic Viscosity 
- common fluids 



Introduction to Graduate Fluid Mechanics:  C.R. Smith  Appendix I 

693 
 

 
Curl 
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Common Identities using  

 Where f and g are scalars, and F  and G are vectors 

(a)   0f    
(b)     fggffg   

(c)     0F 


 

(d)       FFF
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(e)       fFFfFf 
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(k)   ff 2  
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   [i.e.  F  ] 

(m)   FF 22

  

(n)    FF 22


  
 

A.3.  Vector Theorems 

Gauss Divergence Theorem, vector field F   Curl Theorem 
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A.4. The Substantial Derivative 
 

Substantial Derivative, Cartesian Coordinates:   kwjviuV ˆˆˆ 
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Total Acceleration, Cartesian Coordinates 

Total acceleration: 
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Substantial Derivative, Cylindrical Coordinates:   zzrr ivivivV ˆˆˆ  
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Total Acceleration, Cylindrical Coordinates 

Total acceleration:  
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A.5.  Streamlines 

Cartesian:      ˆ ˆ ˆVxds wdy vdz i udz wdx j vdx udy k 0        
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2-D Streamline Equation: 
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A.6.  Rate of Strain 

Cartesian Coordinates:   kwjviuV ˆˆˆ 
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Cylindrical Coordinates:   zzrr ivivivV ˆˆˆ  
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A.7.  Vorticity  

Cartesian Coordinates:   kwjviuV ˆˆˆ 
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A.8.  The Governing Equations for Incompressible Flow 

Stresses on an Incompressible Fluid: Cartesian and Cylindrical Coordinates 
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Continuity and Navier-Stokes Equations (,  constant) 
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A.9.  Inviscid Flow Equations 
Euler Equation (along a streamline or irrotational flow) 
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Euler s and n Equations (streamline coordinates, unsteady) 
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A.10.  Potential Flow 
Complex variable relationships  
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A.11.  Circulation and Circulation Theorems  
Circulation  
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Circulation Theorems 
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  Conservative body forces  = f (P),  = 0    Kelvin’s Theorem 
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Circulation Change:  Fixed Reference Frame 
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A.12.  Vorticity Transport Equations 
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Cylindrical Equation Components (3-D) 
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A.13.  Laminar Boundary Layers  
Boundary Layer Equations 
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Thwaites Equation 

For θinit = 0 
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0.47 U U dx

 

 
   

 
        

dxU
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x
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n   H 
0.090 0.000 3.70

0.088 0.015 3.62

0.086 0.027 3.54

0.084 0.038 3.47

0.080 0.056 3.35

0.076 0.072 3.24

0.072 0.085 3.16

0.068 0.095 3.09

0.064 0.104 3.04

0.060 0.113 2.99

0.056 0.122 2.94

0.048 0.138 2.87

0.040 0.153 2.81

0.032 0.168 2.75

0.016 0.195 2.67

0.000 0.220 2.60

-0.016 0.244 2.55

-0.032 0.268 2.49

-0.048 0.291 2.44

-0.064 0.313 2.39

-0.080 0.333 2.34

-0.100 0.359 2.28

-0.120 0.382 2.23

-0.140 0.404 2.18

-0.200 0.463 2.07

-0.25 0.5 2.00  

Blasius table for F, F'and F'' vs.  

 F F' F'' 

0 0.0000 0.0000 0.3321 

0.2 0.0066 0.0664 0.3320 

0.4 0.0266 0.1328 0.3315 

0.6 0.0597 0.1989 0.3301 

0.8 0.1061 0.2647 0.3274 

1 0.1656 0.3298 0.3230 

1.2 0.2380 0.3938 0.3166 

1.4 0.3230 0.4563 0.3079 

1.6 0.4203 0.5168 0.2967 

1.8 0.5295 0.5748 0.2829 

2 0.6500 0.6298 0.2668 

2.2 0.7812 0.6813 0.2484 

2.4 0.9223 0.7290 0.2281 

2.6 1.0725 0.7725 0.2065 

2.8 1.2310 0.8115 0.1840 

3 1.3968 0.8461 0.1614 

4 2.3058 0.9555 0.0642 

5 3.2833 0.9916 0.0159 

6 4.2797 0.9990 0.0024 

7 5.2793 0.9999 0.0002 

8 6.2793 1.0000 0.0000 
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For θinit = θinit 
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A.15.  Non-Newtonian Fluids 
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Continuity and Momentum Differential Equations, Cylindrical Coordinates 
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Shear Stress Relationships 

Power Law Fluids 
 
Non-Newtonian, Cartesian:   
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Ideal Bingham Plastic Fluids 
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A.16.  Turbulence:  General 
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Reynolds Averaged Equations (Cartesian) 
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Reynolds stresses (Cartesian) 
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Pressure Gradient   A  value 

Strong favorable -4.8 1.0 

Flat plate 0 2.5 

Mild adverse 6.3 5.6 

Strong Adverse 29 13 
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A.17.  Turbulence:  Approximate Boundary Layer Properties 
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1.  Using the basic concept of a vector derivative, as done in section 2.2.1, show how the 
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 is 


represented by the small arc created by the rotation of the unit vector î
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2. If  is a scalar function, show by expansion in Cartesian coordinates that the following hold: 
 a. That  0  
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 All components are zero since order of differentiation is irrelevant 
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3. For a vector function V ui vj wkˆ ˆ ˆ   , show by expansion in Cartesian coordinates that the 
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uĵ


y
w


y
v


y
uî
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So right side of equation is: 
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x
ww


x
vv


x
uu


k̂
x
w


z
uu


z
v


y
wvĵ
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z


w
y


v
x


uV
z


w
y


v
x


uVV 

































































 







Study Problems Solutions, Chapter 2 2-4 


 


  comparisonby
2


VVV


k̂
z
ww


y
wv


x
wuĵ
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4.   In cylindrical coordinates 
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î
r
1î
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î


r
1î
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î


î
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vîîV




























































































































































 


 
 


z
v


r
vî
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vîî


r
vV zrrr


































 










 


 
 


z
vv


r
1


r
rv


r
1


z
vv


r
1


r
v


r
vV zrzrr









































 



 


  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


0 0 0 0 0 


0 


0 0 0 


0 


0 0 


0 


  







Study Problems Solutions, Chapter 2 2-7 


 


5. If  jxiyF 2ˆˆ 



  and f = x + y2, by calculation of the left and right functions in the 
equations, show that the following are valid: 
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6. If   irirF r
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  and f = r + r, by calculation of both the left and right functions in the 
equation, show that the following is valid: 
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7. If jxiyF 2ˆˆ 
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, by calculation of the left and right functions in the 
equation, show that the following is valid: 
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8. If jxixyF 2ˆˆ 



, determine F
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9. If  irirF 2
r
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, determine F



 , and then show that the following is valid: 
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10. Let 2ˆ ˆV yi x j  .  By comparison of both integrals, show that Stoke's Theorem 


  (i.e.  
C A


V ds V dA     ) holds over a square with corners at (x,y) = (1,1), (1,-1), (-


1,-1), and (-1,1). 
 


First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


       
y 1 y 1x 1 x 1


2 2 2 2


C
x 1 y 1 x 1 y 1y 1 y 1x 1 x 1


ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV ds yi x j dx i yi x j dy j yi x j dx i yi x j dy j
  


     


                 


               
y 1 y 1x 1 x 1


2 2


C
x 1 y 1 x 1 y 1


V ds 1 dx 1 dy 1 dx 1 dy 1 1 1 1 1 1 1 1 4
  


   


                        


 


Now examine the area integral , where  k̂1x2k̂
y
u


x
vV 




























 


           
y 1x 1 1 12


1A A 1
x 1 y 1


ˆ ˆV dA 2x 1 k dxdyk (2x 1)dxdy x x y 1 1 1 1 1 1 4



 


 


                     


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
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11. Let ĵxyîyV 2 



.  By comparison of both integrals, show that Stoke's Theorem 


  (i.e.  
C A


V ds V dA     ) holds over a square with corners at  (x,y) = (2,2), (2,3), 


(3,3), and (3,2). 
 


First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


       
y 3 y 2x 3 x 2


2 2 2 2


C
x 2 y 2 x 3 y 3y 2 y 3x 3 x 2


ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV ds y i xyj dx i y i xyj dy j y i xyj dx i y i xyj dy j
  


     


                  


             
y 3 y 2x 3 x 2


C
x 2 y 2 x 3 y 3


27V ds 4 dx 3y dy 9 dx 4y dy 12 8 6 18 27 4 9 2.5
2


  


   


 
               


 
      


 


Now examine the area integral , where   k̂yk̂y2yk̂
y
u


x
vV 




























 


   
3y 3x 3 2


3


2A A
x 2 y 2 2


y 9ˆ ˆV dA yk dxdy k ydxdy x 2 3 2 2.5
2 2





 


 
               


 
     


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
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12. Let r̂


ˆV rcos i rsin i    .  By comparison of both integrals, show that Stoke's Theorem  


 (i.e.  
C A


V ds V dA     ) holds over a circle of r = R. 


 
First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


   
2 2


22 2 2
r 0C


0 0


ˆ ˆ ˆV ds R cos i R sin i Rd i R sin d R cos R 1 1 0
   


 


  
 


                  


Now examine the area integral , where 


       


 


2
r z z


z z


1 1ˆ ˆV rV V i r sin r cos i
r r r r
1 ˆ ˆ2r sin r sin i 3sin i
r





      
               


    


 


     


2r Rr R 2 2 2


zA
r 0 0 r 0 0


3r 3RˆV dA 3sin i .rd dr cos 1 1 0
2 2


 
  


  



               


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 2 2-15 


 


 
13. Let r̂


ˆV rsin i r cos i    .  By comparison of both integrals, show that Stoke's Theorem  


 (i.e.  
C A


V ds V dA     ) holds over a circle of r = R. 


 
First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


   
0 2


22 2 2
r 0S


2 0


ˆ ˆ ˆV ds R sin i R cos i Rd i R cos d R sin R 0 0 0
  


 


  
  


                  


Now examine the area integral , where 


       


 


2
r z z


z z


1 1ˆ ˆV rV V i r cos r sin i
r r r r
1 ˆ ˆ2r cos r cos i cos i
r





      
               


    


 


   


2r Rr R 2 2 2


zA
r 0 0 r 0 0


r RˆV dA cos i .rd dr sin 0 0 0
2 2


 
  


  



             


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
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14. Let 2 2
r̂


ˆV r cos i r sin i    .  By comparison of both integrals, show that Stoke's Theorem  


 (i.e.  
C A


ˆV ds n V dA     ) holds over a circle of r = R. 


 
First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


   
2 2


22 2 3 3 3
r 0C


0 0


ˆ ˆ ˆV ds R cos i R sin i Rd i R sin d R cos R 1 1 0
   


 


  
 


                  


Now examine the area integral , where 


       3 2
r z z


2 2
z z


1 1ˆ ˆV rV V i r sin r cos i
r r r r
1 ˆ ˆ3r sin r sin i 4r sin i
r





      
               


      


 


     


2r Rr R 2 3 3


zA
r 0 0 r 0 0


4r 4RˆV dA 4r sin i .rd dr cos 1 1 0
3 3


 
  


  



               


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
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15. Let r̂
ˆV rsin i r cos i    .  By comparison of both integrals, show that Stoke's Theorem  


 (i.e.  
C A


V ds V dA     ) holds over a quarter circle of r = R 


from 0 to
2



    .  Note: be sure to do you follow the boundary in 


three segments correctly --- (1) r = 0 to R for 0  , 


 (2) 0 to
2



     for r = R, and (3) r = R to 0 for 
2



  . 


 
First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule) 


   
0 r 0 r 0


r r r r rS
r R r R


2
r 00 r 0 r 0 2 202 2


2r R r R r R r 0
2


ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV ds R sin i R cos i Rd i r sin i r cos i dr i r sin 0i r cos0i dr i
2 2


r rR cos d sin rdr sin 0 rdr R cos sin sin 0
2 2 2 2


  


   


  



  







    


  
             


 


 
       


   


  


   
 


 
 


r R


2 2 2
2


0 R R 0 RR 1 0 1 0
2 2 2





 
    


 


Now examine the area integral , where 


       


 


2
r z z


z z


1 1ˆ ˆV rV V i r cos r sin i
r r r r
1 ˆ ˆ2r cos r cos i cos i
r





      
               


    


 


   
r R 2r R 2 2 22


zA
r 0 0 r 0 0


r R RˆV dA cos i .rd dr sin 1 0
2 2 2


  


  



             


Thus, by inspection and comparison,  
C A


V ds V dA     , and Stoke’s theorem 


holds. 
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Chapter 3 
 


Study Problem Solutions 
 
1. A particular flow has the following field characteristics (assume 
 these are non-dimensional): 
 
  velocity:    kzjy2tixV ˆˆ)(ˆ 



  


  temperature:  yzx2T    
  density:    xe1    
 
 Determine (non-dimensionally) at time t = 1: 
 
  a.  The acceleration field 
 


k̂
t
w


z
ww


y
wv


x
wuĵ
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x
vuî
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uw
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j10z2y2t0x
i00z0y2t1xa
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  kzj1y4t2ixa ˆˆˆ 
  


 
  b. The rate of change of  at a point (2,1,1) 
 


         00z0y2tex
tz


w
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D x 









































   


xxe
Dt
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 @ (x,y,z,t)=(2,1,1,1)   22 e2e2
Dt
D  
   


 
 c. The rate of change of temperature at point (1,3,2) 
 


         0yzzy2t2x
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z
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DT
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 @ (x,y,z,t)=(1,3,2,1)   60622
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DT
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2.  A particular flow has the following field characteristics (assume 
 these are non-dimensional): 
 
  velocity:    2 yˆ ˆ ˆV (2y y )i e j 2k      
  temperature:  yt22 e)zx9(T    
  density:    ye)x1(    
 
 Determine (non-dimensionally) at time t=0: 


 
a. The acceleration field at (0,0,0) 
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ĵ002ee0yy2
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  ĵeîe1y2a y2y  
  


@ (x,y,z,t)=(0,0,0,0)   ĵî2ĵeîe102a 00  


  
 b. The rate of change of  at a point (1,1,1) 
  


          002ex1eeyy2
tz


w
y


v
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u
Dt
D yyy2 









































   


   yy2 eex1y2y
Dt
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 @ (x,y,z,t)=(1,1,1,0)    1112 eee1121
Dt
D  
   


 
c. The rate of change of temperature at point (1,0,1) 
 


            yt22ytyt22yyt2 yezx9ez22tezx9eex2yy2
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       yt22y222 eyzx9z4tezx9y2yx2    
 


 @ (x,y,z,t)=(1,0,1,0)   4e0400
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3. Consider the plane flow field, 
 


ˆ ˆV 2xi yj   
 


Develop expressions for: a streamline passing through a point (a,b)=(1,2); a pathline initiated at t = 0 at 
point (a,b)=(1,2); and streakline at t = 1 for all the particles that passed through point (a,b)=(1,2) 
between t = 0 and t = 1.  
 


Stream line:  differential equations is 
u
v


dx
dy


 , where u 2x, v y   


 
1
2dy v y dy 1 dx 1ln y ln x ln C y Cx


dx u 2x y 2 x 2
           For a stream line 


passing through (1,2), C = 2, so  
1
2y 2x  is general stream line equation. 


 
Path line: Here we determine the Lagrangian motion of the particle 
 
        L 1 L 2x f a,b, t , y f a,b, t , a,b 1,2    


 1
L E 1


dfu u f
dt


    2
L E 2


dfv v 2f
dt


    


 1


1


df dt
f


    2


2


df 2dt
f


  


 1 1ln f t lnC    2 2ln f 2t lnC   


  tCf 11 exp    2 2f C exp 2t  


Substitute 1f1   at t = 0    C1 = 1 Substitute 2f 2  at t = 0    C2 = 2 


   L1 xtf  exp   2 Lf 2exp 2t y    
 
Streak line:  The general solutions for Lagrangian motion of a particle are: 
 
  tCf 11 exp    2 2f C exp 2t  
 
Assuming that the particle passes through the point (1,2) at t=ti  (0 ti1), the streak line constants C1 = 
f(ti) and C2 = g(ti) are given by: 
 
   i1 tC1 exp   2 i2 C exp 2t  


   i1 tC  exp   2 iC 2exp 2t   
Substituting C1 and C2 back into the general Lagrangian equations, yields streak line equations (xs, ys) at 
t=1 as: 
 


   is ttx  exp  and  s iy 2exp 2 t t     
 
Thus, to plot a streak line at t = 1, we have: 
   is t1x  exp  and  s iy 2exp 2 1 t     
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4. Consider the plane flow field, 
 
  ˆ ˆV xi ytj   
 
 Develop expressions for streamlines, pathlines, and streaklines through a point (a,b)=(1,1).  


Plot:  streamlines for t = 0, 0.5, and 1; a pathline at t=1 for a particle introduced at t=0; and a 
streakline at t = 1 for all particles which passed through point (1,1) between t = 0  


 and t = 1.  Show all plots on one, full-page graph.. 
 


Stream line:  differential equations is 
u
v


dx
dy


 , where ytvxu  ,  


 CyxCxty
x


dxt
y


dy
x
yt


u
v


dx
dy t  


  lnlnln  For stream line 


passing through (1,1), C=1 for all t, so  1yx t   is general stream line equation.. 
Stream lines to be plotted are: 
 1y     for t=0 
 50xy .  for t=0.5 
 xy   for t=1 
 
Path line: Here we determine the Lagrangian motion of the particle 
 
        11batbafytbafx 2L1L ,,,,,,,,   
 


 1E
1


L fu
dt
dfu   tfv


dt
dfv 2E


2
L   


 1
1


1 dt
f


df
    tdt


f
df


2


2   


 11 Ctf lnln    2
2


2
1


2 Ctf lnln   


  tCf 11 exp   












2
tCf


2


22 exp  


 
Substitute 1f1   at t=0    C1=1 Substitute 1f 2   at t=0    C2=1 


   L1 xtf  exp  L


2


2 y
2
tf 









 exp  


 
Streak line:  The general solutions for Lagrangian motion of a particle are: 
 


  tCf 11 exp   












2
tCf


2


22 exp  


 
Assuming that the particle passes through the point (1,1) at t=ti  (0 ti1), the streak line constants C1=f(ti) 
and C2=g(ti) are given by: 
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   i1 tC1 exp  




















2
tC1


2
i


2 exp  


 


   i1 tC  exp  




















2
tC


2
i


2 exp  


Substituting C1 and C2 back into the general Lagrangian equations, yields streak line equations (xs, ys) at 
t=1 as: 
 


   is ttx  exp  and 
















 



2
tty


2
i


2


s exp  


 
Thus, to plot a streak line at t=1, we have: 
 


   is t1x  exp  and 
















 



2
t1y


2
i


s exp  
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5. Consider the plane flow field, 
 


   
x ˆ ˆV i y(1 t) j


1 t
 


   
 


 


 
 Develop expressions for streamlines, pathlines, and streaklines through a point (a,b)=(1,1).  


Plot:  streamlines for t = 0, 0.5, and 1; a pathline at t=1 for a particle introduced at t=0; and a 
streakline at t = 1 for all particles which passed through point (1,1) between t = 0  


 and t = 1.  Show all plots on one, full-page graph.. 
 


Stream line:  differential equations is 
u
v


dx
dy


 , where  tyv,
t


xu 



 1
1


 


 


        CyxCxt1y
x


dxt1
y


dy
x
yt1


u
v


dx
dy 2t1222


 


  lnlnln


For stream line passing through (1,1), C=1, so    1yx
2t1   is general stream line equation.. 


Stream lines to be plotted are: 
 1xy     for t=0 
 1yx 252 .  for t=0.5 
 1yx4   for t=1 
 
Path line: Here we determine the Lagrangian motion of the particle 
 
        11batbafytbafx 2L1L ,,,,,,,,   
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fu
dt
dfu 1


E
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dt
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dt
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df
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   11 Ct1f lnlnln     2
2


2
1


2 Cttf lnln   


  t1Cf 11    





















 t


2
tCf


2


22 exp  


 
Substitute 1f1   at t=0    C1=1 Substitute 1f 2   at t=0    C2=1 


 L1 xt1f   L


2


2 yt
2
tf 























 exp  


 
Streak line:  The general solutions for Lagrangian motion of a particle are: 


  t1Cf 11    





















 t


2
tCf


2


22 exp  
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Assuming that the particle passes through the point (1,1) at t=ti  (0 ti1), the streak line constants C1=f(ti) 
and C2=g(ti) are given by: 
 


   i1 t1C1   


































 i


2
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2 t
2
tC1 exp  


 


  
 i


1 t1
1C



   


































 i


2
i


2 t
2
tC exp  


Substituting C1 and C2 back into the general Lagrangian equations, yields streak line equations (xs, ys) at 
t=1 as: 
 


  
i


s t1
t1x






  and 
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Thus, to plot a streak line at t=1, we have: 
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6. A non-dimensional velocity field in cylindrical coordinates is given by: 
 


  2
r2


1 ˆ ˆV i 4r i
r 


 
   


 
 


 Determine:  
 


a. An expression for the acceleration of a particle anywhere within the flow field. 


Where 2
2r r4vand


r
1v 









   


  r r r
r r r


v v vv v vDV V V 1 1a V V v v i v v i
Dt t t r r r r r r
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b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the streamline from 


(x,y) = (0,2) to (0,0). 
For 2-D flow in cylindrical coordinates, the differential stream line equation is given by: 
      r r r r z


ˆ ˆ ˆ ˆ ˆV ds v i v i dr i r d i r v d v dr i            


or rr vdr
d v






  which becomes 
2


2 3


1r
dr 1r
d 4r 4r


 
 
   



 


Integrating gives:  3 44r dr d r C        


At x,y=0,2    r=2, =/2     
4 42 C C 17.57 r 17.57


2



        


 
To plot, increment  from /2, calculate r from  


0.25r 17.57  , and plot x,y pairs using x=rcos, 
y=rsin.  Result is an inward spiral moving counter-clockwise. 
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c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
Note that the velocity moving particle toward the center (0,0) is the radial velocity only.  Thus, we 
calculate the radial Lagrangian motion of the particle.  Here: 


     3
1


tC3fdtdff
f
1


dt
dfv 111


2
2


1


1
r    


 At t=0, ,21  Lrf  which gives C=2.666, so   3
1


t666.23rL   


Thus, the time to go from Lr 2  @ t=0 to Lr 0 , will be 
3
r666.2t


3
L =2.666 
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7. A non-dimensional velocity field in cylindrical coordinates is given by: 


  r
1 ˆ ˆV i 4ri
r 


 
   


 
 


Determine:  
 a. An expression for the acceleration of a particle anywhere within the flow field. 
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 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the 
   streamline from (x,y) = (0,2) to (0,0). 
 
 For 2-D flow in cylindrical coordinates, the differential stream line equation is given by: 
       zrrrr îdrvdvrîdrîdrîvîvsdV  



 


or 




 v


vr
d
dr r   which for  îr4î)


r
1(V r  becomes 


r4
1


r4
r
1r


d
dr






















 


Integrating gives:     Cr2drdr4 2  


At x,y=0,2    r=2, =/2    C = 2(4)+ / 2 = 8+ / 2   
2


8r2 2 
  


To plot, increment  from /2, calculate r from 
24


4r 




 , and plot x,y pairs using x=rcos, 


y=rsin.  Result is an inward spiral moving counter-clockwise. 
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 c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
Note that the velocity moving particle toward the center (0,0) is the radial velocity only.  Thus, we 
calculate the radial Lagrangian motion of the particle.  Here: 


    tC2fdtdff
f
1


dt
dfv 111


1


1
r    


 At t=0, ,2rf L1   which gives C=2, so t24rL   


Thus, the time to go from 2rL   @ t=0 to 0rL  , will be 
2
r2t


2
L = 2 
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8. A non-dimensional velocity field in cylindrical coordinates is given by: 
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 Determine:  
 
 a. An expression for the acceleration of a particle anywhere within the flow field. 
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b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the streamline from (x,y) = 
(0,2) to (0,0). 
 
For 2-D flow in cylindrical coordinates, the differential stream line equation is given by: 
       zrrrr idrvdvridridrivivsdV ˆˆˆˆˆ
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To plot, increment r from 2 to 0, and calculate the corresponding  values using  
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 , and plot x,y pairs using x=rcos, y=rsin.  Result is an inward spiral moving 


counter-clockwise. 
 







Study Problem Solutions, Chapter 3 3-13 
 


 


 
 
 
c. How long (in non-dimensional terms) it will take a particle to go from (0,2) to (0,0). 
 
Note that the velocity moving particle toward the center (0,0) is the radial velocity only.  Thus, we 
calculate the radial Lagrangian motion of the particle.  Here: 
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9. A non-dimensional, time-dependent velocity field in cylindrical coordinates is given by: 
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Determine:  
 a. An expression for the acceleration of a particle anywhere within the flow field. 
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 b. The equation for a streamline passing through the point (x,y) = (0,2);  plot the streamline from 
  (x,y) = (0,2) to (0,0) for times t=1/2, 1, and 2 using three separate plots. 
 
 For 2-D flow in cylindrical coordinates, the differential stream line equation is given by: 
       zrrrr îdrvdvrîdrîdrîvîvsdV  



 


or 
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Integrating gives:  24rdr t d 2r t C t( )         where C(t) depends on the t value at which the 
streamline is determined. 


At x,y=0,2    r=2, =/2    C(t) = 2(4)+ t/ 2 = 8+ t/ 2   2 t2r 8
2



     


To plot the streamline at a selected t value, increment  from /2, calculate r from 
tr 4
2 2


 
   


 
, 


and plot x,y pairs using x=rcos, y=rsin.  Result is an inward spiral moving counter-clockwise.  As the 
streamlines for t= ½, 1, and 2 show, that the flow moves inward more rapidly, with less spiraling,  as time 
progresses.  
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Chapter 4 
 


Study Problems Solutions 
 


1. Consider two three-dimensional flows with velocities, 1 2 3V c xi c yj c zkˆ ˆ ˆ   , and 


kycjxcizcV 321
ˆˆˆ 



  Determine the vorticity, the strain-rate tensor, and the rate of 


expansion for these flows (the rate of expansion is given by the divergence). 
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For the first case, 1 2 3u c xi v c yj and w c zˆ ˆ, ,    
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Thus, the first flow has no vorticity, which makes it an irrotational flow. 
 
For the second case, 1 2 3u c zi v c xj and w c yjˆ ˆ ˆ, ,    , which gives: 
 


     3 1 2 3 1 2(i j k  i j k  i j kx y z c 0 c 0 c 0 c c cˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ)                 
  
Thus, the second flow has vorticity, and is a rotational flow. 
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For the first case:  1 2 3u c xi v c yj and w c zˆ ˆ, ,     
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So, this flow has only linear strains, and no shear strains. 
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For the second case: 1 2 3u c zi v c xj and w c yjˆ ˆ ˆ, ,     
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So, this flow has shear strains, and no linear strains 
 
Rate of expansion 
 
The rate of expansion is given by the divergence of the flow,  
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For the first case:  1 2 3u c xi v c yj and w c zˆ ˆ, ,    
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This flow has a positive expansion, since .0V 



 


 
For the second case: 1 2 3u c zi v c xj and w c yjˆ ˆ ˆ, ,     
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This flow has no expansion, since .0V 
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2. A two-dimensional flow in cylindrical coordinates is given by: rir2
QV ˆ



















.  Compute the 


vorticity, the strain-rate tensor, and the rate of expansion for this flow (the rate of expansion 
is given by the divergence). 
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So this flow contains no vorticity (i.e. an irrotational flow) 
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Here, 0vand0v
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Qv zr 



  ,, , so the strain-rate tensor becomes: 
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Thus, there are linear strain-rates in the radial and azimuthal directions, by no shear strain-
rates. 


 
Rate of expansion 
The rate of expansion is given by the divergence of the flow,  
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Thus, the flow is non-expanding, or an incompressible flow. 
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3. A non-dimensional velocity field in cylindrical coordinates is given by: 


  îr4î
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 b. The vorticity of a particle at (0,2) and (0,0). 
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   The vorticity is proportional to the radius 
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4. A non-dimensional velocity field in cylindrical coordinates is given by: 
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 Determine:  
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 a. The components of the rate-of-strain tensor; sketch a differential element in 
  cylindrical coordinates and show (as vector arrows), the magnitude and direction 
  of the rate-of-strain components. 
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 b. The vorticity of a particle at (0,2) and (0,0). 
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   vorticity is constant everywhere in flow field (solid body rotation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 4 4-6 
  


 


 
5. A non-dimensional velocity field in cylindrical coordinates is given by: 
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 a. The components of the rate-of-strain tensor;  
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 b. The vorticity of a particle at (0,2) and (0,0). 
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6. The velocity field for a decaying, ideal line vortex is given by: 
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Where  is a vortex strength parameter (a constant).  Let all parameters and variables be non-
dimensional, and  = 1.   
 
Determine, and show graphs for 0  r  4. 


 
  a. the non-zero rate-of-strain components 
 
 The zero strain rate components are: 
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 The non-zero component is: 
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b. the vorticity.  
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vî


z
vv


r
1V 










































































 






 


   z


2


z î
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 Plot the normalized vorticity 
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 graphs. Show graphs for  t = 0, 1, 6 (note: you will need to use L'Hopital's Rule for r and t  0) 
 
 
Non-dimensionalize: 
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Note that we have several indeterminate limits for these functions, which have to be determined 
using L’Hospital’s Rule.  These limits are: 
 
For t > 0, r  0: 
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Note that to establish these limits requires that one either (a) apply L’Hospital’s rule to establish 
the limit, or (b) expand the exponential as a series, and examine the limits from that.  For 
example: 
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 But when, t  0, r  0 we have: 
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7. The velocity field for a decaying, ideal line vortex is given by: 
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 Where H is a vortex strength parameter (a constant).  Let all parameters and variables be non-
 dimensional, and  = 1.  Determine, and graph, for 0  r  4, 
 
  a.   the non-zero rate-of-strain components 
 
The zero strain rate components are: 


 0
r
vr


rr 




  0


z
vv


r
1


2
1 z


zz 






















 






  


 0
r
vv


r
1 r 








 
  0


r
v


z
v


2
1 zr


rzzr 






















   


 


 0
r


vz
zz 






   


 
 The non-zero component is: 
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Plot the non-dimensional velocity
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Note that we have several indeterminate limits for these functions, which have to be determined 
using L’Hospital’s Rule.  These limits are: 
 
For t  0, r > 0: 
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Note that to establish these limits requires that one either (a) apply L’Hospital’s rule to establish 
the limit, or (b) expand the exponential as a series, and examine the limits from that.  For 
example: 
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Since the indeterminate term has no bearing on the result. 
Similar results can be shown for the non-dimensional vorticity and velocity. 
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Chapter 5 
 


Study Problems Solutions 
 
1. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Ax.  If v = 0 along x-axis, determine v. 
  
 For a 2-D incompressible flow, the continuity equation gives: 
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 Since v = 0 for all x when y = 0 (along x-axis), then f(x) = 0 and v = -Ay. 
  
 b) For a 3-D, incompressible flow, u = 2x and v = -y.  Determine w, if w = 0 in the x-y plane. 
 
 For a 3-D incompressible flow, the continuity equation gives: 
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 Since w = 0 for all x and y when z = 0 (in x-y plane), then f(x,y)=0, and w = -z. 
 
 c) The velocity of a flow is given by: kxzjyixyV 2 ˆˆˆ 



 


  i)  Is this an incompressible flow?  Why? 
 
  For a flow to be incompressible the divergence of the velocity field must be zero everywhere.  
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 This result is only zero for x = y = 0 or for x = -3y, so this is not an incompressible flow in general 
 


  ii) If not, determine the rate of change of density at (x, y, z) = (1, 2, 1), where  = 2. 
 


  The full continuity equation is given by V
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Dor0V
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  So the rate of change of density at (x, y, z) = (1, 2, 1), where  = 2, is: 
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2. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Axy.  If v = 0 along x-axis, determine v. 
  
 For a 2-D incompressible flow, the continuity equation gives: 
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 Since v = 0 for all x when y = 0 (along x-axis), then f(x) = 0 and 
2
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 b) For a 3-D, incompressible flow, u = 2y and v = -x.  Determine w, if w = 0 in the x-y plane. 
 
 For a 3-D incompressible flow, the continuity equation gives: 
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 Since w = 0 for all x and y when z = 0 (in x-y plane), then C+ f(x,y)=0, and w = 0. 
 
 c) The velocity of a flow is given by: kzxjyixyV 2 ˆˆˆ 



 


  i)  Is this an incompressible flow?  Why? 
 
  For a flow to be incompressible the divergence of the velocity field must be zero everywhere.  
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 This result is only zero for x = y = 0 or for x = y, so this is not an incompressible flow in general. 
 


  ii) If not, determine the rate of change of density at (x, y, z) = (1, 1, 1), where  = 2. 
 


  The full continuity equation is given by V
Dt
Dor0V


Dt
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  So the rate of change of density at (x, y, z) = (2, 1, 1), where  = 2, is: 
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3. Do the following: 
 
 a) For a 2-D, incompressible flow, u = Ay.  If v = 2 along x-axis, determine v. 
  
 For a 2-D incompressible flow, the continuity equation gives: 
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 Since v = 2 for all x when y = 0 (along x-axis), then C+f(x) = 2, which can only be true if f(x)=0. Thus, 
C=2, and v = 2, a constant velocity. 


  
 b) For a 3-D, incompressible flow, u = x and v = y.  Determine w, if w = 0 in the x-y plane. 
 
 For a 3-D incompressible flow, the continuity equation gives: 
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 Since w = 0 for all x and y when z = 0 (in x-y plane), then f(x,y) = 0, and w = -2z. 
 
 c) The velocity of a flow is given by: 2ˆ ˆ ˆV x i zyj yzk    
  i)  Is this an incompressible flow?  Why? 
 
  For a flow to be incompressible the divergence of the velocity field must be zero everywhere.  


 Here:  
u v wV (2x) (z) (y) 2x z y
x y z
  


         
  


  


 This result is only zero for x = y = z = 0, so this is not an incompressible flow in general 
 


  ii) If not, determine the rate of change of density at (x, y, z) = (1, 1, 1), where  = 2. 
 


  The full continuity equation is given by V
Dt
Dor0V


Dt
D 







 , . 


  So the rate of change of density at (x, y, z) = (1, 1, 1), where  = 2, is: 
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4. Starting from the vector equation,
Dt
VDVp1  2








  (Eq. 5.44), derive the  


 The Navier-Stokes equation for cylindrical coordinates (Eqs. 5.47b-d). Remember you have 
to take the derivatives of the rî  and î  units vectors with respect to θ 


 
From Eq. 2.8, we have: 
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From Eq. 2.14 , we have 
 


 
2 2 2 2 2


2
2 2 2 2 2 2 2


1 1 1 1r
r r r r z r r r r z
        


        
        


 


 


 


2 2 2
2 r r r r r


r r r2 2 2 2


2 2 2


2 2 2 2


2 2 2
z z z z


z z z z2 2 2 2


ˆv v v i v1 1ˆ ˆ ˆV i i i
r r r r z


ˆv v v i v1 1ˆ ˆ ˆi i i
r r r r z


v v v v1 1ˆ ˆ ˆ ˆi i i i
r r r r z


    
  


   
    


   


   
   


   


   
   


   


 


 
Note that there are two terms that require differentiation of the unit vector with respect to θ. 
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Inserting these differentiated terms and separating by vector components 
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And by some mathematical identifications, the terms in inner parentheses can be consolidated to 
give: 
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r r r r z r


v v v1 1 ˆr i
r r r r z





  



    
      


       


     
     


       


     
    


     


 


 
And from section 3.4.4 for acceleration: 
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Letting r r z z


ˆ ˆ ˆg i g i g i     , and inserting are above derived expressions into Eq. 5.44 we get (in 
component equations): 
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These are the same equations as Eq.5.47b-d.   
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Chapter 6 
 


Study Problems Solutions 
 


1. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction.  
 The upper plate moves with a speed U and the lower plate is fixed.   
    
 
 
 


A pressure gradient, 
dx
dp


, is imposed on the flow.  Define 
2dp hP


dx 2 U




, and: 


 
(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.  
For the x and y Navier-Stokes equations in two-dimensions, we have: 
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  y-direction N-
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Initial Assumptions 
1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 


 
The incompressible continuity equation in two dimensions yields:  
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       v = f(x) + constant      v = constant    


 v=0 @ y=0 (or y=h), thus v=0 everywhere.  The equations reduce to: 
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Note that the rationale for dropping the body force is the same as addressed for the Couette flow, 
and thus the introduction of P to represent the dynamic component of pressure.  Simplifying the 
equations gives: 
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Integrating twice yields: 
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This yields a general equation for a pressure driven flow between one stationary and one 
translating parallel plate: 
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  (6.17) 


Letting 
2h dPP


2 U dx




, we get: 
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The shear stress for this flow field is then given by: 
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(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
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PU U
h h


 
      at y = 0 


 
 So, for shear stress on lower plate to equal zero, requires that: 
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 PU U 0 P 1
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(c)  Calculate the volume flow rate, and determine the value of P which causes the volume flow   
 rate to be zero. 
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The flow rate, Q, is zero when: 
 


  
Wh 3 P 0 P 3
6


     


(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of the 


shear stress on the lower plate. 
 
 From Chapter 1, air at 20ºC has =1.837x10-5 kg/m-s, so from part b: 
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(e)  If the shear stress for this flow is 0why  


 at y = h, does this mean τw acts in the 
negative x-direction on the upper plate? Explain your answer. 


 
No.  The absolute shear, which is what we calculate from out derived equations, can be 
negative, but the direction it acts depends on the coordinate system.  It y is upward, and x to 
the right, as it is for this problem, the direction of a negative absolute shear on the upper 
surface will be in the positive x-direction, since the outward normal to the upper plate (into 
the fluid) will be negative. 
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(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 
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Note : P 4.08
cm cm1 cm 20 100Q hU cms mP 3 4.08 3 2360


W 6 6 m s


 


     



 


 


Note:  The flowrate per cm would be 
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2. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction. The 


upper plate moves with a speed -U and the lower plate is fixed.   


    


 A pressure gradient, 
dx
dp


, is imposed on the flow.  Define 
2dp hP


dx 2 U




, and: 


 
(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.  
For the x and y Navier-Stokes equations in two-dimensions, we have: 
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S  
 
Initial Assumptions 
1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 


 
The incompressible continuity equation in two dimensions yields:  
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       v = f(x) + constant      v = constant    


 v=0 @ y=0 (or y=h), thus v=0 everywhere.  The equations reduce to: 
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Note that the rationale for dropping the body force is the same as addressed for the Couette flow, 
and thus the introduction of P to represent the dynamic component of pressure.  Simplifying the 
equations gives: 
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This yields a general equation for a pressure driven flow between one stationary and one 
translating parallel plate: 
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Letting 
2h dPP


2 U dx




, we get: 
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The shear stress for this flow field is then given by: 
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(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
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         at y = 0 


 
 So, for shear stress on lower plate to equal zero, requires that: 
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(c)  Calculate the volume flow rate, and determine the value of P which causes the volume flow   
 rate to be zero. 
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The flow rate, Q, is zero when: 
 


  
Wh 3 P 0 P 3
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(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of the 


shear stress on the lower plate. 
 
 From Chapter 1, air at 20ºC has =1.837x10-5 kg/m-s, so from part b: 
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(e)  If the shear stress for this flow is 0why  


 at y = h, does this mean τw acts in the 
negative x-direction on the upper plate? Explain your answer. 


 
No.  The absolute shear, which is what we calculate from out derived equations, can be 
negative, but the direction it acts depends on the coordinate system.  It y is upward, and x to 
the right, as it is for this problem, the direction of a negative absolute shear on the upper 
surface will be in the positive x-direction, since the outward normal to the upper plate (into 
the fluid) will be negative. 
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(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 
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Note : P 4.08
cm cm1 cm 20 100Q hU cms mP 3 4.08 3 360


W 6 6 m s


 


       



 


 


Note:  The flowrate per cm would be 
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3. A fluid flows in the x-direction between two parallel plates, a distance h apart in the y-direction.  


    


 Both the upper and lower plate move with a speed U and a pressure gradient, 
dx
dp


, is imposed on the 


flow. Define 
2dp hP


dx 2 U




, and: 


(a)  Determine the velocity profile, u(y), and the shear stress, )(y , for the flow.  
For the x and y Navier-Stokes equations in two-dimensions, we have: 
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Initial Assumptions 
1. Steady flow 
2. Fully-developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 


 
The incompressible continuity equation in two dimensions yields:  
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 v=0 @ y=0 (or y=h), thus v=0 everywhere.  The equations reduce to: 
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Note that the rationale for dropping the body force is the same as addressed for the Couette flow, 
and thus the introduction of P to represent the dynamic component of pressure.  Simplifying the 
equations gives: 
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This yields a general equation for a pressure driven flow between one stationary and one 
translating parallel plate: 
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The shear stress for this flow field is then given by: 
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(b)  Determine the value of P which causes the shear stress on the lower plate to be zero.  
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 So, for shear stress on lower plate to equal zero, requires that: 
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(c)  Calculate the volume flow rate, and determine the value of P which causes the volume flow   
 rate to be zero. 
 


 


 


 


y h y h y h 3 3
2


2 2
y 0 y 0 y 0


PUW PUW h hQ u Wdy y hy dy UW dy UWh
h h 3 2


PUWh UWhUWh 6 P
6 6


  


  


 
        


 


    


  


 


  
The flow rate, Q, is zero when: 
 


  
UWh 6 P 0 P 6


6
     


(d)  For air at 20ºC, U = 20 cm/s, h = 1cm, and 3mN30
dx
dp /. , calculate the value of the 


shear stress on the lower plate. 
 
 From Chapter 1, air at 20ºC has =1.837x10-5 kg/m-s, so from part b: 
 


 
   


   
   


2 2 2
2


3 2
5


m1 cm 10h dP N kg mcmP 0.3 1 4.08kg cm2 U dx m N s2 1.837x10 20
m s s
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2


7
2 2


PU U P
h h


kg m1.837x10 0.2 Nm s s 4.08 0.000367 5.08kg m m0.01 m 1
N s


N N0.00150 1.50x10
m cm








 
    


 






 


 


 
(e)  If the shear stress for this flow is 0why  


 at y = h, does this mean τw acts in the 
negative x-direction on the upper plate? Explain your answer. 


 
No.  The absolute shear, which is what we calculate from out derived equations, can be 
negative, but the direction it acts depends on the coordinate system.  It y is upward, and x to 
the right, as it is for this problem, the direction of a negative absolute shear on the upper 
surface will be in the positive x-direction, since the outward normal to the upper plate (into 
the fluid) will be negative. 


 
 
 
 







Study Problems Solutions, Chapter 6 6-12 
 


 


(f)  Calculate the volume flow rate (in cm3/s per meter depth) for part (d). 
 


 
     


 
3


Note : P 4.08
cm cm1 cm 20 100Q hU cms m6 P 6 4.08 3360


W 6 6 m s


 


    



 


 


Note:  The flowrate per cm would be 
3cm33.6


cm s
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4. A vertical plate of infinite extent has a film of water flowing downward on the outside due to gravity.   
 
 a) Determine the velocity profile in terms of gravity (g), the kinematic viscosity (), the volume flowrate  
  per unit width (Q), and the distance from the surface (y). 
 b) If =10-5 ft2/sec. for water at room temperature, determine the thickness of the water layer and the  
  maximum velocity within the water layer if the flow rate per unit width is Q=6.6x10-4 ft2/sec. 
 


 
 Continuity eqn. 
 
  


  0
z
w


y
v


x
u





















 


   0
y
v






  


   v constant          v 0 at y=0    
   v 0 everywhere 
 Navier-Stokes eqn., x-direction 
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 Note that since p = patm on surface, and streamlines are parallel  p=constant, 0
x
p






 , so final equation is: 


  




g


dy
ud
2


2


 with boundary conditions


 (1) u=0 @ y=0   (2)  0
dy
du


  @ y= 


 Integrating once: 


  1Cyg
dy
du









      applying B.C. (2)       1Cg0 



      




gC1  


  








gyg


dy
du  


Assume: 
1) 2-D flow  
2) Steady flow 
3) Incompressi


ble 
4) Fully 


developed 
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 Integrate again: 
 


  2


2


Cyg
2
ygu 







       applying B.C. (1)      2C000       0C 2   


 Thus, equation for velocity is: 
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 Now, the flow rate (per unit depth) for this flow is given by: 
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32y
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0y 3
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 Substituting expression for  into equation for u gives: 
 


  

































 






2
yy


g
Q3gu


23
1


 


 
 For  = 10-2 cm2/sec and Q = 0.62 cm2/sec., we have 


  
   


 


1
2 2 31 2


3


2


cm cm3 10 0.623 Q s s 0.0267 cmcmg 981
s


 
  


     
   


  


 


 The maximum velocity will occur at the free surface, at y=, so: 
 


  
   


 


2 2
2 2 2


max 2
2y


cm981 0.0267 cmg y g cmsu y 34.97
cm2 2 s2 10


s
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5. An intravenous feeding tube 3 mm diameter runs from a water bag h=0.7 M above the floor and 


is L=2 m long.  Assume the water level in the bag is 10 cm above entrance to the tube, and that 
the flow is assumed laminar, and essentially fully developed over the length of the tube (not 
probable, but a reasonable estimate).  If there is not restriction on the tube, and no needle at the 
exit, what is the maximum flowrate, in milliliters per minute (1 ml = 1000 mm3) that could flow 
through the tube?  Assume atmospheric pressure at the surface of the water in the bag, and at the 


exit of the tube.  Note: the pressure gradient for this flow can be approximated as dP h g
dx L


 
  


 
 


and the temperature as 20C.  Check to see if this flow would indeed be laminar. 
 


Assuming fully-developed laminar flow in the tube, Eq. 6.6.2 applies for the flowrate as: 
 


 
dz
dP


8
RR


2
UQ


4
2






 max  


Here, we approximate the pressure gradient within the tube by dP h g
dx L


 
  


 
, so 


 


 
   


 


4 4 4


4 4 3
3 3


2 2 3
6


R h R h R hQ g g g
8 L L 8 L8


1 5 mm 0 7 m m m mm 1 ml9 81 10 6 798x10
m 2 m s mm s 1000 mm8 1 004x10
s


ml s ml6 798 60 407 88
s min min


. . . .
.


. .








       
        


       
 
 


    
    


   


 


 


Checking for laminar flow, the Reynolds number for this flow would be: 
 


ave
D


U DRe 



 where ave 2


1 QU U
2 Rmax 



 (section 6.4.1), thus 


 


     


3
3


ave
D 2 22


6 6
2


mm2 6 798x10U D 2RQ 2Q s 2874
m mmR R 1 004x10 1 5 mm 10
s m


.
Re


. .


    
  





 


Normally, ReD > 2300 to 4000 will be laminar, depending on surface conditions.  Since IV tubes 
are smooth plastic, this is most likely a laminar flow. 
 
Since fluid hydration bags are 1000 to 1200 ml, this would empty the bag in about 3 minutes.  If 
there were a hypodermic needle at the end of the tube, this would substantially decrease the flow 
rate, and the time to empty. 
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6. A hypodermic syringe with a plunger 0.2 cm2 in area injects 500 mm3 of water through a 


24-gauge hypodermic needle, 5 cm long and 0.311 mm diameter. Neglect the flow in the 
syringe, and assume that the flow is laminar and essentially fully developed within the 
needle during this process. I reality, there are entrance region effects for the needle. 
However, a fully developed assumption will give an upper limit of the flowrate that can 
be expected. The force exerted by the injector on the syringe is 1 N.  Note that 
atmospheric pressure acts on all surfaces of the syringe and needle, so the pressure within 
the syringe will be gauge pressure (the pressure above atmospheric).  How long (in 
seconds) will it take to inject the 500 mm3 of water (assume temperature of 30C) if (1) 
the needle exit gage pressure is zero; (2) the needle is inserted in a portion of the body 
with an exit gage pressure of 16.3 kPa.?  Check to see if this latter flow would be 
laminar. 
 
Assuming fully-developed laminar flow in the needle, Eq. 6.6.2 applies for the flowrate as: 
 


 
dz
dP


8
RR


2
UQ


4
2






 max  


Here, assuming a liner change in pressure from the needle inlet to the outlet, the pressure 
gradient within the needle for discharge to the atmosphere, and the flowrate, would be : 
 


 


2
out in


3


Force on plunger 1 N
plunger areaP PdP N0 2 cm 1


dx L L 5 cm cm
.


   
             


 
, so 


 
       


4
4


4 2
4 1


3 2 2
3


3


0 311 mm
R dP N kg m cm cm2Q 1 1 10 10kg8 dz cm N s m mm8 0 798x10


m s
mm ml288 0 288


s s


.


.


.








 
       


 





 


 


Therefore, it would take  


 


3


3


500 mmVolumet 1 74s
mmQ 288


s


.    to inject to the atmosphere. 


If the exit pressure in the body is 16.3  kPa, the pressure gradient  and flowrate would be: 
 


     


 


   


 


2
4


out gage 2 2 2
out in


2 2


3


Force on plunger N m 1 NP 16 300 Pa 1 10
plunger areaP PdP m Pa cm 0 2 cm


dx L L 5 cm
N N1 63 5 Ncm cm 0 674
5 cm cm


, ,
.


.
.
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4
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4 2
4 1


3 2 2
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0 311 mm
R dP N kg m cm cm2Q 0 674 1 10 10kg8 dz cm N s m mm8 0 798x10


m s
mm ml194 0 194


s s


.


.
.
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Therefore, it would take  


 


3


3


500 mmVolumet 2 58s
mmQ 194


s


.    to inject into the body. 


Checking for laminar flow, the Reynolds number for this latter flow would be: 
 


ave
D


U DRe 



 where ave 2


1 QU U
2 Rmax 



 (section 6.4.1), thus 


 


     


3


ave
D 2 22


6 6
2


mm2 194U D 2RQ 2Q s 992
m mmR R 0 801x10 0 1555 mm 10
s m


Re
. .


    
  





 


 
Normally, ReD > 2300 is a laminar flow, so this flow would be clearly laminar in the needle. 
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7. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, 


infinitely long, stationary rod.  Assume that the flow is steady, the surface tension is zero, and the 
ambient air is stationary.  If gravity is g = constant, the z-coordinate is along the rod axis in 
opposition to gravity, the rod diameter is R, and kinematic viscosity is : 


 
(a)  Calculate the velocity within the film, vz(r), in terms of r, g, R, , and . 


 


 
 Continuity eqn. 
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     0rv
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Cv r         0v r   at r=R    


   0v r   everywhere 
 Navier-Stokes eqn., z-direction 
 


  




















































































 


2
z


2


2
z


2


2
z


z


z
z


zz
r


z


z
vv


r
1


r
vr


rr
1g


z
p1


z
vvv


r
v


r
vv


t
v


 


  


































r
v


r
rr


1g
z
p10 z  


 Note that since p = patm on surface, and streamlines are parallel  p=constant, 0
z
p






 , so final equation is: 
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1 z


 with boundary conditions


 (1) vz=0 @ r=R   (2)  0
dy
dv z   @ r = R+ 


 Integrating once: 


  
r


C
2
gr


r
v 1z 









      applying B.C. (2)        
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Rg0 1       
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RgC
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1  


Assume: 
6) 1-D flow  
7) Steady flow 
8) Incompressi


ble 
9) Fully 


developed 
10) p=patm at 
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 Integrate again: 
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 ln     applying B.C. (1)      
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 Thus, equation for velocity is: 
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(b)  Determine the shear stress on the cylinder surface, rz, in terms of , g, R, and . 
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 Note that when R>>, which is what you would obtain for gravitational flow down a planar wall. 
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8. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, 


infinitely long, stationary rod.  Assume that the flow is steady, the surface tension is zero, and the 
ambient air is stationary.  If gravity is g = constant, the z-coordinate is along the rod axis in 
opposition to gravity, the rod diameter is R, and kinematic viscosity is : 


 
(a)  Calculate the velocity within the film, vz(r), in terms of r, g, R, , and . 


 


 
 Continuity eqn. 


    0
z


vv
r
1rv


rr
1 z


r 

















   


     0rv
r r 



  


   
r
Cv r         0v r   at r=R    


   0v r   everywhere 
 Navier-Stokes eqn., z-direction 
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 Note that since p = patm on surface, and streamlines are parallel  p=constant, 0
z
p






 , so final equation is: 


  
























 g
r


v
r


rr
1 z


 with boundary conditions


 (1) vz=0 @ r=R   (2)  0
dy
dv z   @ r = R+ 


 Integrating once: 
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v 1z 









      applying B.C. (2)        
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Assume: 
12) 1-D flow  
13) Steady flow 
14) Incompressi


ble 
15) Fully 


developed 
16) p=patm at 
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 Integrate again: 
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 ln     applying B.C. (1)      
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 Thus, equation for velocity is: 
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(b) Determine the volume flowrate for the fluid layer, Q, in terms of g, υ, R, and    
 (warning: apply the integration limits but don’t attempt to simplify—it is an ugly result). 


 
In cylindrical coordinates, the volume flowrate is given by: 
 


   
2 r R 2 r R


22 2
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0 r R 0 r R


g rQ v rdrd r R 2 R ln rdrd
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9. A thin Newtonian film of uniform thickness  is formed on the external surface of a vertical, 
infinitely-long rod. The rod moves upward (against gravity) at a velocity V.   Assume that the 
flow is steady, the surface tension is zero, and the ambient air is stationary.  If gravity is g = 
constant, the z-coordinate is along the rod axis in the opposite direction to gravity, the rod 
diameter is R, and kinematic viscosity is : 


(a)  Calculate the velocity within the film, vz(r), in terms of V,  r, g, R, , and . 
 


 
 Continuity eqn. 
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 Navier-Stokes eqn., z-direction 
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 Note that since p = patm on surface, and streamlines are parallel  p=constant, 0
z
p






 , so final equation is: 
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 with boundary conditions


 (1) vz=V @ r=R   (2)  0
dy
dv z   @ y=R+ 


  
Integrating once: 


Assume: 
1) 1-D flow  
2) Steady flow 
3) Incompressible 
4) Fully developed 
5) p = patm at r=R+ 
6) No  velocity 
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 Thus, equation for velocity is: 
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(b)  Determine the shear stress on the cylinder surface, rz, in terms of , g, R, and . 
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 Note that when R>>, which is what you would obtain for gravitational flow down a planar wall. 
 


(c)  If  R>>,  determine what value of rod velocity V will make vz = 0 at r = R+ in terms of g,  
 R, , and  (i.e. the outer fluid surface will remain stationary relative to the z-coordinate). 
 
We set vz = 0 for r = R+, and solve for the value of V. 
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10.  Consider the vertically oriented moving belt shown below.  The belt moves upward at velocity V out of a vat 
of liquid of density  and viscosity , as shown in the figure.  Above a certain belt velocity, the shear stress 
acting on the fluid will cause the liquid to rise up the belt due to viscous effects, and to be deposited in the 
upper reservoir of fluid, as shown.  It is assumed that the moving belt is sealed at the bottom of the two 
reservoirs, such that fluid will not leak out.  You are to perform an analysis of the flow to determine the 
velocity profile and flow rate of liquid moving up the surface of the belt. 


 
 Assume that the flow is steady, the thickness of the 


liquid is T, atmospheric pressure acts on all surfaces of 
the liquid, and g acts as shown.  Consider only the 
portion of the belt where the flow might be considered 
fully developed.  List the remainder of your assumptions 
very carefully, and think hard about the physics of the 
flow behavior since this will impact the conditions you 
must place on the solution.   


 
Specifically: 
  
  
 


a. Starting with basic equation(s), develop a simplified 
differential equation to allow  


 the determination of v(x);  clearly state simplifying assumptions and the boundary conditions for the 
problem. 


 


 Continuity:  0
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    u=const.=0, since u=0 @ x=0 
 
   
 
 
 


  Nav-Stokes, y-direction:  



































































2


2


2


2


2


2


y z
v


y
v


x
vg


y
p1


z
vw


y
vv


x
vu


t
v  


  Resulting equation is:  0
dx


vdg 2


2


   


  So,         



g
dx


vd
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   B.C. 1)  v=V @ x=0        2)  0
dx
dv


   @  x=T   (no shear stress) 


  
b. Using the result of part a, establish a general solution for the velocity profile, v(x), in terms of x and 


constants shown in the figure.   
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upper reservoir 
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Assume 
1. steady 
2. =const. 


3. fully developed 
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4. no z-dir. Changes 
5. gy = -g 


0 0 


0 0 0 0 0 0 
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=0 since p=const. 
along edge of flow 
& S.L. are parallel 
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 Integrating,  1Cxg
dx
dv






           B.C. #2        1CTg0 



      



gTC1   


 Integrating again,   
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c. Determine the flowrate per unit depth, Q, of the liquid from the lower reservoir to the upper reservoir. 
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d. Determine (in terms of g, T,  and ) the minimum velocity necessary to assure that liquid will flow 


upward. 
 
 For upward flow of liquid, we must have Q>0, so set Q=0, and solve for V. 
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e. Is there a limiting height to which the fluid can be pumped, and is this a function of the velocity of the 


belt?  If so, determine the maximum pumping height as a function of velocity, V.  
   
 Since the pressure is Patm outside the fluid, and the height doesn’t enter the solution, there is theoretically 


no height restriction.  The only requirement is that 
3


gTV
2


 . 
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11.  Consider the flow of a fluid of viscosity, , and density, , in the long, rectangular cavity shown below, 


where L»h.  The lower surface and the ends of the cavity are flat, solid surfaces.  The upper surface is a flat 
belt that moves over the cavity from left-to-right at a constant speed U.  Using the coordinates shown, 
determine the steady state velocity profile in the central region of the cavity, where the flow can be 
considered to be parallel and fully developed such that the velocity depends on y alone.  Note that a constant 
pressure gradient, dP/dx, exists in the central region of the cavity. 


 Assume that the seal between the belt and the cavity corners is perfect, such that no fluid leaks from or into 
the cavity.  List the remainder of your assumptions very carefully, and think hard about the physics of the 
flow behavior, since this will affect the conditions you must place on the solution.   


 
 


  
 
 
 
 
 
 
Specifically: 
 
a. Starting with the 2-D continuity and x-direction Navier-Stokes equations, develop a simplified 


differential equation which will allow the determination of u(y);  clearly state the boundary conditions 
for the problem. 


 
 Continuity gives: 
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     v = constant=0, since v = 0 at either wall (y = 0 or y = h) 


 
 2-D Navier-Stoke, x-direction: 
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 yielding a simplified equation 


(an ODE, since u = f(y) only)   
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ud
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 =constant 


 
b. Using the result of part a, establish a general solution for the velocity profile, u(y), in terms of defined 


and undefined constants and y.   
  


Integrating above equation twice gives,   
 


 21
2 CyCy


dx
dp


2
1u 



 


  


Assumptions  
 


1) Steady 
2) Fully developed 
3) Neglect gravity 


1 2 2 3 0 


Boundary Conditions  
 


1) v=0 @ y = 0 and h 
2) u=0 @ y = 0 
3) u=U @ y = h 


cavity flow 


moving belt 
U (velocity of belt) 


h y 


L 
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c. Determine the value(s) of the undefined constant(s) through the application of the boundary conditions 
to yield a specific solution in terms of U, h, , dP/dx and y   


  
 Applying B.C. #2 
  


     21 C0C0
dx
dp


2
10 



      0C 2   


 
 Applying B.C. #3 
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dx
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1u 2 



 


 
d. Since dP/dx is an unknown constant, determine a way to establish the value of the pressure gradient in 


this central region of the cavity in terms of µ, U, and h only. 
[Hint: consider the net flowrate, Q, at the center of the cavity]   


 
 Integrate velocity profile to get Q: 
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 Setting Q=0 gives:    2h
U6


dx
dp 


  


  
e. Using the result of part d, eliminate dp/dx from your solution for u(y) such that u(y) is expressed as a 


function of U, h, and y only.  Plot the shape of the resulting velocity profile, y/h vs.  u/U.    
 


Substituting from above gives:   
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f. Establish the y-location and the magnitude of the maximum and minimum velocity within the cavity.   
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12. Consider an infinite circular pipe of radius R, which is translating vertically upward at velocity V out of a vat 


of liquid of density  and viscosity , as shown in the figure.  Above a certain pipe translation velocity, the 
shear stress acting on the fluid at the pipe inner wall will cause the liquid to rise up inside the pipe, much like 
a “viscous” pump (note that the liquid will also rise up on the outside of the pipe, but you are to neglect 
those effects).  You are to perform an analysis of the flow to determine the velocity profile and flow rate of 
liquid inside the pipe, from 0 < r < R.
  


 
 Using the coordinates shown, assume that the pipe 


is of infinite extent, the flow is steady, atmospheric 
pressure acts on all surfaces of the liquid, and g acts 
as shown.  List the remainder of your assumptions 
very carefully, and think hard about the physics of 
the flow behavior since this will impact the 
conditions you must place on the solution.   


 
 
 
 
 Specifically: 
  


a. Starting with basic equations, develop a simplified differential equation which will allow the 
determination of vz(r); clearly state the boundary conditions for the problem. 


 


Continuity:    0
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1rv
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1 z
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   rrv =const.=0, since rv =0 @ r=R 
 
   
 
 
Nav-Stokes, y-direction:   
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Resulting equation:  0
dr


dvr
dr
d


r
1g z 











  


  So,         
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dr
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dr
d z  


  B.C. 1)  vz=V @ r=R        2)  0
dx
dv z    @  r=0   (by symmetry) 
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   Liquid Surface            
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 ,      Infinite Pipe  
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V V 


 


Assume 
6. steady 
7.  = const. 


8. fully developed 
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9. no -dir. Changes 
10. gz = -g 
11. dp/dz = 0 (Patm on all surfaces) 


0 0
z


0 0 0 0 


-g 


=0 since p=Patm 
On all free 
surfaces  
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b. Using the result of part a, establish a general solution for the velocity profile, vz(r), in terms of r and 
constants shown in the figure.   


 


Integrating,  1
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z C
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dr
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Integrating again,   
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c. Determine the volume flowrate of the liquid up the pipe, Q.  


   












































































 


























8
gRVR


4
R


2
gVR


4
R


2
R


2
g


2
RV2


rdrrR
2


grdrV2rdr2rR
4
gVrdr2vQ


2
2


4
2


442


Rr


0r


22
Rr


0r


Rr


0r


22
Rr


0r
z


 


   
d. Determine [in terms of g, R and  (=/) ] the minimum pipe translation velocity necessary to assure that 


liquid will flow upward. 
 
 For upward flow of liquid, we must have Q>0, so set Q=0, and solve for V. 
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e. Is there a limiting height to which the fluid can rise in the pipe, and is this a function of the velocity of the 


pipe?  If so, determine the height as a function of velocity, V.  
   
 Since the pressure is Patm outside the fluid, and the height doesn’t enter the solution, there is theoretically 


no height restriction.  The only requirement is that 
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13. Consider the viscous pumping of a fluid of viscosity  due to the axial motion of a circular tube 


encompassing an annulus formed between a stationary inner rod of radius ri and a surrounding tube of ro  
(assume the rod and tube are of infinite length).  Determine the velocity profile, vz vs r/ro, within the 
annulus where the outer tube is translated in the axial direction at a velocity Vo.  On one graph, plot curves 
of vz/Vo vs. r/ro for ri/ro = 0.9, 0.7, 0.5, 0.3, and 0.1.  Also, determine the non-dimensional flow rate within 


the tube, 
o


2
o Vr
Q



, as a function of 


o


i


r
rr ' , and on a second graph plot '. rvs


Vr
Q


o
2
o


 for 1r0  ' .   


 What will be the force per unit length (F/L) required to keep the rod stationary? 
 


This is a Couette type of flow in the annular cross section of a tube of radius ro translating at a velocity Vo 
along its z-axis outside of a rod of radius ri.  We use the Navier-Stokes equation in cylindrical coordinates, 
with the z-axis aligned with the centerline of the concentric rod/cylinder, as show below.  
 
 
  
 
 
 
 
 
We assume that there is no swirl, or flow changes in the  or azimuthal direction, which eliminates all 
terms depending on  and the velocity component v .   The appropriate set of equations is the z-direction 
N-S equation and the continuity equation in cylindrical coordinates: 
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  rrv =constant
  0v r   at ri=0 and everywhere 
 
Eliminating terms in the equations based on the assumptions: 
 
 1. steady flow 
 2. no v motion 
 3. no changes in the -direction 
 4. fully-developed flow no z-direction changes 
 
The reduced continuity equation gives vr=0 throughout the pipe.  Thus, the r-direction equation reduces to: 
 


 only zPP0
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However, since this is assumed to be an infinite flow in the z-direction, P must be a constant and  0
dz
dP


 .  


Thus, our N-S equation reduces to: 


  0
dr
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dr
d


r
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Or,   0
dr


dvr
dr
d z 










  


 
The appropriate boundary conditions for this annular flow are: 
 
 (1)    iz rr  @  0v   
 
 (2)   ooz rr  @  Vv   
 
Integrating the reduced z-direction N-S equation gives: 
 


  C
dr


dvr 1
z   


 
and 21z Crln Cv   
 
Applying the B.C. gives: 
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The volume flow rate is calculated by integrating the velocity profile over the area of the annulus, and is 
given by: 
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Letting oi
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rr ''  ,we can write: 
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The shear stress on the rod is: 
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The force on the rod over a length L will be: 
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And the force per unit length will be: 
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This is of course the same as the force per unit length on the outer tube, only in the opposing direction. 
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14. Consider the viscous pumping of a fluid of viscosity  due to the axial motion of a rod within an annulus 


formed between the rod of radius ri and a stationary surrounding tube of ro  (assume the rod and tube are of 
infinite length).  Determine the velocity profile, vz vs r, within the annulus where the inner rod is translated 
in the axial direction at a velocity Vi.  On one graph, plot curves of vz/Vi vs. r/ro for ri/ro = 0.9, 0.7, 0.5, 0.3, 


and 0.1.  Also, determine the non-dimensional flow rate within the tube, 
i


2
o Vr
Q



, as a function of 


o


i
i r


rr ' , 


and one a second graph plot i
i


2
o


rvs
Vr


Q




.  for 1r0 i  .  Determine (mathematically, not graphically) the 


value of ir for which this viscous pump will yield the highest flow rate for a fixed value of Vi.  What will 
be the force per unit length (F/L) required to keep the rod moving at a constant speed? 


 
This is a Couette type of flow in the annular cross section of a rod of radius ri translating at a velocity Vi 
along its z-axis inside of a concentric cylinder of radius ro.  We use the Navier-Stokes equation in 
cylindrical coordinates, with the z-axis aligned with the centerline of the concentric rod/cylinder, as show 
below.  
 
 
  
 
 
 
 
 
We assume that there is no swirl, or flow changes in the  or azimuthal direction, which eliminates all 
terms depending on  and the velocity component v .   The appropriate set of equations is the z-direction 
N-S equation and the continuity equation in cylindrical coordinates: 
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  rrv =constant
  0v r   at ri=0 and everywhere 
 
Eliminating terms in the equations based on the assumptions: 
 
 1. steady flow 
 2. no v motion 
 3. no changes in the -direction 
 4. fully-developed flow no z-direction changes 
 
The reduced continuity equation gives vr=0 throughout the pipe.  Thus, the r-direction equation reduces to: 
 


1 4 =0 2 3 3 4 


2 4 


r 


z 
 


ro 


ri Vi 







Study Problems Solutions, Chapter 6 6-36 
 


 


 only zPP0
r
P1 )(







  


 


However, since this is assumed to be an infinite flow in the z-direction, P must be a constant and  0
dz
dP


 .  


Thus, our N-S equation reduces to: 
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The appropriate boundary conditions for this annular flow are: 
 
 (1)    iiz rr  @  Vv   
 
 (2)   oz rr  @  0v   
 
Integrating the reduced z-direction N-S equation gives: 
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Applying the B.C. gives: 
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The volume flow rate is calculated by integrating the velocity profile over the area of the annulus, and is 
given by: 
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To determine the maximum flowrate, we take the derivative of Q w.r.t ir and set equal to zero and solve 
for ir optimal. 
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Solving this equation using a root seeking technique (Goal seek in excel) gives: 
 


ir optimal = 0.4079,  
 
Which gives:  
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About 30% of what one would have for a uniform flow at Vi through a pipe of radius ro. 
 
The shear stress on the rod is: 
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The force on the rod over a length L will be: 
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And the force per unit length will be: 
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This is of course the same as the force per unit length on the outer tube, only in the opposing direction. 
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15. An upper flat plate is translated at a velocity U parallel to a lower fixed flat plate, with a spacing of h 


between the plates, creating a Couette flow.  Originally the fluid between the plates is oil, which results in 
a shear stress within the oil, and on the bounding  plates, of  = oU/h.  Now, a layer of water of thickness t 
is introduced at the lower surface (w > o), as shown below.  The viscosity of the water is much less than 
the oil, such that o = 51w.  Again assuming a steady Couette type flow between the plates, what 
thickness of water, t, in terms of  h, will reduce the shear stress on the translating flat plate to ½  of the 
original shear stress with oil alone? 


 
 
 
 
 
 
 
 
 


 
We must apply a separate set of equations for each of the fluids.  The assumptions and 
simplifications that apply for a single fluid Couette flow also apply here, and are: 
 


1. Steady flow 
2. Fully developed flow; no variations in x-direction 
3.  = constant  
4. Neglect body forces 


 
Employing these assumptions, and noting that again the continuity equation yields v = 0 
throughout both fluids, we reduce the governing equations to a pair of simple second order 
ordinary differential equations: 
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here, uo is the x-direction velocity within the oil, and uw is the x-direction velocity within the 
water.   
  
The appropriate set of boundary conditions is:  
 


1)  0uw   @ 0y   2) Uuo   @ hy   


3)  0w uu   @ ty   4)  0w   @ ty   (i.e. 
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Integrating the two differential equations twice yields two simple linear solutions: 
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and   43w CyCu    
Applying boundary conditions 1) and 2) yields: 
 


21 ChCU  )(       12 hCUC    
 
and  4C0    


 
Such that:  
 


 hyCUu 1o     and   yCu 3w      
 
Applying boundary conditions 3) and 4) at the common boundary, y = t, yields:  
 


 htCUtC 13     and    1o3w CC   
 
Solving for C1 and C3 simultaneously yields: 
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With respective velocity distributions: 
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With corresponding shear stresses within each fluid of: 
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So, the shear stress within both the oil and the water is the same, as it should be. 
 
Now, if we require  = oU/2h, we equate that with our result above, and solve for t: 
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Solving for t yields: 
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So, only a thin water layer is required to reduce the shear stress, and therefore the work and power required 
to move the translating plate by 50%. 
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16. Consider the flow of a viscous fluid (viscosity = µ, density = ) similar to a Couette flow between two 
infinite, parallel, porous plates; fluid of the same properties is uniformly injected through the fixed, 
lower plate, and fluid is uniformly suctioned out through an upper plate, which moves at a velocity U.  If 
u = 0, v = Vo = const. at y = 0, and u = U = const., and v = Vo at y = h, with no flow in the z-direction, 


derive the velocity profile, u(y), of the fully-developed flow between the plates, and plot 
h
yvs


U
u .  for 


0


0
V


V h 0 1 and 3Re , , 



, all on one graph.  Using your velocity expression, determine the shear stress 


() as a function of y, and on a second graph, plot 
h
yvs


U
h .





 , again for 3and10
0V ,,Re  .    Using 


your general expressions for velocity and shear stress, determine the limiting values as Vo  0, and 
explain the subsequent results. 


  
 
 
 


 
 
 
 
 
 
For this configuration, the boundary conditions are given by:  
 
  0y  @  V  v,  0u 0    and    hy  @  V  v,  Uu 0   
 
And the governing two-dimensional equations (x and y directions) are given by: 
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 x-direction 
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 y-direction 
 
 To simplify the equations, we assume:  


  
  (1) steady flow 


  (2) fully developed flow    















 0
x


 


 
 and employing the continuity equation:   
    


 constv0
y
v0


y
v


x
u




















   


1 2 2 


1 2 v=const. 2 v=const. 
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 where, 0y  @  Vv 0   
   
 0Vv     
  
 For the y-direction, all the terms drop out, and 
 


 
onlyxfP0


y
p )(






 


 But the plates are considered infinite, so p=constant, and 0
x


dp




 


Thus, the x-direction differential equation becomes: 
 


 2


2


0 dy
ud


dy
duV   


 Or 
 


 
dy
duV


dy
ud 0
2


2



  


Letting 
dy
du


 , we can write differential equation as:  


 


 




 0V


dy
d


 


 
Integrating gives: 


 ,
y


V


1


0


eC
dy
du


  


Integrating again, for u: 
 


 2


yV


0
1 Ce


V
Cu


0






   


Applying the B.C.s 
 
 u=0  @  y=0


  0C
V


C 2
0


1 



  
0


12 V
CC 


  


 u=U  @  y=h


  UCe
V


C 2


hV


0
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    U1e
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C
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0
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The shear stress for this velocity profile is: 
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From this expression, the shear at the respective fluid surfaces is given by: 
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Note that the largest shear is at the upper surface.  To illustrate the impact of suction on the flow 
behavior relative to a Couette flow without suction, we rearrange the equations for the velocity 
and shear as follows: 
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Here, we note that 
0V


0hV
Re



, or a non-dimensional Reynolds number based on the gap width, 


h,  and the injection/suction velocity, Vo.  The following graphs compare the behavior for 
0VRe


=0, 1, and 3. 


 
 


 
 
Note that as 


0
ReV increases, the velocity is biased in the direction of the injection (toward the upper 


surface), which results in an increase in the shear on the upper surface, and a decrease on the lower 
surface.  This increased shear (relative to that for Vo=0)at the upper surface is an illustration of the 
additional force required to accelerate the injected fluid to the velocity of the moving plate, U, as it passes 
across the gap width, h. The more fluid that is injected (Vo), the greater the shear force.  Conversely, note 
that the fluid introduced at the lower surface retards the velocity profile, acting as a low momentum buffer 
layer adjacent to the lower surface, and thus reduces the shear at the lower surface.  Note that if the 
direction of injection is reversed (by letting Vo<0), the velocity bias is reversed, and the surfaces of shear 
increase/decrease will be reversed. 
 
Note that from a practical point of view, the force on a uniformly moving surface could be varied by 
simply controlling the injection rate.  Alternatively, for a plate under a constant loading, the velocity of the 
plate might also be controlled by controlling the injection rate. 
 
With regard to limits for Vo=0, we note that: 
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Apply L’Hospital’s Rule: 
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And likewise for shear: 
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And L’Hospital’s gives; 
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Thus, the limiting values of our velocity and shear equations for Vo=0 are the values we obtained for a 


conventional Couette flow,  
h
yUu


0v0




and 


h
U


0v0







, as they should be. 
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17. Using the results of section 6.4.4, assume b a0.01   and ri* = 1,  ro* = 2, and rm* =1.9.  


Determine the torque on the inner cylinder in terms of a and, ,  when: (1) fluid a fills the 
entire annulus (there is no fluid b), and (2) when the thin layer of fluid b is adjacent to the outer 
cylinder wall.  By what % does adding the thin layer of much less viscous fluid b reduce the 
torque?  What is the reduction if the fluid layers are equal? 


 
The torque is given by Eq. 6.88 as: 
 


  
2


b o
r


4 rTorque 2 r r



 
   



 


Where 
2 2 2 2 2


2o b o o o b o
o2 2 2 2 2


m a m i m a m


r r r r * r *1 1 r *
r r r r * r *


       
              


       
 


 
If fluid a fills the annulus, rm=ro, then , rm*=ro*=2, and  


    
2 2


2o b o
o2 2


m a m


r * r * 4 4 41 r * 1 0.01 4 0.01 4 0.03
r * r * 4 4 4


         
                              


 


 
With a torque of: 
 


 
   2


ab o
all a a b


4 0 01 24 rTorque 2 667 or 266 7
0 03


.
. .


.
   


        
 


 


 
If we introduce layer of fluid b such that rm* =1.9 
 


 
 


  


2 2
2o b o
o2 2


m a m


r * r * 4 41 r * 1 0.01 4
r * r * 3.61 3.61


0.108 0.01 1.108 4 0.1109


     
                  


       


 


 
With a torque of: 
 


 
   2


ab o
b layer a b


4 0 01 24 rTorque 0 721 or 72 1
0 1109


.
. .


.
   


        
 


 


 


So,    b layer a


all a a


Torque 0 721 0 270
Torque 2 667


. .


.
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Thus, adding the thin layer of much less viscous fluid b reduces the torque by 73%.  This might 
be what to expect for a water layer adjacent to a thick oil layer. 
 
Note:  If there are equal layers of fluid a and b,  rm*=1.5, the reduction is 
 


 
 


  


2 2
2o b o
o2 2


m a m


r * r * 4 41 r * 1 0.01 4
r * r * 2.25 2.25


0.778 0.01 1.778 4 0.800


     
                  


       


 


 


    2
ab o


b layer a


4 0 01 24 rTorque 0 1
0 8


.
.


.
   


     
 


 


And b layer a


all a a


Torque 0 1 0 0375
Torque 2 667


. .
.
  


 
  


    or a reduction of more than 96%! 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 6 6-50 
 


 


 
18. Derive the equations for velocity for the two-fluid Couette flow in section 


6.4.4, with the inner cylinder fixed and the outer cylinder rotating at an 
angular velocity .  Use the radii shown in the figure at the right.  Non-


dimensionalize the velocities on ro, and the radii on ri  (e.g. 
i


rr
r


*  ) a  .  


Plot the non-dimensional velocity from o1 r r* *   for b


a


0.1, 1, 10




; ri* = 


1,  ro* = 2, and rm* =1.5.  Comment on the behavior. 
 


Starting with Eqs. 6.80 
 


1,a 2,a
,a


C r C
v


2 r    and           1,b 2,b
,b


C r C
v


2 r     


 


The four constant of integration must be determined by applying the following four 
boundary conditions: 
 


(1)    a iv 0 @  r r,    (3)    a b mv v   @  r r, , 
   


(2)    b o ov r    @  r r,     (4)    r a r b m @  r r, , 
     


To apply the fourth boundary condition, we note that for this flow r is given by: 
 


r
r


v vv1r r
r r r r r


 



     
         


      
  


  


Applying the above boundary conditions to equations 6.80 gives us four equations to 
solve for the constants, as follows. 
 


(1) 2,b
1,b 2


o


C
C 2


r
 


  
 


  


(2) 
2


1,a i
2,a


C r
C


2
    


(3)  1,b 1,a 2,a 2,b2
m


2C C C C
r


     


(4) Note that for both fluids: 
  


 1 2 2 2
r 2 3 2


v C C C Cr r r 0 2 2
r r r 2 r r r






      
               


      
  


 


 
fluid b 


fluid a 
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rm 


ri 
ro 


=0 
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 Thus, boundary condition (4) at r = rm becomes: 
 


 2 a 2 b b
a b 2 a 2 b2 2


m m a


C C
2 2 C C


r r
, ,


, ,



      



  


Solving Eqs. 6.82 simultaneously, which is a bit messy, yields: 


1,a 2 2 2
ai i i


2 2 2
m b m o


2 2C
r r r1
r r r


 
 


    
      


    


   where   
2 2 2


ai i i
2 2 2
m b m o


r r r1
r r r


    
        


    
 


2
i


2,a
rC 


 



  


2
a i


2 b
b


rC ,
 


 
 


  


and 
2


a i
1,b 2


b o


rC 2
r


  
  


  
  


 


Substitutingfor the velocities, yields velocity profiles for this two-layer Couette flow as:  
 


 2 22
ii


,a


r rrrv
r r


 
  
  


  


and 


 
2


2 2 2a i
o22 2


a a b oi i
,b 2


b o b


rr r r
rr rv r


r r r



   


    
    


     
  


The velocity equations are a bit cumbersome. To check their validity, we check that they 
reduce to the equation for a single fluid with a stationary outer boundary, Eq. 6.69b, if we 


set b


B






=1. 


The value of  is: 
2 2 2 2


ai i i i
2 2 2 2
m b m o o


r r r r1 1
r r r r


    
          


    
 


 


Inserting this relationship into Eqs. 6.84 and simplifying, gives: 
 


     
 


2 2 2 2 2 2 2
i i o i


,a 2 22
o ii


2
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r r r r r r r
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r r r rr1 r
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and 
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2
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r





  
              


   
 
 


 


These results show when both fluids have identical viscosities, both velocity equations 
reduce to Eq.6.69a from section 6.4.2 for a single fluid with a fixed inner cylinder, as 
they should. 
 
To plot the velocity behavior, we non-dimensionalize the velocities within both fluids on 


the inner cylinder velocity, ro, and the r values on the inner radius, ri  (e.g. 
i


rr*
r


 ):  


2 2 2
a ai i i


2 2 2 2 2 2
m b m o m b m o


r r r 1 1 11 1
r r r r * r * r *
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The figure shows the non-dimensional velocity behavior within fluid a (to the left) and 


fluid b (to the right) for the three viscosity ratios, b


a


0.1,1,10




, and ri* = 1,  ro* = 2, and 


rm* =1.5.  The behavior will be different, but similar, for different bounding r* values.  


Note that when b


a


10




, the behavior of fluid b begins to behave more like a solid body. 
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19. Consider the flow of a viscous fluid (viscosity = µ, density = ) similar to a Couette-type flow between two 


infinite, parallel, porous tubes of radii ri and ro, where ri <  ro.  The inner tube of radius ri translates along 
the z-axis at a velocity U, and the outer tube of radius ro is stationary.  Fluid of the same properties is 
uniformly injected radially at velocity V through the inner tube of radius ri, and fluid is uniformly 
suctioned out through the outer tube of radius ro, satisfying continuity.  Determine the radial velocity  
behavior, vr(r), and the axial velocity profile, vz(r), in the annulus between the tubes, for this fully-
developed flow. 
  


 
 
 
 
  
 


Show that the non-dimensional velocity,
 


U
rvv z


z * , can be determined as:  
 


k
i


k
z


r1
r1


U
rv


*
*






 , and the 


non-dimensional flow rate, 
Ur2


Q
2
o


, through the annulus can be determined as: 


   
k


i


2k
i


k
i


2
o r1


r1
2k


1r1
2
1


Ur2
QQ


*


**
*
































, where 



 iVrk ,  and 
o


i
i r


rr *  (note: 1
r
r


r
o


o
o * .) 


 
  Plot two separate graphs of the results.  On the first graph plot *.* rvsvz for 0.5 <  r* < 1.0, and k = 2, 4, 


and - 4 (i.e. suction through the inner tube).  This graph will show three separate lines—one for each k 
value.  On the second graph plot Q* vs. ri* for 0.1 < ri* < 0.9, and k = 2, 4, and - 4 (i.e. suction through the 
inner tube).  This graph will again show three separate lines---one for each k value. What do these graphs 
reveal about the effect of fluid injection/suction on the velocity and flow rate? 


 
We assume that there is no swirl, or flow changes in the  or azimuthal direction, which 
eliminates all terms depending on  and the velocity component v .   The appropriate set of 
equations is the z-direction N-S equation, and the continuity equation in cylindrical coordinates: 
 


z-N.S.:   
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Continuity:    0
z


vv
r
1rv


rr
1 z


r 

















   


 
We eliminate terms in the equations based on the assumptions: 


1. steady flow 
2. no v motion 
3. no changes in the -direction 
4. fully-developed flow no z-direction changes 
5.   Couette Flow  no pressure gradient along annulus 


The reduced continuity equation is: 


r 


z 
 


ro 


ri V 
U 


1 4 2 3 5 3 4 


2 4 
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   0rv
dr
d


r   


Which integrates to give: 


 
r
Cv r    


Since Vv r   at r = ri, we get: 


 
r


Vrv i
r   


The above z-direction equation reduces to: 


















    e,      wher


dr
dvr


dr
d


rdr
dvv zz


r  


Or, substituting for vr:    












dr
dvr


dr
d


rdr
dv


r
Vr zzi   


Rearranging gives: 












dr
dvr


dr
d


dr
dvk zz , where we set  constantVrk i 



 To solve this 


equation we substitute  
dr


dvr z , giving: 


dr
d


r
k 


   or separating variables gives:  
r


drkd






  


Integrating gives: 
 


 k
11


k
1 rCCrCrk lnlnlnlnlnln   


Or k
1


z rC
dr


dvr   


Separating variables and integrating again gives: 


2


k


1z C
k
rCv   


The boundary conditions for this annular flow are: 
(1)    oz rr  @  0v   


(2)   iz rr  @  Uv   
 


Applying B.C. 1 gives: 


k
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r
C0


k
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k
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Applying B.C. 1 gives: 
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o
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o
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i
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Substituting into vz equations gives: 
 







Study Problems Solutions, Chapter 6 6-56 
 


 


 
 k


i
k


o


kk
o


k
o


k
o


k
i


k


k
o


k
i


z rr
rrU


k
r


rr
Uk


k
r


rr
Ukv














  


 


Dividing by U and numerator and denominator by 
k


or  gives: 
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U
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o
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The flow rate is given by: 
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Dividing Q by 
2


oUr2 , and then dividing the numerator and denominator by 
k


or  gives: 
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r
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o
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Graph #1: 
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Graph #2: 
 


 
 
Note that injection makes vz fuller, and the flow rate increases with increased injection, with a maximum Q 
occurring as ri  0.  Suction retards the velocity profile, and there is an inner radius for which the flow 
rate will be a maximum. 
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Chapter 7 
Study Problems Solutions 


 
 


1. An inviscid, two-dimensional flow field is given by jxy2ixV 2 ˆˆ 



.  Assuming that all values 
are dimensionless, determine: 


 
 a) If this an incompressible flow; if so, let  = 1(dimensionless); 
 


Here, xy2v  and   xu 2   
An incompressible two-dimensional flow must satisfy the reduced two-dimensional 
continuity equation of the form: 
 


0
y
v


x
u














   Here, 0x2x2


y
v


x
u














, so the flow is incompressible. 


 
 b) The vorticity for the flow field; 
 


The vorticity for this flow is   y20y2k
y
u


x
vkz 
























 ˆˆ


  


So the flow is rotational, and has vorticity 
 
 c) The equation for a streamline passing through a point 1 at x,y = 1,1; 


 
0vdxudyrdV 



     along a streamline. 


 


x
y2


x
xy2


u
v


dx
dy


2 



  


 
Separating variables and integrating gives: 
 


 
x


dx2
y


dy
 


 
Cx2y lnlnln  , so that  


 
Cyx2  , where C  is a constant.  For x,y = 1,1, C = 1, so the streamline is given by: 


 
1yx2    


 
 d) The value of y at a point 2 lying on the streamline of part c at x = 2; 


 
From our streamline, the value of y for x = 2 is given by: 
 


4
1


x
1y 2   on the streamline when x = 2. 
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 e) If the pressure at point 1, P1, is zero, determine the value of the pressure at point 2, P2; 
 
Applying the steady flow Bernoulli equation, Eq. 7.11, along an inviscid streamline gives: 
 


ghV
2
1P 2 



=constant 


 
For calculation of the pressure difference from point 1 to 2, we can write: 
 


2
11


2
22 V


2
PV


2
P 






  


Or 


 2
2


2
112 VV


2
PP 



  


 
Noting that 222 vuVVV 



, we have: 


 


            6441641
2
1yx4xyx4x


2
10P 16


1
2


224
1


224
2   


 
 f) Using point 1 in part e), could you determine the value of pressure at a point x,y = 2,2?  If  
  you can, determine the pressure; if you can't, explain why you can't. 
 


We can't determine the pressure since the streamline found in part d) does not pass through  
point 1, so we can't follow a streamline.  And the flow is rotational, so we can't use the  
irrotational form of Bernoulli's equation. 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 


neglect 
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2. Consider a liquid jet that flows vertically upward in a gravitational field, as shown below.  Assume the 


flow is uniform and inviscid.  Determine an expression for the change in the jet cross-section with distance 
y from the jet orifice.  What is the limiting height for this jet?  Why 


 
  


  
 
 
 
 
 
 
 
 
 
 
 
Here we apply the Bernoulli equation, assuming a steady flow.  
 


 0sd
t
Vyyg


2
VVpp 2


112


2
1


2
212 





















)(



 


 
If we let point 1 be at start of jet, and point 2 be some arbitrary point at height y, we can rewrite the 
equation as 
 


 0yyg
2


VVpp
0


2
0


2
0 









 )(  


 
However, since we have patm acting on all outside surfaces of the jet, the pressure within the jet must also 
be patm, and thus p = p o= patm.  Also, we note that yo=0, so the simplified equation becomes: 
 


 0gy
2


VV 2
0


2






 


 gy2VV 2
0   


 
Now, from the continuity equation, assuming uniform velocity at a cross-section, we have: 
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And substituting from our Bernoulli result for velocity, 
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Vo 


y 
Liquid Jet 


Ao 


g 


Assume 
1)  constant 
2) flow along streamline 
3) inviscid flow 
4) uniform velocity @ 1 & 2 
5) steady flow 
6) p=patm everywhere 
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patm patm =0 
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This broadening of a vertically exiting fluid stream is illustrated by the behavior of the flow from a garden 
hose pointed vertically upward.  The limiting height for the jet will of course be when V=0, which gives: 
 


 
g2


Vy
2
0  


 
Note that this solution breaks down as V0, since this would require A.  However, as with the flow 
from a garden hose, real flows break down and diverge from the inviscid solution well before reaching 
maximum height due to a combination of surface tension forces, and viscous interaction with the 
surrounding air. 
 
Note that if we were to invert this jet flow, so that it exits downward (and y is oriented downward as well, 
which changes the sign of the gravitational term), the result would be: 
 


 gy2VV 2
0     and    
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Here the velocity would increase continually, and the area would contract continually.  This is of course 
what we initially observe when we have a stream of water leaving a water faucet.   
 
However, as we all know by observation, this stream will generally behave according to this model only 
until the combination of surface tension and viscous interaction with the surrounding air causes the 
development of surface instabilities and the subsequent formation of droplets from the contracting stream 
of fluid. 
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3. Consider a liquid jet that falls vertically downward  in a gravitational field, as shown below.  Assume the 


flow is uniform and inviscid.  Determine an expression for the change in the jet cross-section with distance y 
from the jet orifice.   


  
 
 
 


 
 


 
 
 
 
 
 


Here we apply the Bernoulli equation, assuming a steady flow.  
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Here, we have –g, since g acts in the direction of the coordinate y (g was assumed to act in opposition to 
the vertical coordinate in the derivation of the Euler equation in section 7.1) 
 
If we let point 1 be at start of jet, and point 2 be some arbitrary point at height y, we can rewrite the 
equation as 
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However, since we have patm acting on all outside surfaces of the jet, the pressure within the jet must also 
be patm, and thus p = p o= patm.  Also, we note that yo= 0, so the simplified equation becomes: 
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 gy2VV 2
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Now, from the continuity equation, assuming uniform velocity at a cross-section, we have: 
 
 00AVVA 


 


 
V
AV


A 00  


And substituting from our Bernoulli result for velocity, 
  


Ao 
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g 
Liquid Jet 


Vo 
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patm patm =0 


Assume 
1)  constant 
2) flow along streamline 
3) inviscid flow 
4) uniform velocity @ 1 & 2 
5) steady flow 
6) p=patm everywhere 
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Our results indicate that the velocity would increase continually, and the area would continually contract.  
This is of course what we initially observe when we have a smooth stream of water leaving a water faucet.   
 
However, as we all know by observation, this stream will generally behave according to this model only 
until the combination of surface tension and viscous interaction with the surrounding air causes the 
development of surface instabilities and the subsequent formation of droplets from the contracting stream 
of fluid. 
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4. A home power washer generates water gage pressure of 3000 psi or 20.68 MPa.  If the nozzle of the 
power washer has an inlet diameter of 1 cm and an exit diameter of 1 mm, assume the flow through the 
nozzle is inviscid, and determine: (a) the water exit velocity, and (b) the flowrate in liters/minute. Note: 
Assume 20 C water; gage pressure is the pressure relative to atmospheric, and the exit pressure is 
atmospheric.  


 
 Since the nozzle will be short, we ignore vicous effects, and start with the Bernoulli equation, Eq. 7.11. 
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Since height changes will be minimal, we can rewrite the equation as: 


  2 2
2 1 1 2


2V V P P  



 


Assuming uniform flow in the nozzle, continuity gives: 
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AV A V A V V
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Substituting for V1 gives: 
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A 2V 1 P P
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2
6 6


2 2 2


2 4


3


N kg m m2 20 68x10 Pa 1 1 41 36x10
m Pa N s sV


998 0 9999kg 1mm998 1
m 10mm


. .


.





  
  
  
   


 


 


2
mV 203 58
s


.    Note, we could have neglected 1V , since 1 2V V . Neglecting 1V  would make 2V


only 0.005% larger.  If one accounts for viscosity, this calculated value of 2V  would be smaller, but 
only by a few %. 
 


The flowrate is given by      
2


2 3
6 2 3


m 1 1 m l s lQ VA 203 58 mm 10 60 9 59
s 4 10 mm m


. .
min min


   
      


   
 


About ½ the flowrate of an unrestricted garden hose. 
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5. The pump of a water jet cutter generates a gage pressure of 60,000 psi or 413.7 MPa.  If the nozzle of the 


water jet has an inlet diameter of 1 cm and an exit diameter of 1 mm, assume the flow through the nozzle 
is inviscid, and determine (a) the water exit velocity, and (b) the flowrate in liters/minute. Note: Assume 
20 C water; gage pressure is the pressure relative to atmospheric, and the exit pressure is atmospheric.
  


 
Since the nozzle will be short, we ignore vicous effects, and start with the Bernoulli equation, Eq. 7.11. 
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Since height changes will be minimal, we can rewrite the equation as: 


  2 2
2 1 1 2


2V V P P  



 


Assuming uniform flow in the nozzle, continuity gives: 


 2
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AV A V A V V
A


    


Substituting for V1 gives: 
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2
mV 910 6
s


.    Note that this velocity is about three times the speed of sound, so it is hypersonic!  


Also, we could have neglected 1V , since 1 2V V . Neglecting 1V  would make 2V only 0.005% 
larger.  .  If one accounts for viscosity, this calculated value of 2V  would be smaller, but only by a 
few %.  Additionally, at these high pressures, water is slightly compressible, which would actually 
increase the exit velocity slightly. 
 


The flowrate is given by      
2


2 3
6 2 3


m 1 1 m l s lQ VA 910 6 mm 10 60 42 9
s 4 10 mm m


. .
min min


   
      


   
 


Not an insignificant water flowrate. 
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6. An inviscid flow of constant density, , passes through a straight pipe of length L.  The pressure at the outlet 


of the pipe remains constant at P2=0.  Determine [in terms of V0, , L,  and t ] how the inlet pressure to the 
pipe (P1) must vary if the velocity in the pipe varies sinusoidally as V=Vo Sin(t). 
  
 
 
 
 
 
 
Apply the Bernoulli equation (unsteady): 
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From continuity, V1=V2, since the pipe area is constant.   
 
Thus, the equation reduces to: 
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 cos , thus: 
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And,  tLVP 01  cos  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 


P2=0 


1 2 


L 


P1(t) = ? V=Vo Sin(t) 


x 


Assumption 
1) Neglect gravity 
2) Uniform flow in pipe 
3) Stream line along CL 


1 =0 (continuity) =0  







Study Problems Solutions, Chapter 7 7-10 
 


 


 
7. An inviscid flow of constant density, , passes through a straight pipe of length L.  The pressure at the 


outlet of the pipe remains constant at P2=0.  Determine [in terms of Po, , L,  and t ] how the pipe 
velocity, V, must vary if the inlet pressure to the pipe varies sinusoidally as P1=Po Sin(t). Assume V = 0 
at t = 0. 
  
 
 
 
 
 
 
 
Apply the Bernoulli equation (unsteady): 
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From continuity, V1=V2, since the pipe area is constant.   
 
Thus, the equation reduces to: 
 


 
2 x L


o


1 x 0


P sin( t) V V Vds dx L
t t t








   
  


      


 


 oP sin( t)V
t L






 
 


 


 
V t


o


0 0


PdV sin( t)dt
L


 
   


 


    
t


o o


0


P PV cos( t) cos( t) cos(0)
L L


      
   


 


 


  oPV 1 cos( t)
L


  
 


 


 
 
 
 
 
 
 
 
 
 


= 0 (continuity) 


P2=0 


1 2 


L 


V(t) = ? P = Po Sin(t) 


x 


Assumption 
1) Neglect gravity 
2) Uniform flow in pipe 
3) Stream line along CL 


1 0 - PoSin(ωt)  







Study Problems Solutions, Chapter 7 7-11 
 


 


 
8. An inviscid flow of constant density, , passes through a straight pipe of length L. The pressure at the 


outlet of the pipe (P2) remains constant at P2=0, while the inlet pressure to the pipe (P1) varies as 
P1=P0(t/to) for 0  t  to, after which P1 = 0 = constant for t > to.  Assume V = 0 at t = 0. 


 
 


a) Determine an expression for the velocity through the pipe as a function of P0, , L, to and t.   
 
b) What is the maximum velocity (Vmax) achieved, and when in time is it reached? 
 
c) Plot V/Vmax vs. t/to from 0 < t < 2to. 


  
 
 
 
 
 
 
 
Apply the Bernoulli equation (unsteady): 
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From continuity, V1=V2, since the pipe area is constant.   
 
Thus, the equation reduces to: 
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dVLsd
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    since V(t) only 
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 Integrating gives:   C
Lt2
tP


V
0


2
0 



    but V=0 at t=0, thus C=0 


 Thus,   
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2
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Lt2
tP


tV



  


  
 The maximum velocity will come when t > t0, so: 
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tPV 00
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max     Note that the longer t0 is, the higher the final velocity 
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1 2 


L 


V(t)           ? 
P1=P0(t/to),  for 0   t to 
 
P1=0,  for  t  >  to 


P2=0,  for  t  0 
 


 = constant 


Assumptions 
1) Neglect gravity 
2) Uniform flow in pipe 
3) Stream line along CL 


1 = 0 (continuity) = 0  
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 For t > to, 1P dVL 0
dt


 



, since both P1 and P2 =0.  This gives 
dV 0
dt


 , which integrates 


 to V C constant  .  At t = to , 0 0P tV V
2 Lmax 



, C= 0 0P tV
2 Lmax 



. 


 Thus, for For t > to, V=Vmax 0 0P t
2 L
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9. An inviscid flow passes through a 2-D channel, followed by a 2-D channel, that undergoes an area change 


over the last half of the channel, as shown.  Each half of the channel is L long, and the exit area ratio of the 
end of the channel is given by exit area (W2) divided by the inlet area of the beginning of the channel (W1), 
such that AR=W2/W1.  The channel inlet velocity increases as V1=Vo(t/to) for 0 < t  to, after which 
V1=Vo=constant for t > to.   
 
 
 
 
 
 
 
 
 


Determine the pressure ratio, 
 


2V
2


1


PP


o


12
PC






 , as a function of time, t.  On a single graph, plot Cp for 


AR=2, 1, and 0.5, over the time period 0 < t < 2to.  For purposes of dimensional correctness in plotting the 
behavior, assume that to = 2L/Vo 
 
Briefly, explain what phenomena causes this unusual behavior, and what its implications are for start up 
flows. 


 
 
Here we apply the Bernoulli unsteady flow equation along a streamline passing along the center of the 
diffuser.  We assume that the velocity at any point is uniform across a cross section and that gravity effects 
can be neglected.  Thus: 
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From continuity, we can show that 
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Substituting into the Bernoulli equation gives: 
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We must break the unsteady integral into two parts, from 0  x  L, and L  x  2L, so that: 
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Here, we note that 
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Inserting this expression back into the Bernoulli equation, and solving for the pressure difference, we get: 
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Or in terms of Cp,  
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Substituting, 
0


0 V
L2t  , we get a final equation as: 


 


 
 


 























































1AR
AR1


AR
11


t
tC


22


0
p


ln
 


 
The following graph shows Cp plotted over the range 0 < t/to < 2, for AR=2, 1, and 0.75. Note that when 
AR = 1, we need to apply L’Hospital’s rule, which shows that Cp = -2 for 0 < t/to < 1. 
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Note that Cp is negative for t/to < 1 as P1 > P2 in order to overcome the inertia of the fluid.  This pressure 
difference is reduced for AR > 1  due to the pressure recovery by the diffuser, and increased for AR < 1 
due to the conversion of pressure to velocity by the nozzle.  After t/to = 1, when the velocity becomes 
suddenly steady, P1 < P2 as the diffuser “recovers” a portion on the momentum entering the diffuser, 
dependent upon the area of expansion; for the nozzle P1 > P2, so the pressure coefficient remains negative, 
but reaches a steady state value.  Note that acceleration of the fluid always requires an additional pressure 
drop to achieve the increase in local fluid velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 


-3


-2.5


-2


-1.5


-1


-0.5


0


0.5


1


0 0.5 1 1.5 2
C


p


t/to


Cp vs. t/to


AR=1
AR=0.75
AR=2







Study Problems Solutions, Chapter 7 7-16 
 


 


 
10.  Apply the unsteady Bernoulli equation to an inviscid fluid in a U-tube manometer of constant diameter 


as shown.  Assume that the manometer surface levels differ from the equilibrium level ho by an 
amount . The initial surface deflection at t = 0 is o, and the initial surface velocity is zero. Using the 
unsteady Bernoulli equation, obtain a differential equation for (t) and, solve for  in terms of the 
properties shown. Also, determine the interface velocity, V(t) in terms of parameters shown. 


 
 
 
 
 
 
 
 
 
 


  
 
Let the heights of the respective surfaces be  h1 = ho - , and h2 = ho + , and the total length of the fluid 
column in the manometer be  S = 2ho + L.   
 


Since the area of the manometer is constant, V1 = V2 always, and atmospheric pressure acts on both 
surface 1 and 2. Thus, we can write the unsteady Bernoulli equation as: 
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Now, we can write 
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 , and thus 2
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 .  Substituting into the reduced Bernoulli equation, 


which gives: 
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Or rearranging: 
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o = Initial deflection 
 
V = 0 is initial velocity 
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The general solution to this second-order, linear differential equation is: 
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Our equation for V(t) is: 
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The initial conditions for this problem are  = o and V = 0 at t = 0.  For V = 0 at t = 0: 
 


    0C0C1C0 121    and  t
S
g2C2 cos  


 
On the left side of the manometer shown (2),   = o at t = 0: 
 


  o22o C1C    
 
So, substituting oS 2h L  our final results are: 
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sin  
 


 ,  where the velocity is 


relative to the coordinate h. 
 
However, on the right side of the manometer, the velocity 2V will be in opposition to 1V , so 
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2g 2gV t
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sin  
 


   


 
Thus, the greater the length of the manometer is ( oS 2h L  ), the slower the oscillations and the 
lower the peak velocities will be.  Of course, in a real manometer fluid friction will quickly reduce 
both the amplitude and the velocity of the oscillations. 
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11. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  












 R


rVV 01 , and a portion outside the core (r  R) that has a velocity 









 r


RVV 02 .  The 


density of the flow is , and the pressure far away from the vortex center is P.   
 
Determine the following: 


 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  


Neglect any height changes. 
 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r to r=R 
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Now, we apply and integrate the equation from r=R to r=0 
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Combining, gives: 
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Where P0 is the minimum pressure, and occurs at the center of the vortex. 
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12. A circular vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  












 R


rVV 01 .  The portion outside the core (R  r  2R) has a velocity 









 R


r2VV 02 . The 


density of the flow is , and the pressure far away from the vortex center is P, including at r = 2R.   
 
Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  
Neglect any height changes. 


 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r = 2R to r = R 
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Now, we apply and integrate the equation from r=R to r=0 
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Combining, gives: 
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Where P0 is the minimum pressure, and occurs at the center of the vortex. 
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13. A circular vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  
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density of the flow is , and the pressure far away from the vortex center is P, including at r = 2R.   
 
Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , V0, and P.  


Neglect any height changes. 
 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r = 2R to r = R 
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Now, we apply and integrate the equation from r=R to r=0 
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Combining, gives: 
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Where P0 is the minimum pressure, and occurs at the center of the vortex. 
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14. A circular vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o 


for r  Ro, and  = 0 for r  R. 
 


   
 
 
 
 
 
 
 
 


If the velocity distribution is  ivV ˆ
 only, determine the following: 


 
a) The velocity distribution, v(r), in terms of o and r, for r  R (assume that v(0) = 0). 
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b) The velocity distribution, v(r), in terms of o, R, and r, for r  R. 
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c) The location of the minimum pressure, Pmin, and the value of that pressure in terms of , o, R and P, 


where P = P when r >> R.  Neglect any height changes. 
 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r to r=R 
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Now, we apply and integrate the equation from r = R to r = 0  
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Combining, gives: 
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Where P0 is the minimum pressure, and occurs at the center of the vortex.  
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Chapter 8 
 


Study Problems Solutions 
 


1. The stream function for an inviscid flow is given by  
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 Assume all properties are dimensionless and do the following: 
  
 a) plot the stream function = 1 for all y0 
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b) determine the velocity and vorticity components for the flow field 
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 The vorticity is given by:  
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 c) determine the pressure differences  21 PP   between P1 at (x,y) = (0,1) and P2 at  


 both (x,y)=(0.5,0.5) and (0,0.5); let  = 1‚ 
 


Since this is an irrotational flow, we can apply the Bernoulli between any two points.  So, 
between 1 and 2: 
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At point 2 for (x,y) = (0.5,0.5): 
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At point 2 for (x,y)=(0,0.5): 
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Thus, for the first point 2, we have: 
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At the second point 2, we have: 
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So, both pressure differences are the same. 
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2. If  kxjxziyV 22 ˆˆˆ 



, determine the circulation around a rectangle with vertices at (x, y, z)= 


(0, 0, 0), (3, 0, 0), (3, 0, 3) and (0, 0, 3) using both a line integral and an area integral. 
 
First, examine the line integral, integrated in a counter-clockwise direction (due to right-hand 
rule).  Note that to do this, we start at origin and integrate first along the z-axis, then around to x-
axis and back to the origin, so the direction of rotation is along the positive y-xis. 
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Now examine the area integral , where  
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Thus, both methods are consistent, as they should be. 
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3. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  
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rVV 01 , and a portion outside the core (r  R) that has a velocity 
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Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The circulation for, 
 


i) a circle of radius R. 
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 ii) a square of side dimensions 4R, with the vortex in the center of the square. 
 


Here, all the vorticity is within a circle of r = R, so the square will contain all the vorticity, 
and thus box = circle = 2RV0. 
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4. A circular vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
   
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  
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rVV 01 .  The portion outside the core (R  r  2R) has a velocity 
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Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The circulation for, 
 


i) a circle of radius R  
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ii) a square of side 4R, with the vortex in the center of the square 


 
Here, the vorticity of part 1 and part 2 cancels each other.  Note that the circulation, as given 
by, 0sdV
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, since the velocity at r = 2R is zero at edges of the square. 
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5. A circular vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
   
The vortex consists of a core of radius R, which is in solid body rotation with velocity  
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Determine the following: 
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The circulation for, 
 


i) a circle of radius r = 3R/2  
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By a line integral: 
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Or, by an area integral: 
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This is the same as the line integral, as it should be. 
 


ii) a square of side 4R, with the vortex is in the center of the square  
 


Note that the circulation, as given by, 0sdV
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, since the velocity at r = 2R is zero 


at edges of the square.  Here, the vorticity of part 1 and part 2 cancel each other.   
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6. A circular vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o 


for r  Ro, and  = 0 for r  R. 
 


   
 
 
 
 
 
 
 
 


If the velocity distribution is  ivV ˆ
 only, determine the following: 


a) The velocity distribution, v(r), in terms of o and r, for r  R (assume that v(0) = 0). 
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b) The velocity distribution, v(r), in terms of o, R, and r, for r  R. 
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c) The circulation for, 
 


i) a circle of radius R. 
 
By a line integral: 
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The result is the same, as it should be. 
 


ii) a square of side 3R, with the vortex in the center of the square. 
 
Here, all the vorticity is contained within the square, so answer is the same as part c.i, or:
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7. The velocity fields in a circulation preserving flow for two different vortices of radius R1 are 


given by: 
  vortex #1:   )*r*r(V117.2V 4


0  , 
   
  vortex #2:   )*r*r(V75.6V 32


0  , 
 
 where r*=r/R1.  Determine the pressure, vorticity and circulation as a function of  r* for each 


vortex for 0 < r* < 1  (let p = po at r*=1). On four separate graphs, comparatively plot the velocity 
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vortices vs r*, for 0 < r* < 1.  Which vortex has: The lowest pressure?  The highest circulation?  
The highest vorticity?  How do you explain these variations? 
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Pressure:  From Euler n-equation (steady and no height changes, and letting r=R) 
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Note that the pressure for vortex #1 is lower at center, since the vortex contains higher angular 
momentum than vortex #2 (note from profiles above).  Think of the pressure difference as 
reflecting the effects of centrifugal forces as proportional to the angular momentum change across 
the vortices. 
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While the vorticity in vortex #1 is a bit higher, the vorticity in #2 displays an interesting characteristic, 
in that it is zero at the center.  This is evidenced in the velocity profiles by the null change in v with 
radius at the center.   
 
Circulation:    sdVAd
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Vortex #2: 
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The circulation changes with the radius of the circuit considered (r*).  Since the circulation is the 
summation of the vorticity encompassed by the area of the circuit, circulation increases outward until 
the peak in the velocity for each vortex, after which vorticity becomes negative, and thus circulation 
decreases.  Both of the vortices have a total circulation of zero, since the velocity at r* = 1 is zero for 
both, which indicates that the total circulation encompassed within the vortex is a NET zero—as much 
positive as negative vorticity is encompassed by each. 
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8. A solid rod of radius R rotates steadily in an infinite fluid.  The surface velocity (v) of the rotating rod is 


Vo at r = R and v = 0 for r  .   
 


Determine: 
 
a) The velocity of the fluid surrounding the rod, if the fluid is fully developed at steady state: 
  


Simplifying the Navier-Stokes equation in radial coordinates for this flow gives: 
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       (Eq. 6.65a) 


 
With boundary conditions: 
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The general solution of Eq. 6.6.5a is: 
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B.C. 2) gives: 
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B.C. 1) gives: 
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b) The circulation C  at r = 2R and r = 100R, using a line integral of the velocity. 
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So the circulation is constant for any radius 
 


c) The vorticity  within the fluid at steady state. 
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d) The circulation A within the fluid by integrating the vorticity of part c) over the area encompassed 
from  rR . 
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Explain how parts b) and d) can both be correct. 


 
Part b) contains all of the rotation inside of a radius, which includse both the fluid and the rod.  The 
rod contributes a circulation of   0VR2  due to its solid body rotation.  The fluid is irrotational, and 
thus contributes nothing to the line integral and the area integral (which does not include the rod).  
Here     00rodfluidC VR2VR20sdV  



. 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 8 8-19 
 


 


 
9. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  












 R


rVV 01 , and a portion outside the core (r  R) that has a velocity 









 r


RVV 02 .  The 


density of the flow is , and the pressure far away from the vortex center is P.   
 
Determine the following:  
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The circulation for, 
 


 i) a circle of radius R, using both an area integral of vorticity and a line integral of velocity. 
 


Here,   0


2
0


A


Rr


0r


2


0


0 RV2
2


R2
R
V2rdrd


R
V2Ad 



































   















 


 


  


r R 


 


0 


R 


P 


  







Study Problems Solutions, Chapter 8 8-20 
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 ii) a square of side dimensions 4R, with the vortex in the center of the square. 
 


Here, all the vorticity is in a circle of r=R, so the square will contain all the vorticity, and 
thus box=circle=2RV0. 


 
c) The value of the pressure at the center of the vortex, Po, in terms of , V0, and P.  Neglect any 


height changes. 
 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r to r=R 
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Now, we apply and integrate the equation from r=R to r=0 
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Combining, gives: 
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Where P0 is the minimum pressure, and occurs at the center of the vortex. 
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This combined velocity profile exists at the beginning and end of a vortex tube in this inviscid flow, 
where R is the radius at any cross section of the tube (i.e. the tube contains only the solid body portion 
of the vortex, 1V , and the flow outside the solid body rotation is the same as 2V


above).  If the 
center of the vortex tube is a streamline along the vortex axis, the beginning and end radii of the vortex 
tube are Ra and Rb, and Rb = Ra/2 (with corresponding velocities at the edge of the stream tube of a0V  


and b0V ), will fluid flow along the axis of the vortex tube, and if so, which way and why?   
 
Extra credit:  If the velocity along the streamline at a is 0VSa  , determine the velocity at b, SbV , in 


terms of a0V . 
 
 
 


 
 
 
 


 
Since circulation is conserved along a vortex tube, from the result of part b) we have that : 
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From part c) we have that on the centerline at the two radii, the pressure will be: 
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So,   2
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Since b0a0 PP  , this means that flow will be from a to b 
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Solving for SbV : 
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10. A circular combined Rankine vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
 
The vortex consists of a core of radius R, which is in solid body rotation with velocity  












 R


rVV 01 , and a portion outside the core (r  R) that has a velocity 









 r


RVV 02 .  The 


density of the flow is , and the pressure far away from the vortex center is P.   
 
Determine the following:  
 
a) The vorticity for the entire flow field, as a function of r.  Plot or make a nice labeled sketch of  


vs. r/R. 
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b) The circulation for, 
 


 i) a circle of radius R, using both an area integral of vorticity and a line integral of velocity. 
 


Here,   0
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 ii) a square of side dimensions 4R, with the vortex in the center of the square. 
 


Here, all the vorticity is in a circle of r=R, so the square will contain all the vorticity, and 
thus box=circle=2RV0. 


 
c) The value of the pressure at the center of the vortex, Po, in terms of , V0, and P.  Neglect any 


height changes. 
 
Since the flow is radially symmetric and inviscid, we use Euler’s n-equation 
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here nr and Rr (r is the radius of curvature), so we can write equation as: 
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Now, we apply and integrate the equation from r to r=R 
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Now, we apply and integrate the equation from r=R to r=0 
 


 
2
V


2
r


R
V


rdr
R
V


dr
R
r


r
V


dP
2
0


0


R


2


2


2
0


0


R
2


2
0


20r


Rr


2
0


PP


PP


)


R































 














 


 


 
2
VPP


2
VPP


2
0


R0


2
0


R0







  


 
Combining, gives: 
 


 2
0


2
0


2
0


2
0


R0 VP
2
V


2
VP


2
VPP 











   


 
Where P0 is the minimum pressure, and occurs at the center of the vortex. 
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This combined velocity profile exists at the beginning and end of a vortex tube in this inviscid flow, 
where R is the radius at any cross section of the tube (i.e. the tube contains only the solid body portion of 
the vortex, 1V , and the flow outside the solid body rotation is the same as 2V


above).  If the center of 
the vortex tube is a streamline along the vortex axis, the beginning and end radii of the vortex tube are Ra 
and Rb, and Rb = 2Ra (with corresponding velocities at the edge of the stream tube of a0V  and b0V ), will 
fluid flow along the axis of the vortex tube, and if so, which way and why?   
 
Extra credit:  If the velocity on the streamline at b is SbV 0 , determine the velocity at a, SaV , in terms 
of a0V . 
 
 
 


 
 
 
 


 
 
Since circulation is conserved along a vortex tube, from the result of part b) we have that : 
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From part c) we have that on the centerline at the two radii, the pressure will be: 
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Since 0a 0bP P , this means that flow will be from b to a 
 
Extra Credit:  along a streamline, Bernoulli gives. 
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Solving for SaV : 
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Chapter 9 


 
Study Problems Solutions 


 
1. The stream function for an inviscid flow is given by   tytxV)t,y,x( 0  , where Vo is a 


constant =1.   
 


a) Show that  represents a potential flow solution. 
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 continuity (constant density): Irrotationality: 
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 Thus, conditions for a potential flow are satisfied. 
 
b) Determine the corresponding form of (x, y, t) [note: let =0 at x,y = 0,0].  
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By comparison, 
 


  Ctyx
2


yxVCyt
2
yxt


2
xV


22


0


22


0 

























  


Since 0C0,0y,x@0   


  













 tyx


2
yxV)t,y,x(


22


0


  
c) Employ  to help determine a general expression for the pressure difference, P2-P1, between any 


two points in the flow field, (x1, y1) and (x2, y2).   
 


Applying the unsteady Bernoulli equation, 
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Neglecting height changes, and inserting 222 vuV  , and  yxV
t 0 



 , we have: 
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simplifying gives, 
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d) Determine the non-dimensional pressure difference (P2-P1)/Vo


2  between: 
 Case #1: (x1, y1)=(0, 0) and (x2, y2)=(1, 0); and 
 Case #2: (x1, y1)=(0,0) and (x2, y2)=(0,1). 
 
Here, for 1V0   
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Case #1: 
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Case #2 
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e) Plot (P2-P1)/ Vo


2 vs. t for both cases on the same graph for 0 < t < 2.  
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f) Plot the streamline and the potential lines passing through (x, y)=(1,1) at times t=0 and t=1 (plot 


each time on separate graphs); plot over the region 0 < x < 2 and 0 < y < 2.   What is 
characteristic about the behavior of the streamline and potential lines in these two graphs? 
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At t=0: 
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So equations for constant stream and potential function are: 
 


 1xy   0
2


yx 22






 


 
x
1y   xyxy 22   


-3.5


-3


-2.5


-2


-1.5


-1


-0.5


0


0.5


0 0.5 1 1.5 2


C
p


time


Cp vs. t


Cp#1


Cp#2







Study Problems Solutions, Chapter 9 9-4 
 


 


 
At t=1: 
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The streamlines and potential lines are normal to each other at the respective points 
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2. The stream function for an inviscid flow is given by   tytxV)t,y,x( 0  , where Vo = 1.   
 


a) Show that  represents a potential flow solution. 
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 Thus, conditions for a potential flow are satisfied. 
 
b) Determine the corresponding form of (x, y, t) [note: let =0 at x,y = 0,0].  
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c) Employ  to help determine a general expression for the pressure difference, P2-P1, between any 
two points in the flow field, (x1, y1) and (x2, y2).   


 
Applying the unsteady Bernoulli equation, 
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Neglecting height changes, and inserting 222 vuV  , and  yxV
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simplifying gives, 
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d) Determine the non-dimensional pressure difference (P2-P1)/Vo


2  between: 
 
 Case #1: (x1, y1)=(0, 0) and (x2, y2)=(1, 0); and 
 Case #2: (x1, y1)=(0,0) and (x2, y2)=(0,1). 
 
Here, for 1V0  : 
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Case #1: 
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Case #2 
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f) Plot (P2-P1)/ Vo


2 vs. t for both cases on the same graph for 0<t<2.  


  
  
g) Plot the streamline and the potential lines passing through (x, y) = (1,1) at times t = 0 and t = 1 


(plot each time on separate graphs); plot over the region 0 < x < 2 and 0 < y < 2.   What is 
characteristic about the behavior of the streamline and potential lines in these two graphs? 
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The streamlines and potential lines are normal to each other at the respective points. 
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3.  In the section 9.8.1 example, it was shown that one could represent the flow around a cylinder by 


superposition of a uniform flow and a doublet, to give the complex potential function as: 
 


 
z
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Here the uniform velocity approaches from the left, where x < 0.  The stream function in Cartesian 
variables is: 


 


 
 















 22 yx


sUy  


Assume a doublet strength s = U, and:
  
a. Determine the velocity field components u and v for this stream function in terms of x and y: 


b. Determine the pressure coefficient 2
2
1p U


PPC




   as a function of x, y variables (don't try to 


simplify—it's messy).   
 
c.  Simplify your expression for Cp to give  xfCp  along the  = 0 streamline (y=0), for x < -R 
(the stagnation point of the cylinder).  
 
d. Using your result from part c, determine the non-dimensional pressure gradient coefficient, 
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  along the  = 0 streamline (y=0), for x < -R (the stagnation point of the 


cylinder). 
 
e. On one graph, plot u/U, Cp, and dCp/dx vs. x along the  = 0 streamline (y=0), for -4R < x < -R 
(use Eq. 9.53 to establish the value of R). 
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For s = U, 
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And from Bernoulli, and equation 9.55, we have: 
 


2
2
12


2
1 UPVP       Where P = P, and V = U for x << -R. 


 


Here, 
   


2


222


2


2


22


2


22
2222


yx
xy2U


yx
y21


yx
11UvuVVV


























































 


Or  


    










































































2


222


2


22


2


22
22


yx
xy2


yx
y21


yx
11UV  


So, 


    







































































 


2


222


2


22


2


22
2


2
12


2
12


2
12


2
1


yx
xy2


yx
y21


yx
11UUVUPP  


And Cp is: 
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Pretty messy.  However, along the  = 0 streamline, y = 0, x < -R, so our expression simplifies  
to: 
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Along the  = 0 streamline, y = 0,  x < R, the pressure gradient coefficient is obtained by  
differentiating Cp, which gives: 
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Note that along the  = 0 streamline, y = 0,  x < R, we only have a u velocity (v = 0),  
which gives u/U as: 
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Plots of u/U, Cp, and dCp/dx vs. x from x = - 4R to x = - R (the stagnation point of  
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cylinder), where U = 1, s = 1, and from Eq. 9.53, 1
U
sR  , so our plot is from 


 x = - 4 to x = - 1. 
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4.  The flow field near a tornado can be approximated as the superposition of a sink and a irrotational 


vortex, with the steam function given by: 
 


r
22


Q ln








  


 
For Q = -2 and  = 2, determine the velocities in both radial and Cartesian coordinates, and an 
expression for the pressure, where P = Patm for r .  Create a plot of the streamlines that pass through 
(x,y) = (2,0), (0,2), (-2,0), and (0,-2).  Show the streamlines in the region -2 < x < 2, -2 < y < 2.   
 
Is this a realistic approximation as r  0?  Justify your answer. 


 


For Q = -2 and  = 2,   22 yx
x
yr 









 lnarctanln  
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Bernoulli gives: 
 


2
r2


1
atm


2
2
1 VPVP   


 


Using the radial components of velocity, we have 222
22


r
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r
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r
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r
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This is not a realistic expression for pressure as r  0, since the pressure would become negative.  In a 
tornado, the flow field in the center, as r  0, becomes a solid body rotation, such that the pressure at 
the cent is low, but cannot be negative. 
 
The Steamlines that pass through (x,y) = (2,0), (0,2), (-2,0), and (0,-2), can be determined using 
 


 22 yx
x
yr 









 lnarctanln , and solving for the value of each streamline passing 


through the specified points (-.0.693, -2.264, -3.835, and -5.406, respectively), then solving for the x, y 
locations.  This is most easily done, by specifying a sequence of evenly spaced  values, solving for r, 
then solving for x and y using x = rcos() and y = rsin(). 
 


 
 


Note that the streamlines spiral into the center in a nice symmetric manner. 
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5. A point vortex with circulation strength  =+A is located at x = 0, y = 1; a similar point vortex with  


 = -A is located at x = 0, y = -1.  Determine the velocity field V  uˆ i + v̂  j  and the pressure coefficient 


Cp along the x-axis, where 
2


2
1


p
A
pC


















  .  Plot Cp for y=0,  -3 < x < 3.   Let p = 0 at x = 0, y = 0.   


A point vortex located at z=zo has the complex potential function  0zzln
2


i 




 .  For this 


problem, we have one vortex located at zo=i (x=0, y=1) with  =A, and another at zo=-i (x=0, y=-1) with 
 =-A.  Thus the complex potential function for the combination is: 


    izln
2
Aiizln


2
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The complex velocity for this function is: 
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By identification, we have: 
 


  
 


 
 




























 2222 1yx


1y
1yx


1y
2
Au  


 


 
   























 2222 1yx


x
1yx


x
2
Av  


 
Along y=0 (x-axis), we have: 
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The pressure is found from Bernoulli equation, letting p = po =  0 at x,y = 0,0 
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6.  Uniform flow U approaching from the left encounters a sink of strength Q = - A, located at x,y = 0,0.  


This roughly approximates the behavior of a flow approaching a drain.  The complex potential function 


for this superposition is given by   z
2
AUzz ln



 .   


 
 
 


 
 
 


 
 
Determine the following: 


 
a) The stream function, , in terms of both r,  and x, y; 
 


Expanding  using  ierz  we have: 
 


  
































 i


2
AUrir
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AUrz


2
AUzz sinlncosln  


 







2
AUr sin  


 
Expanding using yixz   you get: 
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AUyiyx


2
AUxz
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AUzz 122 tanlnln  
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AUy 1tan  


 
b) The velocities u and v in terms of x, y, and r, ; 
 


Here, the complex velocity components are given by: 


 ivuW
z
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2
AU


dz
d










  


and   


iyxzwhere
z
1


2
AUivuW 



  


 
The respective Cartesian velocity components can be shown, in both Cartesian  
and cylindrical variables, to be: 
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c) The location of a stagnation point in the flow, if there is one; 
A stagnation point must occur where the complex velocity, W (and so also W ), is  
zero. Thus, setting W to zero, we have: 










U2
Ayixz0


z
1


2
AUW  


Thus, 0y
U2
Ax stagstag 



 , , or stag stag
Ar 0


2U
,  



 is the location of the stagnation point  


for the body.   
 


Now, let U = 1and A = 1 and make a nice engineering graph of: 
 
d) The streamlines  = 0, -0.05, and -0.30 all on one graph.  Show all streamlines for the region  


-0.6 < x < 0.3 and 0 < y < 0.6 only.  Note:  to plot each streamline, you will have to determine r = f(), 
calculate r for a series of  values, then determine the corresponding series of x and y locations. 
 


Note that the bounding value of s , which passes through the stagnation point, is  
given by: 


00
2
A0Urs 



 )()(sin  


Now, the location of the points along a streamline is given by setting  = o, a constant,  
and: 













sin
)(sin)(


2
2r


2
1r1 o


o  


 
For a given o, select a series of 0 <  <, solve for the respective r values, then the  
respective x and y values using x=rcos() and y = rsin(), and plot respective lines of  
constant o. 
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7 .   Consider a vertical wall with an impinging jet, as modeled by the complex potential function 


(z)=(A/2)z2, with A= -2 (flow right-to-left).  Determine the following, considering all quantities 
dimensionless (simplify all answers): 


 
a) Expressions for the stream function  in terms of both x, y and r,; 


  222 zz
2
2z


2
Az 



  


 For z=x+iy,           xy2ixyyxy2ixiyxz 22222
  


Thus,  xy2    and    22 xy   


 For  irez ,        2sini2cosrerz 22i2  


Thus,   2sinr2    and     2cosr2  


b) The velocity components vx, vy (in x, y) and vr, v (in r,); 


 x2
y


v x 




  y2


x
v y 






  


 and  


   




 2cosr22cos2r


r
1v r  






 2sinr2


r
v  


c) The location of the stagnation point for x0, and the value of  which passes through 
this stagnation point; 


 
At the stagnation point      vx=0 and vy=0       x=0, y=0   xy2 =0 


     vr=0 and v=0       r=0   2sinr2  = 0 
 


d) An expression for P-Ps as a function of r,, where Ps is the stagnation pressure (let the fluid density 
be =2)
 
Bernoulli’s equation along a streamline (=0), =constant, steady flow, and no height changes. 


 s
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s
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2
1 pVpVp   since Vs=0 
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1


s Vpp        = 2,  and    222222
r


2 r42sin2cosr4vvV    


 2
s r4pp   


e) Graphs on x, y axes of: 
i) Streamlines = 0 and -2 for the region 3 > x > 0 and 3 > y > 0; 


 
 xy2 =0        x=0, 0 < y <   and  y=0, 0 < x <    
 


 xy2 =-2        xy=1      
x
1y     
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ii) The pressure P-Ps and the pressure gradient dP/dx along y=0, 3>x>0; 
 


 
22


s x4r4pp     along y=0, x>0 
 


x8
dx
dp


  along y=0, x>0 


 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


iii) A line of constant pressure p-ps= -16 for x>0; 
 
 16r4pp 2
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 or since 4yxyxr 2222     (x>0) 
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8. Consider a vertical wall with an impinging jet, as modeled by the complex potential function (z) = 


(A/2)z2, with A= -2 (flow right-to-left) [problem 7, above].  Now, a source of strength Q = 4 is 
located at the origin (x, y = 0, 0).  Use superposition to simulate the effect of the source on the 
vertical wall with an impinging jet modeled in problem 7 above.  For this modified flow, specify 
the appropriate complex potential function and determine the following:  


 
a) Expressions for the stream function  in terms of both x, y and r,; 


  zln2zzln
2
Qzz 22 



   


 For z=x+iy,       )iyxln(2iyxz 2
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    and     2222 yxln2xy   


 For  irez ,     )reln(2erz i2i2    


     2irln22sini2cosr2  


      2sinr2irln22cosr 22  


Thus,   2sinr2 2    and    rln22cosr2   


b) The velocity components vx, vy (in x, y) and vr, v (in r,); 
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 2cosr2
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r
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c) The location of the stagnation point for x0, and the value of  which passes through this 
stagnation point; 


 At the stagnation point      vx=0 and vy=0      01
yx


1
22 



 and 2y=0 


  Thus, 0y,1x1yx,0y 22  (for x>0) 
 Also, for stagnation point      vr=0 and v=0      12cosr2   and 02sin   


  Thus, 
2


,
2


,0 




  (for x>0),  


  and   10cosr2cosr 22     1r1r2    (for x>0)  
 
Thus, stagnation point is at x=1, y=0            00120arctan2   


  And r=1,  =0          00sinr02 2   
 Therefore,   = 0 is stagnation streamline. 
  


d) An expression for P-Ps as a function of r,, where Ps is the stagnation pressure (let the fluid density be 
=2); 


 Again, Bernoulli’s equation along the streamline (=0), =constant, steady flow, and no height 
 changes. 
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e) Graphs on x, y axes of 
 


i) Streamlines  =  0 and -2 for the region 3 > x > 0 and 3 > y > 0; 
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ii) The pressure P-Ps and the pressure gradient dP/dx along y = 0, 3 > x > 0; 
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 iii) A line of constant pressure P-Ps= -16 for x>0; 
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This turns out to be an awkward fourth order equation for r=f().  So let’s examine using 
Cartesian expression for pressure.  
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 x21xy 2        x21xy 2     and   x21xy 2   


 
 
The constant pressure line only applies for the region to the right of the =0 streamline, since 
that is the only valid region simulating a flow behavior.  Thus, the intersection of the constant 
pressure line is roughly at y  1.4, as opposed to y = 2 for the impinging flow without a 
source.  The implication is that pressure changes occur more rapidly when the source is added 
to the simulation, and thus stronger pressure gradients are experienced. 
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9 .   Consider a flow over a 90° step (a convex, 270° corner), as modeled by the complex potential function 


  3
2


z
2
A3z  , with A= -2 (flow right-to-left).   


 
 
 
 
 
 
 


 


Determine the following, considering all quantities dimensionless (simplify all answers): 


a) An expressions for the stream function  in terms of r,; 
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b)  Expressions for the Cartesian velocities u and v in terms of r,; 
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Thus, the Cartesian velocity components (in terms of cylindrical variables) are: 
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 \ 
c)  An expression for P-P in terms of r,, where P is where r  ; 


Using Bernoulli, we have: 
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Note:  A<0, as shown 
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d)  Create a nice engineering plot of the streamlines  = 0, -1, and -2 all on one graph.  Show all 
streamlines for x < 10 and y > -10 only.  Note:  to plot each streamline, you will have to determine r 
= f(), calculate r for a series of  values, then determine the corresponding series of x and y 
locations. 


The streamline equation is:  
3
2r3


3
2r


2
A3 3


2
3
2


sinsin  for A = -2. 


Solving for r =f(), assuming = constant, we get: 


2
3


3
23


r































sin
 


Using this equation, for a specified  value, we select a series of  values for  
2
30   


(30 increments works), then solve for the corresponding r values (note that r for  = 0).   


To plot, we determine the corresponding x and y location using  sincos ryandrx , 


and then plot y vs. x values for the specified values of  = constant. 
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e)  Create a second plot of P-P vs. x along the streamline  = 0 from x = 10 to x = 0.2.  Let  = 1/2.  


Why not plot the pressure at x = 0? 


For the pressure, we use the equation:  
3
2


3
2


2


r


1


r2


APP 



 
  for A = -2 and  = ½.  Note for the  


streamline  = 0 that x = r for x = 10 to x = 0.2. 


 
The pressure at x = 0 is not plotted, because it becomes negative infinity, which would exceed a  
reasonable value on the pressure plot. 
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10. Consider a circular cylinder of radius 1 meter and density of 500 kg/m3, which is moved back 


and forth within a vat of inviscid water ( = 1000 kg/m3) at a velocity U = U0sin(t), where 
U0 = 2 m/s and  = /2 s-1.  Determine or show the following: 


 
a) An expression for the displacement (in m) of the cylinder (call it x) as a function of 


time [let x = 0 at t = 1]. 


)sin( tU
dt
dxU 0   


Integrating for x: 


0Ux t C t 1 0 0 C C 0
2


cos @ , 
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m2U 4sx t t t meters
2 2 2s


2


cos cos cos



       
                


 


x 1 27 t meters
2


. cos  
   


 
 


b) An expression for the pressure difference ( in N/m2)between the leading and trailing 
edge of the cylinder (Ple - Pte)as a function of time. 
Starting with Eq. 9.126, we have: 
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At the leading edge, r=R, u=U, v=0, and =0, giving: 
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At the trailing edge, r = R, u = U, v = 0, and  = , giving: 
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c) The force (per unit length of cylinder, in N/m) as a function of time that must be 
applied to the cylinder to maintain the velocity [hint: you must include both the 
cylinder mass and the added mass in the calculation]. 


 
 Letting L be the length of cylinder, we can write 
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dt
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 coscos/  


Note that the "drag" on the cylinder would be -Force/L applied by to the cylinder. 


 
d) Three separate graphs on one sheet of: (1) the cylinder displacement, x, (2) (Ple - Pte), 


and (3) force, all for 0 < t < 4. 
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11. Consider a circular cylinder of radius 1 meter and density of 1000 kg/m3, which is moved back and 


forth within a vat of inviscid water ( = 1000 kg/m3) by a time-dependent force (per unit length of 
cylinder)  F = F0sin(t), where F0 = 10,000 N/m and  = /2 s-1.  Determine or show the following: 


 
a) An expression for the velocity (in m/s) of the cylinder as a function of time [let U = 0 at t = 


1]. 
 
 Letting L be the length of cylinder, we can write 


   2 2
cylinder added water cylinder


dU dUForce M M R L R L
dt dt


        


  2
water cylinder


dUF R L
dt


     


   
 


 
0


2 2 2
water cylinder water cylinder water cylinder


F
F sin tdU F L


dt R L R R



  
        


 


 


    
2


2
3


N10,000 sin t
dU mm 2 1.592sin tkgdt 2 s1000 1000 1 m


m


 
         


  


 


2


2 m mU s 1.592cos t C 1.013cos t C
2 s 2 s
      


          
     


 


At t=1, U=0, so 
m0 1.013cos C 0 C C 0


2 s
 


       
 


 


 So,  


 
mU 1.013cos t


2 s
 


   
 


 


b) An expression for the displacement (in m) of the cylinder (call it x) as a function of time [let 
x = 0 at t = 0]. 


 
dx U 1.013cos t
dt 2


 
    


 
 


 
2x 1.013sin t m C 0.6449sin t m C


2 2
      


          
     


 


 At t = 0, x = 0 
  0 0.6449sin 0 m C 0 C C 0        


x 0.6449sin t m
2
 


   
 


 


c) An expression for the pressure difference ( in N/m2)between the leading and trailing edge of 
the cylinder (Ple - Pte)as a function of time. 


 
dt
dU


r
RU


2
1PvUu


2
1P 2


2022








cos  


At the leading edge, r = R, u = U, v = 0, and  = 0, giving: 
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2


2 2le 0


2
le 0


P P1 1 R dUU U 0 U cos(0)
2 2 R dt


1 dUP P U R
2 dt


     
 


   


 


At the trailing edge, r = R, u = U, v = 0, and  = , giving: 


 
2


2 2te 0


2
te 0


P P1 1 R dUU U 0 U cos( )
2 2 R dt


1 dUP P U R
2 dt


      
 


   


 


So, 


   


2 2
le te 0 0


le te 3 2 2


1 dU 1 dUP P P U R P U R
2 dt 2 dt


dU kg m NP P 2 R 2 1000 1 m 1.592sin t 3184cos t
dt m 2 s 2 m


   
           


   


      
          


    


2tele m
Nt


2
6283PP 










 
 cos  


 
d) Three separate graphs on one sheet of: (1) the cylinder displacement, velocity, U, (2) 


displacement, x, and (3) (Ple - Pte), all for 0 < t < 4. 
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12. A marble of density 2.5 gm/cm3 is dropped into a vat of inviscid fluid the density of water, 1 


gm/cm3.  If gravity is constant at 2


mg 9 81
s


.  (acting downward), what is the acceleration of 


the marble as it descends in the inviscid fluid?  Take into account the buoyancy of the fluid, 


and the added mass of a sphere, 3
added R


3
2m  .  If the initial height and velocity of the 


marble are zero, how much less would it descend (in meters) in 3 seconds due to the added 
mass? 


 
Using Newton’s 2nd Law 


 gravity buoyancy marble add massF ma F F m m a       


   marble fluid marble add massm m g m m a    


3 3 3 3
marble fluid fluid marble


4 4 2 4 dUR R g R R
3 3 3 3 dt


   
             


   
 


 marble fluid marble fluid
1 dUg
2 dt


 
      


 
 


 
Solving for acceleration 
 


   


 
marble fluid marble fluid


marble fluid
marble fluid


g 2 gdU
1dt 2
2


   
 


  
   
 


 


For marble fluid2.5    


 


 


2 2.5 1 gdU 1 g
dt 5 1 2



 



 


So, for g = 9.81 m/s2, 2


dU m4.905
dt s


  


For U = 0 at y = 0, integrating dU
dt


 twice, we get: 


2


2


m ty 4.905
s 2


 
  
 


 


So, in 3seconds the marble will fall to: 


 
2


2


3smy 4.905 22.07 m
s 2


 
  
 


 


If there is no added mass, our equation for 
dU
dt


 is (since we still have buoyancy): 


 


 


 


 
marble fluid


2
marble


g 2.5 1 gdU m0.6g 5.886
dt 2.5 s


  
   



 


 
2


2


3smy 5.886 26.49 m
s 2


 
  
 


, or 4.42 meter farther.  So, the marble descends about 


17% less due to added mass. 


 
g 


y 


buoyancy 


gravity mass of marble + 
added mass 
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13. A six cm diameter wooden rod (density of 0.5 gm/cm3) accelerates perpendicular to its length 
(sort of like rowing with the rod) through an inviscid fluid of density 2 gm/cm3.  A one-meter 
length of the rod is submerged in the fluid. If a constant force of 10 N is applied normal to the 
rod’s length, what will be the rod’s velocity after 4 seconds?  How far will the rod travel after 
4 seconds?  Assume x = 0 at t = 0. 
 


Letting R be the radius and L be the length of the rod, we can write 


   2 2
rod added fluid rod


dU dUForce M M R L R L
dt dt


        


  2
fluid rod


dUF R L
dt


     


  2
fluid rod


dU F
dt R L



  


 


   


        


2


2
2


3


kg m 1000 g10 N 1
dU ms N 1 kg 0.3537g cmdt s2 0.5 36 cm 1 m 100


cm m


  
 


  
 


 


 


U 0.3537t C   
At t=0, U = 0, so C = 0, and   


 U 0.3537t  
 


2


dx U 0.3537t
dt


tx 0.3537 C
2


 


 


 


At t = 0, x = 0, so C=0, and 
2


2tx 0.3537 0.1768t
2


   


Thus, at t = 4 seconds, 


 


 


mU 0.3537 4 1.415
s


x 0.1768 16 2.829m
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14. A 6 cm diameter wooden rod (density of 0.5 gm/cm3) accelerates perpendicular to its length (sort 


of like rowing with the rod) through an inviscid fluid of density 1 gm/cm3.  A one-meter length 
of the rod is submerged in the fluid. If the acceleration is 1 m/s2, determine the force applied 
normal to the rod’s length. What will be force on the rod after 1 second?  What is the force at 4 
seconds?  What % of the total force is due to the added mass? 


 
Letting R be the radius and L be the length of the rod, we can write 
 


   2 2
rod added fluid rod


dU dUForce M M R L R L
dt dt


        


  2
fluid rod


dUF R L
dt


     


          


 


2
3 2


2


2


g cm m 1 kgF 1 0.5 36 cm 1 m 100 1
cm m s 1000 g


kg m N s169.6 1 169.6 N
s kg m


 
    


 


 
 





 


Since the acceleration is a constant, the force is also a constant with time. 
 
The force due to the added mass is given by: 
 


2
added fluid


dUF R L
dt


    


So, the force due to the added mass is given by:           


 fluid
added total


fluid rod


1F F 169.6 N 113.1N
1 0.5



  


  
   


 


So the force required for added mass is 113.1N 2 66.6%
169.6 N 3


   of the total 


force on the rod. 
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Chapter 10 


 
Study Problems Solutions 


 
1. A combined Rankine vortex is present in an inviscid fluid, as shown.   


 
 
 
 
 
 
 
 
   
 The vortex consists of a core of radius R, which is in solid body rotation with velocity  


 









 R


rVV 01 , and a portion outside the core (rR) that has a velocity 









 r


RVV 02 .  The density of 


the flow is , and the pressure far away from the vortex center is P.   
 
 Determine the following: 
 


a) The vorticity,  for the entire flow field, as a function of r.  Plot a graph of R/Vo vs. r/R from 
0 < r/R < 2. 
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b) The circulation for, 
 


i) a circle of radius R. 
 


 Here,   0


2
0


A


Rr


0r


2


0


0 RV2
2


R2
R
V2rdrd


R
V2Ad 



































   















 


 


 Or,       0


2


0
0


C


RV2RdVsdV  







 


 
ii) a square of side dimensions 4R, with the vortex in the center of the square. 
 


Here, all the vorticity is in a circle of r=R, so the square will contain all the vorticity, and  
thus box=circle=2RV0. 


 
c) The value of D/Dt at r=R. 
 
 Since the fluid is inviscid, D/Dt=0 always.  It is a circulation preserving flow (Kelvin’s 


Theorem). 
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2. A vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where,  = o for r  Ro, 


and  = 0 for r  R. 
 


   
 
 
 
 
 
 
 
 
If the velocity distribution is  ivV ˆ


 only, determine the following: 
 
a) The velocity distribution, v(r), in terms of o and r, for r  R (assume that v(0) = 0). 
 


 














 


o
r


z
v


r
1


r
rv


r
1 constant 


  



 






r


0r
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v


0v


rdrrvd  


2
r


v
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rrv


o


2


o















 


  
b) The velocity distribution, v(r), in terms of o, R, and r, for r  R. 
 


 
0v


r
1


r
rv


r
1 r


z 











   


 
0


dr
rvd


  


r
Cv


Crv














 


At r = R from part a), 
2
RC


R
C


2
Rv


2
oo 






  


r2
Rv


2
o  
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vorticity distribution 


r 
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c) The circulation for, 
 


i) a circle of radius R. 
 


For circle    2
o


o
Rr


RR2
2
RRdv 








 




  


 
ii) a square of side 3R, with the vortex in the center of the square. 
 


Here, all the vorticity is contained within the square, so answer is the same as  
part c.i, or: 
 


2
o R  


 
d) The value of D/Dt at r=R. 
 
 Since the fluid is inviscid, D/Dt=0 always.  It is a circulation preserving flow (Kelvin’s 


Theorem). 
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3. A vortex in an inviscid fluid has the following vorticity distribution,  vs. r, where, 


o
r1
R


 
    


 
 for r    Ro, and  = 0 for r  R. 


 
   
 
 
 
 
 
 
 


 
If the velocity distribution is  ivV ˆ


 only, do the following: 
a)   Determine the velocity distribution, v



(r), in terms of o, R, and r, for r  R (assume that v



(0) = 0). 


 
  r


z o


rv v1 1 r1
r r r R



   


      
   


 


 
v r r 2


o o
v 0 r 0 r 0


r rd rv 1 rdr r dr
R R











  


  
       


   
    


2 3


o


2 2


o o 2


r rrv
2 3R


r r r rv R
2 3R 2R 3R








 
   


 


   
        


   


 


b)   Determine the velocity distribution, v

(r), in terms of o, R, and r, for r  R. 
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At r = R from part a) 
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2
o oR Rv


r6r 6
R





 
 


 
 
 


 


c)   Plot 
o


v
R




 vs. 


r
R


 for 
r0 2
R


   


 


For r  R,, 
2


o


v 1 r 1 r
R 2 R 3 R



    
     


      


      and         For r  R , 
o


v 1
rR 6
R


 
  


 
 


 


 
 


d)   Plot the non-dimensional circulation within a circle of radius r, 2
o2 R




 vs. 


r
R


 , for .
r0 2
R


  . 


For r  R,,   
2


2
o


2


2
o


r 1 r 1 rv rd 2 rv 2 R
R 2 R 3 R


r 1 r 1 r
2 R R 2 R 3 R


 


      
             


       


       
       


        



 


 
For r  R ,  


2
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2
o


r 1v rd 2 rv 2 R
rR 6
R


1
2 R 6
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e)   Explain what is happening to the circulation with increasing r, and why. 
 


The circulation increases with radius for r < R, because as the radius increases the amount 
of vorticity encompassed by a circle of radius r also increases.  For r > R the circulation 
will remain constant, because no additional circulation is encompassed, since the vorticity 
is zero for r > R. 
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4.  A vortex is present in an inviscid fluid, as shown.   
 
 
 
 
 
 
 
 
 
  
 The vortex consists of a core of radius R, which is in solid body rotation with velocity  


 












R
rVV 01 .  The portion outside the core (R  r  2R) has a velocity 














R
r2VV 02 .  The 


density of the flow is , and the pressure far away from the vortex center is P, including at r = 2R.   
 
 Determine the following: 
 


a) The vorticity for the entire flow field, as a function of r.  Plot a graph of R/Vo vs. r/R from 0 < 
r/R < 2. 
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b) The circulation for, 
 


i)  a circle of radius R  
 


Here,   0


2
0


A


Rr


0r


2


0


0 RV2
2


R2
R
V2rdrd


R
V2Ad 



































   















 


 


Or,       0


2


0
0


C


RV2RdVsdV  







 


 
ii) a square of side 4R, with the vortex in the center of the square 


 
Here, the vorticity of part 1 and part 2 cancels each other.  Note that the circulation, as given 
by, 0sdV


C


 



, since the velocity at r = 2R is zero at edges of the box. 


c) The value of D/Dt at r=R. 
 
 Since the fluid is inviscid, D/Dt=0 always.  It is a circulation preserving flow (Kelvin’s 


Theorem). 
 


d) A section of an inviscid vortex tube of length L with the velocity profile shown above, is 
stretched by acceleration of the fluid along the axis of the vortex tube to a length 4L, while 
retaining the same rotational velocity profile. If R = R1 and Vo = Vo1 for the tube of length L, 
and R = R2 and  Vo = Vo2 for the tube of length 4L, determine the value of R2 in terms of R1, 
and Vo2 in terms of Vo1 for the stretched tube of length 4L. 


 
 
 
 
 
 
 
 
 


 
The vortex tube section of length L contains a volume of fluid: 
 
 LR 2


1   
 
Since the stretched vortex tube of length 4L must contain the same volume of fluid, we 
have: 
 
 L4RLR 2


2
2
1   


 


Solving for R2 gives:  
2


RR
4


RR 1
2


2
12


2   


The circulation for a tube with boundaries at R=R1 is: 


 stretching of 
vortex tube 
 


L 


4L 


R1 R2 Vo1 Vo2 
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 111 R2Vo   
 
And since 21  , we have: 
 
 221121 R2VoR2Vo   
 


Solving for 2Vo  gives: 1
1


11


2


11
2 Vo2


2
R


RVo
R


RVoVo 












  


So, stretching the vortex tube by a factor of 4, decreases the radius by a factor of 2, and  
increases the maximum velocity by a factor of 2.  Would this increase or decrease the  
pressure on the centerline of the vortex tube?  (decrease!) 
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5. The velocity field for an Oseen line vortex is given by: 


 


  




























 t4


r1
r2


AV
2


exp   


  
 Let all parameters and variables be non-dimensional.  


  
a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine  at  


t = 0, t = R2/4, and t = . 
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t4
r1A2


t4
r1


2
A 22


expexp  


 


r = R        



























t4
R1A


2


exp   


  
 For:  t=0 A  
  t = R2/4    A632011A .exp   
  t =  0  
   
r =         A    (for all times) 
 


b. Again for curves of r = R and r = , and at t = 0, t = R2/4, and t = , determine D/Dt, both 
directly (by differentiation) and by using Eq. 10.10.  Show that these are identical. 
 


By differentiation:    







 V
tDt


D 
     and here   ivV ˆ


   and    tr,  


 


So  
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tDt
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2


2


zr exp  


 


Using Eq.10.10:     
 sdV


Dt
D 2 


  and     itrvV ˆ,



   


0 0 0 
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thus, 
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Which is the same as by direct differentiation.  Now for the limiting values required: 
 


r = R        






















t4
R


t4
AR


Dt
D 2


2


2


exp   


  


 For: t = 0 
0
0
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R
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 For: t =  
  00AR
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 Applying L’Hospital’s rule with respect to r, 
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......
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......
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lim  


 


 Thus,  0
Dt
D






 for all time 


 
c. Based on your results of part a and b, explain (briefly) what is physically happening to the 


vorticity and circulation of the flow field.  
 
 Part a:  The vorticity is initial contained at the origin, yielding a constant vorticity, A .  As 


the vorticity diffuses outward, the region containing the total circulation increases, such that 
less and less vorticity is contained within the fixed radius R.  All the vorticity remains within 
the infinite radius, r = , such that the circulation within r =  will always be constant. 


 
 Part b:  For r  =R, initially all the vorticity is at the origin, and remains within r=R for a period 


of time, so that 0
Dt
D






until the vorticity begins to diffuse across r=R.  For t =  all the 


vorticity will have diffused across the radius r = R, and thus 0
Dt
D






 again.  For r = , the 


vorticity never reaches the boundary, so 0
Dt
D






 for all times. 
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6. A vertical heated plate, 1 m in length, heats the adjacent 


air such that the temperature varies uniformly across a 4 
cm thickness, from ambient (20 C) 4 cm from the plate 
surface to 30 C at the plate surface.  As shown in the 
model at the right, assume that the isopycnals are 
parallel to the plate surface, and that the pressure varies 
with height according to P=gh, where the density is the 
ambient density, and the pressure is constant 
perpendicular to the plate surface.  Treating air as an 
inviscid fluid, what will be the maximum velocity within 
the air after 1 minute?   In your opinion, is this answer 
reasonable?  Explain your rationale for your opinion. 


 
Assume that this process is similar to the sea breeze 
problem considered in Chapter 10. 
 
Similar to Eq. 10.15 we can write: 
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Here we assume that PH-PL=gh, where 3m
kg2051. for air at 20 C and h=1 m. 


For the density change, we assume the 3H m
kg2051.  and 


H


L
HL T


T
 from perfect gas (where 


P const.), or 33L m
kg1651


303
293


m
kg2051 .. 











 . 


So,  
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s
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m
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11PP
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Now, assuming that 
Dt
D


 is relatively constant over a period of time, we can approximate: 


 


 hw2Vxt
Dt
Ddt


Dt
D


0t


t


0










   


 
Here we assume quiescent conditions initially, with Vinitial = 0, and thus 00  . Solving for 
the velocity, and substituting from Eq. 10.16, we can determine the wind velocity after one 
minute under these baroclinic conditions: 
  


g 


 increasing 


 


L H 
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PH 


PL 
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0 
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s
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m082
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s
m3370


hw2
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Dt
DV 2
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.
min


min
.
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Since this is negative, the flow is vertically upward along the plate, and downward in the 
ambient region [Note: the direction of the circulation is specified according to the coordinate 
system shown]  (note this is 31.9 ft/s or 21.7 mph, which is unreasonable—obviously the 
effects of viscosity, which are ignored here, will mediate this significantly) 
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7. The velocity field for a viscous vortex is given by: 


 


  























 t


r1
r2


1V exp   


  
 Let all parameters and variables be non-dimensional.  


  
a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine  at  


t = 0, t = R and t = . 
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  irdsd ˆ
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t
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t
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2
A expexp  


 


r = R        






















t
R1 exp   


  
 For:  t=0 1  
  t = R  1 1 0 632exp .        


  t =  0  
   
r =         1    (for all times) 
 


b. Again for curves of r = R and r = , and at t = 0, t = R, and t = , determine D/Dt directly (by 
differentiation using the substantial derivative of  ). 
 


By differentiation:    







 V
tDt


D 
     and here   ivV ˆ


   and    tr,  


 


So  
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2zr exp  


 
 
Now for the limiting values required: 
 


r = R        















t
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t
R


Dt
D


2 exp   


  


0 0 0 
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 For:  t = R 
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 Applying L’Hospital’s rule with respect to r, 


 
 


01
tt


1


2
r2tt


1
Dt
D


2r2r




























 ......
lim


......
!


lim  


 Thus,  0
Dt
D






 for all time 


 
c.  Plot three separate graphs:   


i. V vs. r from0 < r < 10 for t = 0.1, 1, and 5; 
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ii.  vs. r from0 < r < 10 for t = 0.1, 1, and 5; and  
 


 
 
 
iii. D/Dt vs. r from 0 < r < 10 for t = 0.1, 1, and 5. 
 


 
 
d. Based on your results of part a, b, and c explain (briefly) what is physically happening to the 


vorticity and circulation of the flow field.  
 
 Part a:  The vorticity is initially contained at the origin, yielding a constant vorticity, A .  


As the vorticity diffuses outward, the region containing the total circulation increases, such that 
less and less vorticity is contained within the fixed radius R.  All the vorticity remains within 
the infinite radius, r = , such that the circulation within r =  will always be constant. 
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 Part b:  For r = R, initially all the vorticity is at the origin, and remains within r = R for a period 


of time, so that 0
Dt
D






until the vorticity begins to diffuse across r = R.  For t =  all the 


vorticity will have diffused across the radius r = R, and thus 0
Dt
D






again.  For r = , the 


vorticity never reaches the boundary, so 0
Dt
D






 for all times. 


 
 Part c:  The three graphs of V, , and D/Dt support this interpretation 
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8. The velocity field for a Taylor dissipating vortex is given by: 


 


  
2


2 2


M r rv exp
16 t 4 t


 
  


   
  


  
 Here M is the total angular momentum of the vortex, which is constant.  Let all parameters and 


variables be non-dimensional.  
  


a. Determine the circulation, ,  for curves of radius r = R and r = . For each case, determine  at  
t = 0, t = R and t = . 


 


 
C


sdV 
  irdsd ˆ


 


22 2 2


2 2 2 2
C 0


M r r M r rexp rd exp d
16 t 4 t 16 t 4 t



   


         
        


   


2 2 2 2


2 2 2 2


M r r M r rexp 2 exp
16 t 4 t 8 t 4 t


   
        


       
 


 


r = R        
2 2


2 2


M R Rexp
8 t 4 t


 
   


  
  


  


 For:  t=0 
   


2 2


2


M R R 0exp
8 0 4 0 0


 
       


 


 Use L’hospital’s rule to evaluate and, 0  
 


  t = R 
2 2


2 2 2


M R R M 1exp exp
8 R 4 R 8 4


   
       


     
 


  t =    
2 2


2 2


M R Rexp 0 1 0
8 4


 
     


   


   


r =           
2 2


2
2 2


M exp 0 ?
8 t 4 t


  
      


  
    


Again use L’hospital’s for r  
2


2 2 2 2r 2 2 2


M r M 2r 4 t 0
8 t 8 tr 2r rexp exp exp


4 t 4 t 4 t 4 t






    


      
     


        


    for all t 
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b. Again for curves of r = R and r = , and at t = 0, t = R, and t = , determine D/Dt directly (by 
differentiation using the substantial derivative of  ). 
 


By differentiation:    







 V
tDt


D 
     and here   ivV ˆ


   and    tr,  


 


So  
2 2 2


r z 2 3


vD Mr r rv v 1 exp
Dt t r r z t 4 t 8 t 4 t



        


          
          


 


 
2 2 2


2 3


D Mr r r1 exp
Dt 4 t 8 t 4 t


   
    


     
 


Now for the limiting values required: 
 


r = R        
2 2 2


2 3


D MR R R1 exp
Dt 4 t 8 t 4 t


   
    


     


  
  


 For:  t=0 
   


2 2 2


2t 0


D MR R R 0lim 1 exp
Dt 4 (0) 8 0 4 0 0


   
            


 


  


 Write as:  
2 2


2 2 2
4 3


D MR R 1
Dt 4 R R8 t exp t exp


4 t 4 t


 
 


   
     


      
     


 


 And use L’hospital’s rule and determine (a bit messy), that:  
D
Dt

 0 


 


 For:  t = R 
2 2 2


2 3


D MR R R1 exp
Dt 4 R 8 R 4 R


   
    


     
 


   2


D M R R1 exp
Dt 4 R 8 4
    
         


 


 For: t =     
     


2 2 2


32


D MR R R 11 exp 0
Dt 8 44


   
                 


 


   


r=        
 


 


42 2 2 4


2 3 2 2
4 4


D Mr r r r1 exp
Dt 4 t 8 t 4 t r32 t exp 32 t exp4 t 4 t
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Neglecting constants and expanding as a series
 


4 4


2 4 6 8 4 2 6 2r r
4 4 2 3


2 3 4


D r r
Dt r r 1 r 1 r 1 r t r tt 1 t r t


t t 2 t 3 t 4 2 3


lim lim
...... ......


! ! ! ! !
 



 


   
          


   


 


 
 Applying L’Hospital’s rule with respect to r, 
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23 2 5 2 3 2 2 2r r
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D 4r 4 1 1 0
3tDt 3r t 6r t 2t 3t 6r t 02rt
22 3 r 2 3


lim lim
...... ......


!! ! ! !
 



    


   
         


   


 


 


 Thus,  0
Dt
D






 for all time 


 
c.  Let  = 1, and plot three separate graphs:   
 


i. 
216 vv '


M







  vs. r from0 < r < 10 for t = 0.5, 1, and 3; 


 


 Here, we plot:  
2 2


2


16 v r rv ' exp
M t 4 t
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ii. 
28'


M
 


   vs. r from0 < r < 10 for t = 0.5, 1, and 3  


 


 Here we plot:    
2 2 2


2


8 r r' exp
M t 4 t


  
    


 
 


 


 
 


 


iii. 
2D ' 4 D


Dt M Dt
  


 vs. r from 0 < r < 10 for t = 0.5, 1, and 3. 


 


 Here we plot:  
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d. Based on your results of part a, b, and c explain (briefly) what is physically happening to the 
vorticity and circulation of the flow field.  


 
 Part a.  As the vorticity diffuses outward, the region containing the total circulation increases, 


such that less and less vorticity is contained within the fixed radius R.  All the vorticity remains 
within the infinite radius, r = , such that the circulation within r =  will always be zero. 


 
 Part b:  For r = R, initially all the vorticity is at the origin, and remains within r = R for a period 


of time, so that 0
Dt
D






until the vorticity begins to diffuse across r=R.  For t= all the 


vorticity will have diffused across the radius r=R, and thus 0
Dt
D






again.  For r = , the 


vorticity never reaches the boundary, so 0
Dt
D






 for all times. 


 
 Part c:  The three graphs of V, , and D/Dt support this interpretation 
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9. An inviscid fluid of thickness h and length L, as shown, varies in density according to 


h
y


o  .  It is initially at rest.  At time t = 0, a constant pressure difference is applied 


over the length L, with a pressure P1 at x = 0, and P2 at x = L , with P1 > P2.   
 
 
 
 
 
 
 
 


 
Neglect gravity effects, and determine: 
 


a)   Using the unsteady Bernoulli equation along a streamline, an equation for the x-direction 
velocity within the fluid, u = f (y, t), for t  > 0 and 0 < y < h.  Plot of u(y,t) for t = 1, 2, 3 over 
0 < y/h < 1 for (P1-P2)/L = 1, 1o  , and  = 0.2 
 


Since streamlines are straight for this flow, we apply Bernoulli as: 
 


 0sd
t
V


2
VddP1 2





























 


 
We let V = u(y), where u is the x-direction velocity at a height of y.  Since the  


fluid is constrained to move in the x-direction, we also have dx
dt
dusd


t
V






 



.  


Substituting and rearranging: 
 


 ududP1
2


uddP1dx
dt
du 2




















     


 


Or     
dx
duu


dx
dP1


dt
du






  


 
However, since the velocity along any streamline will increase uniformly with  


time, but will not vary in the x-direction, 0
dx
du


  along each streamline, so: 


 


 
dx
dP1


dt
du



   


 
The pressure difference is assumed to decrease linearly with x, and to be uniform 
across the fluid in the y-direction.  Thus, the pressure gradient is constant, and  


 
P1 P2 


x 


L 


y h 
A B 


C D 
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given by 0
L


PP
dx
dP 12 



 .  We integrate for u = u(y) over time: 
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u


0u


t


0t


dt
dx
dP1dudt


dt
du a


  


   0t
dx
dP10u 



     


  21


o


PP
L


h
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dPtu 



















      where P1 > P2 


Note that we did not have to integrate the density, since it is not a function of t.   
Thus, we have:  
 


 
 


L
h
y
PPttyu


o


21
















,  


 
Thus, the velocity increase linearly with time, and inversely with height y.   
 


b)  A graph of u(y,t) for t = 1, 2, 3 over 0 < y/h < 1 for (P1-P2)/L = 1, 1o  , and  = 0.2 
 


 
 


c)  The time rate of change in circulation, 
Dt
D


, for the region 0 < y < h and 0 < x < L in 


terms of P1, P2, o , and  . 
 


If we apply Eq. 10.14 about the circuit A-B-C-D shown in figure 10.7, we have: 
   


0


0.5


1


1.5


2


2.5


3


3.5


4


0 0.2 0.4 0.6 0.8 1


u


y/h


u(y,t) vs. y/h


u(y)@t=1


u(y)@t=2


u(y)@t=3







Study Problems Solutions, Chapter 10 10-27 
 


 


  




















A


D


D


C o


C


B


B


A o


dPdPdPdPdP
Dt
D


    since dP = 0 from B-C and D-A 
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Since P1 > P2, then 0
Dt
D






, which means that negative circulation and negative  


(clockwise) vorticity are generated.  This is clear from the velocity profiles, which  
show that y 0 y hu u


 
 . 


0 0 
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Chapter 11 
 


Study Problems Solutions 
 


1.  Starting with Eq. 11.2, derive Eq. 11.6, showing all the vector simplifications required 
in detail. 
 
Equation 11.2 is:  


 .VP1
Dt


VD 2
2



















   


 
Expanding the left side of Eq. 11.2, we use the definition of the substantial derivative   
and vector identity Eqs.2.16g, a, and h, plus solenoidal behavior of V



and   to  


simplify. 
 



















 VV


t
V


Dt
VD 





 


But from Eq.2.16g, where GFV



  
 
          VVVVVVVVVV



  


      VV2VV2VV



  


Or       VVVV
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1VV



  


Substituting into above equation gives: 
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Here we are able to eliminate  2V , because Eq.2.16a is 0f  , and 2V  is a  
Scalar, thus: 
 


 










V
tDt


VD  


 
Now, for the term on the right, we use the vector identity Eq.2.16h, and let VF



 and  






G , which gives: 
 


         VVVVV

  


     



VVV  


0, since V2 
is a scalar  





0 0 
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We note above that both   0V 
  from Eq. 2.16c (solenoidal), and  


0V 



, since the flow is incompressible. 
 
Substituting the result for  



V  gives: 


 


   VV
tDt


VD 








   


Finally, using the vector identity Eq. 2.16n, the last term on the right side of Eq. 11.2  
becomes: 
 


  



222 VV  
  


And substituting results for 
Dt


VD



  and V2



  into Eq. 11.2 gives: 


 


    


















 
2


2 P1VV
t


  


 
 
 
Assuming a barotropic fluid, where the gradients of density and pressure are  
parallel, then 0P  , and our final equation becomes [moving the  V



   


term to the right hand side of the equation]: 
 


   VV
tDt


D 2











  (11.6) 


 
Equation 11.6 is the Vorticity Transport Equation. 
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2.  An inviscid, three-dimensional flow is described by the velocity field:  
 
       kxz2jzy3iyx5V ˆˆˆ 



   


 Determine: 
 
 a) if this is an incompressible flow 
 


     
u v w 5x y 3y z 2z x 5 3 2 0
x y z x y z
     


             
     


 


Since it satisfies incompressible continuity, it is an incompressible flow. 
 


 b) the vorticity field for this flow 
 
Noting that u = 5x – y, v = -3y + z, and w = -2z + x, the vorticity is given by: 
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       kji k10j10i 10 ˆˆˆˆˆˆ 



 


c)  The vortex stretching and tilting that is taking place, by calculating the value of 
 V



 . 
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                                k210111j113101i011151V ˆˆˆ 
  


 
        k201j130i015V ˆˆˆ 


  
 
Total for stretching/tilting of vorticity: 
   k3j4i4tiltstretchV ˆˆˆ


/ 
  


 


d)  Separate the  V



 value of part b into the stretching components and the tilting 
components. 


Noting that the stretching terms are the terms with velocity changes in the specified  
direction, we have: 
 


   k2j3i5stretchingV ˆˆˆ 
  


 
The tilting terms are the ones with the velocity changes normal to the specified  
direction, which gives: 
 


   kjitiltingV ˆˆˆ 
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3.  An inviscid, three-dimensional flow is described by the velocity field:  
 
     2ˆ ˆ ˆV x i yx z j y zx k         
 Determine: 
 


a)  If this is an incompressible flow 


     2u v w x yx z y zx 2x x x 0
x y z x y z
     


           
     


 


Since it satisfies incompressible continuity, it is an incompressible flow. 
 
 b) the vorticity field for this flow 


 
Noting that 2u x , v z yx  , and w y zx  , the vorticity is given by: 
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 c) The advection of vorticity field for this flow 
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        y zx z yxˆ ˆ ˆV i j k0 0 0 0 0 ( 1) 0 1 0             


    ˆ ˆV j kyx zy zx      
  


 d) The vortex stretching or tilting that is taking place, by calculating  V
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                               ˆ ˆ ˆV 0 2x z 0 y 0 i 0 y z x y 1 j 0 z z 1 y x k                   


     xz y xy zˆ ˆV j k     
 
Total for stretching/tilting of vorticity: 
 
      xz y xy zˆ ˆV j kstretch/tilt      
 


 e) Separate the  V



 value of part b into the stretching components and the tilting 
components. 
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Noting that the stretching terms are the terms with velocity changes in the specified  
direction, we have: 
 
   ˆ ˆV j kstretching xz xy    
 
The tilting terms are the ones with the velocity changes normal to the specified  
direction, which gives: 
 
   ˆ ˆV j ktilting y z     
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4. In Chapter 9 the pressure and velocities were shown to be related by 2
2
12


2
1 UPVP  


for the invisicid, steady flow around a circular If one only considers flow along the  = 0 
streamline (θ = ) approaching the cylinder (y=0, x < -R), the pressure coefficient can be 


determined as: p 2 2 41
2


P P 2 1C
U x x



  



, where s = U, and R = 1. Here, P is the local static 


pressure, V the local velocity, and P and U are the static pressure and uniform velocity well 
upstream of the cylinder.  If this was the pressure distribution for a flow of a real fluid adjacent 
to a flat plate, use Eq. 11.48 to determine the corresponding vorticity generation from the plate 


as a function of x, and plot pC and z
2


y 0


vs. x
U y









 from x = - 6 to x = -1 on the same graph.  


What does the graph tell you about pressure changes and vorticity generation? 
Rearrange equation for pressure: 


p 2 2 41
2


21
2 2 4


P P 2 1C
U x x


2 1P P U
x x









  





 
    


 


 


Eq. 11.48 is  
0y


z
0y0y


z v
x
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t
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y
 

































  


And since the flow is steady and a solid surface, we have: 
2 2


z
3 5 3 5


y 0


1 P U 4 4 2U 1 1 
y x 2 x x x x





      
          


       
 


z
2 3 5


y 0


2 2
U y x x





  
  


  
 


 
 
 
 
 
 
 
 
 
 
Clearly, as the cylinder is approached, the pressure increases, ending as a stagnation 
pressure at the cylinder juncture (x =  -R).  As the pressure increases, negative vorticity 
generation increases to a peak at x 2   , then diminishes to zero at x = -1. 
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5.   Two parallel flat plates space a distance h apart contain a fluid of kinematic viscosity .  The  
 lower plate is fixed, and the upper plate oscillates back and forth with a velocity given by 


 0U U tsin  .   
 
 
 
 
 
 


(a)  Determine the vorticity generation at both the lower plate, y = 0, and and the upper 
plate, y = h in terms of U0, , , and t. Explain what happens to the generated 
vorticity as the upper plate oscillates back and forth. 


 
(b)  Determine the circulation for a fixed box surrounding the fluid (shown by the dotted 


red lines) within the two parallel plates which is L length and h in height in terms of 
U0, , L and t.  Explain what is happening to the circulation, and why the distance 
between the plates does not enter into the calculation. 


 
(c) What happens to the vorticity generation and the circulation when the upper plate 


stops oscillating, and is fixed? 
 


We calculate the vorticity generation using Eq.  11.48, the vorticity flux equation, noting that 
there is no pressure gradient, since this is a Couette type flow, or transpiration. 
 
For the y = 0 flow, 
 


z
z


y 0 y 0 y 0y 0


1 u 1 P v 1 u 0
y t x t  


   
       


       
    since wall is fixed 


 
 


And for the y = h surface, 
 


 0z


y hy h


U1 u t
y t


cos






 
    


   
 


 
So, no vorticity is generated at the lower plate, and significant vorticity is generated at 
the upper plate.  However, this variation in vorticity generation at the upper plate 


varies periodically over the range  0 0z


y h


U U
y





 
  


  
.  Thus, negative vorticity 


is generated, followed by an equal amount of positive vorticity. 
 
 
The circulation for the box shown in the sketch above, is given by: 
 


y h y 0x 0 x L


x L y h x 0 y 0
y 0 x L y h x 0


V ds v dy u dx v dy u dx
  


   


   


            


h 


U0sin(t) 
L 


y 


x 


0 0 
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y h y 0x 0 x L


0
y 0 x L y h x 0


V ds 0 dy U t dx 0 dy 0 dxsin
  


   


             


 


      
x 0


0 0 0
x L


V ds U t dx U t 0 L U L tsin sin sin






             


 
Note that the circulation varies periodically over the range 0 0U L U L    .  What is 
happening is that as the vorticity generated changes from negative to positive, the net 
amount and sign of the total vorticity contained within the box (which is the 
circulation) also changes. h does not enter into the calculation since the normal 
velocity will be zero (by continuity), and thus the integrals in y do not contribute to 
the circulation calculation. 
 
When the upper plate stops oscillating, it ceases to generate vorticity, and the 
circulation within the box becomes zero.  There will be residual vorticity within the 
box, but there will be equivalent positive and negative vorticity, which will cross 
cancel and die out due to viscous diffusion, and the flow will become quiescent.  
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6. In Chapter 9 the surface pressure on a cylinder for an invisicid, steady flow approching a circular 
cylinder was shown to be  2 21


2P P U 1 4sin     .  Here, P is the local static pressure, and 


P and U are the static pressure and uniform velocity well upstream of the cylinder.  If this was 
the pressure distribution for a real fluid, use Eq. 11.49 to determine the corresponding vorticity 


generation on the cylinder as a function of θ, and plot z
2


r R


R vs.
U r 


 
 


 
 from θ = 0 to θ = .  


Discuss what this graph shows about the potential vorticity generation. 
 


Eq. 11.49 is 
Rr


r


RrRr


z


r
vvP


R
1


t
v1


r 











 
































  


Since the flow is steady, and it is a solid surface, only the middle term on the right is 
relevant, so: 


z


r R


1 P
r R


 



  
 


 
Differentiating the pressure equation gives: 


 2 21
2


dP U 8sin cos 4 U sin cos
d


         



 
 
Thus, 


 
2 2


2z


r R


1 4U sin 2 2U4 U sin cos sin 2
r R R 2 R


 
         


   
 


 


z
2


r R


R 2sin 2
U r 


 
   


 
 


 
Plotting this gives a 
sinusoidal-like pattern, 
with negative vorticity 
generated from the 
leading edge of the 
cylinder to the midplane 
of the cylinder, and a 
comparable amount of 
positive vorticity 
generated from the 
cylinder midplane to the 
trailing edge.  Since these 
opposing vorticities will 
ideally cancel each other out, leaving a vorticity-free flow leaving the rear of the 
cylinder, like it does for an inviscid flow.  However, in reality, the flow will separate 
near the midplane, and no appreciable positive vorticity will be generated.  This leaves 
a preponderance of negative vorticity that separates from roughly the cylinder 
midplane, concentrating into discrete vortices, which are ejected into the separated flow 
and pass downstream as a vortex street.  See section 15.4.1 for a discussion on this 
behavior. 
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7.  A circular tank filled with water rotates on its axis such that the water in the tank is in 


steady state rotation; the wall of the tank, of radius Ro, moves with a tangential velocity 
of Vo (see figure below).  


 
 
 
 
 
 
 
 
 
Do the following:
  
a)  Write an expression (do not derive) for the velocity profile of the water within the tank, 


v(r), for the steady state conditions;  
 


 
0


0


R
rV


V    i.e. solid body rotation 


 
At t = to, the rotation of the tank is abruptly stopped.  Assume that the tank is deep enough  
such that the flow behaves two-dimensionally (r,  dimensions).  Do the following: 
 
b) When the tank is stopped, indicate: (1) where vorticity is generated and (2) what causes 


the vorticity generation. 
  


1) All vorticity is generated at the solid boundary, r = R0. 
2) The deceleration of the boundary 


 
c) State the steady-state solution for the velocity, v(r), in the tank when t 
  


Clearly, when the tank is stopped, opposing sign vorticity is generated, diffuses out  
from boundary and annihilates the existing vorticity in the fluid, bringing the fluid to  
rest.  So for t, 0V   


 
d) Determine the total amount of vorticity that is generated  for t > to.   
 


The total amount of vorticity is a vague term, which I wanted folks to think about.  The “total”  
vorticity is probably best expressed by the contribution to the circulation that is generated by the  
stopping of the vessel.  Since the initial circulation is: 
 
   0000initial VR2R2VsdV   



  (since vessel rotates in positive  direction), 


 
and the circulation after stopping the vessel is: 
 
   0R20sdV 0final   



 


 


R0 


V0 î îr 


Tank 


r 
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Then, 00initialgeneratedgeneratedinitialfinal VR20   
 
And since   


A
00generated AdVR2sdV



 


we infer that 00generated VR2sdV   



 represents the total amount of vorticity generated when  


the vessel is stopped (and it doesn’t matter how fast we stop it). 
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8. In section 11.4.3, we considered the 2-D flow outside a circular rod of radius R, rotating at a 
constant angular velocity  in a fluid of infinite extent with kinematic viscosity  and density 
.  The solution for the steady-state velocity field in the fluid external to the rod using the 
vorticity equation was:   


r
Rv


2
 . 


 
a) Determine the vorticity for r > R and provide a brief physical explanation of what this 


result implies in one or two sentences. 
 


  
    0


r
R


r
1v


r
1


r
rv


r
1 2


r
z 




















   


 
 This implies that all the vorticity that was initially generated when the rod started to rotate 


was diffused outward and eventually out of the fluid.  Thus, we have an inviscid type of 
velocity field in a viscous flow 


 
b) Determine the circulation for r = 2R and r = .  Again provide a physical explanation of 


what this result implies in one or two sentences. 


   2
2


R2r R2R22
R2
RsdV 



  



 


 


   2
2


r R22RsdV 




  



 


 


Note in general:     2
2


r R2r2
r
RsdV 



  



 


 
The result indicates that all the vorticity contributing to the circulation is from the rod only 
  


c) If I suddenly stop the rod rotating, assuming a viscous and laminar 2-D flow, which of the 
terms in the vorticity vector equation shown below would be relevant to the solution of the 
subsequent unsteady flow behavior?  Indicate the terms that would be non-zero by 
indicating the identifying number in the general equation below.  


 


     



 
2VV


t
 


 
 1 2 3 4 


  
d) Briefly explain why the terms you did not select are not relevant. 


 
 



V  is not relevant because there will be no convection of vorticity, only diffusion 
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 V



  is not relevant because this term only applies for 3-D flows (stretching and 
tilting); the present flow is a 2-D flow.  
 


e)  After the rod rotation is stopped, is there any vorticity in the fluid?  If so, where does it come 
from?  How much is generated? 
 
There is vorticity in the fluid.  It originates at the interface of the rod with the fluid when the 
rod is decelerated, and diffuses outward with time. 
 
If we determine the circulation at the moment the rod is stopped, or r>>R, the velocity profile 
will be the same, so : 
 


   2
2


Total R2r2
r
RsdV 



  



 


 
The total circulation consists of the circulation of the rod and the fluid, so: 


 
2


rodfluidlTotal R2   
 


But 0rod  , since the rod is stopped, so the total amount of vorticity generated, which is in 


the fluid (i.e. the circulation) is 2
fluidl R2  . 
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9. A circular tank of water of radius Ro rotates such that the velocity is Vo at Ro .  A 
stationary rod of radius Ri, located at the center of the tank.(see figure below).  
Assume the rod and tank are infinite in the z-direction so the flow 
in the annulus between the rod and the tank wall is two-
dimensional.  


 
 Do the following: 


 
a) Simplify the 2-D vorticity transport equation to allow you to 


calculate the vorticity distribution in the water, if the flow is at 
steady state conditions.  Indicate the terms that can be 
neglected in the equation, and list the reasons that they are 
assumed/can be show to be negligible 
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So, for no  changes, vr=0, and steady state: 
  


0
dr


dr
dr
d


r
r


r
zz 








 























  


b) For one boundary condition, let the vorticity at r = Ri be z = o.  A second 


boundary condition is 0
dr


d z 



 at r=Ro.  Explain how this second boundary 


condition arises. 
Vorticity generation = 0 at boundaries for steady state. 
From cylindrical Navier-Stokes equation evaluated at r=Ro: 


  
r


rv
rr


1
rt


v z


















































   


Since 0
dr


d0
t


v z 







   


 
c) Using the vorticity boundary conditions in (b), solve the simplified equation from 


(a) to determine an expression for  r .  


0
dr


dr
dr
d z 










 
 


  0C0R
dr


dR.C.BC
dr


dr 1o
z


o1
z 







 


So, o2z
z C0


dr
d






, a constant in the annulus.
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10. At a given instant of time, the vorticity, 
y
u


x
v


z











 , for a two-dimensional, 


inviscid (µ=0), constant density flow field is specified at each point in the field  
 (z  0).   
 
 Do the following: 
 


a) Using appropriate simplifications of the vorticity transport equation, give an 
argument that shows that if the particle path lines are known (i.e. the velocity 
field,  t,y,xV



, is known), one could determine z for each point in the flow 


field at a later time. 
 


 000)V()V(
tDt


D 2 







 
  Since z



 and flow is 


inviscid. 


Thus, if velocity is known, can track z at any time from 0
Dt


D z 
  


b) Show that for this flow field an equation, z2


2


2


2


yx













   can be developed 


for the stream function, .   
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2
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c) The circulation within a marked circle of fluid in the flow field is 0 at time t = 0.  


I let the marked fluid move within the flow field, such that at a later time t = 1 the 
circulation within the marked fluid is 1. What is the relationship between 0 and 
1 and why? 


 
The circulations will be equal, 0 = 1, due to Kelvin's Theorem—which applies 
in an inviscid flow. 
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11. A circular tank of water of radius Ro rotates such that for t < to the velocity is Vo at 
Ro.  A stationary rod of radius Ri, located at the center of the tank.(see figure below).  
Assume the rod and tank are infinite in the z-direction so the flow in the annulus 
between the rod and the tank wall is two-dimensional. One can show (see problem 9), 
what at steady state, the vorticity within the annulus is oz  = constant. 


 
 
 
 
 
 
 
 
 
 
 
 


At t = to, the rotation of the tank is abruptly stopped (Vo=0 for t > to).  Assume that the 
flow behaves two-dimensionally (r,  dimensions).  Do the following: 


 
a) Simplify, using appropriate assumptions, the 2-D vorticity transport equation to 


yield an equation that could be solved for the vorticity and velocity field inside the 


tank for t > 0  (DO NOT ATTEMPT TO SOLVE THIS EQUATION!). 
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Assume there are no  changes, and v r= 0, giving: 
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rr
1


t
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b) Determine the total circulation within the tank (inside r = Ro ) for both t < to and t > 


to.  Briefly explain your result for both cases.
  


 






 2RVrdvtt oo


2


0
o     and    0tt o   


 
The circulation is fixed by the velocity of the tank surface in the first case.
 
There is no circulation in the second case, because the vorticity generated at the 
tank surface when the tank is stopped is opposite to the vorticity within the fluid for 
t < 0. 
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c) Using your result for t < to from part b) of this problem, determine the value of o 
in terms of Vo, Ri, and Ro. 


 
rodfluidooo 2RVtt    


 


 2
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Thus,  2
i


2
oooofluid RR2RV                     or       
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12. A circular rod of radius Ri rotates at an angular velocity, , inside of a stationary tank 
of water of radius Ro (see figure below).  Assume the rod and tank are infinite in the z-
direction so the flow in the annulus between the rod and the tank wall is two-
dimensional. 


 
 
 
 
 
 
 
 
 
 
 
 Do the following:
  
 a) Simplify the two-dimensional vorticity transport equation to allow you to calculate 


the vorticity distribution in the water, if the flow is at steady state conditions.  
Indicate the terms that can be neglected in the equation, and list the reasons that 
they are assumed/can be shown to be negligible 
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 So, for no  changes, vr = 0, and steady state: 
  


 0
dr


dr
dr
d


r
r


r
zz 








 























  


 
b)  For one boundary condition, let the vorticity at r = (Ri+Ro)/2 be z = o.  A second 


boundary condition is 0
dr


d z 
  at either r = Ri or Ro.  Explain how we get this 


second boundary condition from the concept of vorticity generation. 
 


Vorticity generation = 0 at boundaries for steady state. 
From cylindrical Navier-Stokes equation evaluated at either surface: 
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Since 0
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c) Using the vorticity boundary conditions from b), solve the simplified equation from 
a) to determine an expression for  r .  


 


  0
dr


dr
dr
d z 










 
 


  0C0
dr


dCBC
dr


dr 1
z


1
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 ..  


 


 So, o2z
z C0


dr
d



 , a constant in the annulus. 
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13. A circular rod of radius Ri rotates in steady state at an angular velocity, , inside of a 
stationary tank of water of radius Ro (see figure below).  Assume the rod and tank are 
infinite in the z-direction so the flow in the annulus between the rod and the tank wall is 
two-dimensional.  One can show (see problem 12), what at steady state, the vorticity 
within the annulus is oz  = constant. 


 
 
 
 
 
 
 
 
 
 
 
 At t = to, the rotation of the rod is abruptly stopped.  Assume that the flow behaves two-


dimensionally (r,  dimensions).  Do the following: 
 
a) Simplify, using appropriate assumptions, the 2-D vorticity transport equation to 


yield an equation that could be solved for the vorticity and velocity field inside the 


tank for t > to  (DO NOT ATTEMPT TO SOLVE THIS EQUATION!). 
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 Assume there are no  changes, and vr=0, giving: 
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b) Determine the total circulation within the tank (inside r = Ro ) for both t < to and t > 


to.  Briefly explain your result for both cases. 
 
 0tt o      and    0tt o   
 
 There is no circulation in the first case, because the circulation of the rod circulation 


is opposite to the circulation of the fluid. 
 
 There is no circulation in the second case, because the vorticity generated when the 


rod is stopped is opposite to the vorticity within the fluid for t < to. 
 
 c) Using the steady state result for t < to that oz  = constant, determine the value 


of o in terms of , Ri, and Ro. 
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14. A circular rod of radius Ri rotates at an angular velocity, , inside of a stationary tank 
of water of radius Ro (see figure below).  Assume the rod and tank are infinite in the z-
direction so the flow in the annulus between the rod and the tank wall is two-
dimensional. 


 
 
 
 
 
 
 
 
 
 
 Do the following:
  
 a) Simplify the two-dimensional vorticity transport equation to allow you to calculate 


the vorticity and velocity distributions in the water, if the flow is at steady state 
conditions.  Indicate the terms that can be neglected in the equation, and list the 
reasons that they are assumed/can be shown to be negligible 
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 So, for no  changes, vr = 0, and steady state: 
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b) Specify the necessary boundary conditions, for both z and v to allow you to solve this equation; 


Boundary condition for z are:   oi
z RorRr0


dr
d1 
 @)  


Vorticity generation = 0 at boundaries for steady state. 
From cylindrical Navier-Stokes equation evaluated at either surface: 
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Boundary conditions for v are:   
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c)  Solve the O.D.E. to obtain z(r) and v(r) in terms of , r, Ri and Ro; 
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Noting that: 
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Integrating equation for v, gives: 
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d) Determine the vorticity, and circulation for r = Ri and r = Ro.  Provide a physical explanation for 
these results in one or two sentences. 


 
From part c): 
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The circulation is: 
 


  
A C


sdVAd 
 


 
For r = Ri, V = Ri, so    2


i
C


ii R2R2RsdV  



 


 
For r = Ro, V = 0, so    0R20sdV


C
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The vorticity within the fluid cancels the vorticity associated with the rod 
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15. In Chapter 6, problem 6.16 considers the flow of a viscous fluid (viscosity = µ, density = ) similar to a 
Couette flow between two infinite, parallel, porous plates; fluid of the same properties is uniformly 
injected through the fixed, lower plate, and fluid is uniformly suctioned out through an upper plate, 
which moves at a velocity U, as shown below.   


 
 
 
 
 
 
 
 
 
 Here, u = 0, v = Vo = const. at y = 0, and u = U = constant, and v = Vo at y = h, with no flow in the z-


direction. The velocity profile, u(y), for the fully-developed flow between the plates is given by: 
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yV y h
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U e 1U e 1
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Note that by the continuity equation, v = V0 = constant across the channel, and 
0


0
V


V hRe 



. 


(a)  Make a plot of the non-dimensional velocity profile for this flow, u yvs
U h


. ,  for 


3and10
hV


0V
0 ,,Re 



, all on one graph. 


(b) Determine the non-dimensional vorticity for this flow, zh
U
 .  Then Plot zh yvs


U h
.  for 


3and10
hV


0V
0 ,,Re 



, all on one graph. 
 


(c)  Calculate the non-dimensional vorticity generation at both y = 0 and y = h.  Calculate both
2
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 for 3and10


hV
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(d) Comment on what your results of part (c) show about the vorticity generation. 
 


A plot of u yvs
U h


.  for 
0V 0 1 and 3Re , , is shown below 
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The vorticity and non-dimensional vorticity are calculated as: 
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Note, for 
0V 0Re  , the vorticity is indeterminate (0/0). So, using L’hospital’s rule: 
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               , or the vorticity is constant 


A plot of zh yvs
U h


.  for 
0V 0 1 and 3Re , ,  is shown below 
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We calculate the vorticity generation using Eq.  11.48, the vorticity flux equation, noting that 
there no acceleration and no pressure gradient, since this is a Couette type flow. 
 
For the y = 0 flow, 
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And for the y = h surface, 
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For 
0V 0 1 and 3Re , , the values of 


2
z


y 0


h
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and 


2
z


y h


h
U y





  
 


 
are: 


 


0V 0Re   
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0
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0h 0 
U y 0e 1


  
    


  
  which is indeterminate.  So, we apply L’hospital’s rule. 
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And 
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  which is also indeterminate.  Apply L’hospital’s rule. 
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So, when there is no transpiration (V0 = 0), no vorticity is generated at either surface.  
 


0 0 
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Clearly, the vorticity generation is much higher at the upper (suction) wall, where the u-
velocity has to adjust much more rapidly before exiting.  Note that as the V0 velocity gets very 
large, and thus 


0VRe >> 0, the vorticity generation at y = 0 (injection surface) asymptotes 


toward -0 and the generation at y = h asymptotes toward -.  This is due to almost all of the u-
velocity change occurring in a very narrow region of the y = h (suction) wall. 
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16. A uniform viscous flow approaches a flat plate.  After encountering the leading edge of the 


plate, the main flow velocity accelerates according to 









  L


x1UU , where U is the 


velocity approaching the plate, and P is the pressure of the approaching flow.  If the flow has 
no vorticity, and no vorticity is transported in the flow before it encounters the plate at x = 0, 
determine the vorticity transport across the plane at x = L. Assume a stagnation point at the 
leading edge of the plate. 


 
 
 
 
 
 
 
 
 
 


From Eq. 11.77 for a a fixed region in space, we showed that: 
 


    






C


2


A


sdVAdV
t



 


 


And for a steady flow, with a region 0 < y < h and 0 < x < L, 
t
 =0, and we can simplify to  


get: 
 


    
c


2


A


sdVAdV 
 


 
Using further simplifications in section 11.6, it can be shown that for the plate: 
 


     dyudyuPP h


0
0xz


h


0
Lxz


0xLx
 


 



   


 
 
  
 
 
So the vorticity flux is given by the pressure difference. 
 


 




 



0xLx


h


0
Lxz


PPdyu  


 
 
 
 
Since the flow is a stagnation flow at x = 0, we have from Bernoulli that 


Pressure 
changes 


along plate 


Flux of vorticity 
transported across 


fixed region C 
 


0 


vorticity 
flux out 


Since this is a steady flow, 


 for region C x 


Region C 
U, P 


y 


x=0 x=L 


h 


UL, PL 
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2
UPPP


2


stag0x







  


 
Assuming that the pressure at x = L is the same as the external pressure in the outer stream 
from Bernoulli, we can get: 
 


 
  0


2
UUPP


22
L


Lx 



 
   where    











 U2


L
L1UU L  


Thus, 
 


 
2
U3P


2
UU4PP


222


Lx















  


 
Substituting, we get for the flux of vorticity across x=L: 
 


  2


22


0xLx
h


0
Lxz U2


2
UP


2
U3P


PPdyufluxvorticity 































 













 








   


 
So, the vorticity flux across x = L is negative.  Due to the acceleration of the fluid, negative 
vorticity is generated across the plate from x = 0 to x = L, and added to the flow. 
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17. An infinite porous flat plate translates in the x-direction at a constant velocity U beneath a quiescent 
fluid of kinematic viscosity . The fluid covers the upper surface of the plate, and is of infinite depth. 
Fluid is suctioned uniformly through the plate at a velocity V, as shown. If the flow is steady and fully 
developed, starting from the vorticity transport equation (in 2-D) determine an expression for the 
velocity u(y) and vorticity (y) in terms of U, V, , and y.  Also, determine the shear stress at the 
surface in terms of U, V, and , the fluid density. If V = 0, what would the steady state velocity profile 
u(y) become? 


 
From the continuity equation (in 2-D) we have: 
 


0
y
v


x
u













  


Since the flow is fully developed, this implies that 0
x
u







, which gives: 






 v0
y
v  constant 


 


Since v = -V at y = 0, then v = -V everywhere. 
 
Now, for a steady flow, Eq. 11.22 applies: 
 







































2
z
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2
z
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zz


yxy
v


x
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We simplify by noting that for a fully-developed flow, all derivatives of vorticity in the 


streamwise (x) direction drop out, i.e. 0
xx 2


z
2


z 









 , . 


 


Thus, we get: 
 


 
dy
d


y
onlyy


yy
v zz2


z
2
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 )(  and  v = -V 


2
z


2
z


dy
d


dy
dV 






  


 


Rearranging, we have a second-order, linear differential equation for vorticity as a function 
of y:  


U 


y 


x 


V 


0 0 
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dy
dV


dy
d z


2
z


2 







  


 


Integrating once gives: 
 


2
z z


2


d dV
dy dy
 


  
  1z


z CV
dy


d







   


 
To determine the integration constant C1, we note that the outer vorticity boundary conditions 


for this flow are  0
dy


d0 z
z 



 and as  y    [since the velocity asymptotes to a quiescent 


flow].  Applying these boundary conditions (simultaneously), gives: 
 


0CC00 11   
 


Separating variables and integrating again: 
 


 






 dyVd
z


z  


 









Vy


2z eC  
  


We now have a problem.  If we apply our boundary condition of 0z   as 


  ? 


22 CeC0y   So C2 is indeterminate in vorticity form. 
  
Carrying C2 forward, we now substitute for the vorticity in terms of the appropriate velocity 


derivatives, by letting
dy
du


y
u


x
v


z 






















  [since )x(fv  ]. 


This gives: 
 









Vy


2z eC
dy
du


  


and integrating gives: 
 


3


Vy


2 Ce
V


Cu 



 



  
  


We now apply a velocity boundary condition of u 0  as y , which gives C3: 
 


2 3 30 C e C C 0     
  


Our final boundary condition is that u U  at  y 0  , which allows us to determine C2. 


0 
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0
2 2


VU C e C U
V



  



 


 


So that the final expression for the velocity is: 
 


Vy


u Ue

   


and substituting 2
VC U



 into the previous vorticity expression, we have: 
 


Vy


z
du VU e
dy



   



  


 


The shear stress in this fully-developed region is given by: 
 


Vy Vy Vy


w
du V VU e U e UVe
dy


  
          


  
 
 


 


So, the shear stress at the plate surface, y = 0, is  
 


w UV    
 


Note that the shear stress acts in the negative x-direction on the plate, and the positive 
direction on the fluid adjacent to the plate.  The shear stress is a function of the momentum 
lost at the plate boundary.  Note that this is essentially the same behavior as the section 11.4.1 
example, only with the plate moving and the fluid quiescent. 
 
So, what happens if V = 0? In an ideal flow, the plate would cease to generate vorticity, the 
vorticity would eventually dissipate to infinity and the entire flow above the plate would move 
as a uniform flow at the plate velocity U.  Substituting V=0 into the u equation above, gives: 
 


  
0y


0u y Ue Ue U



    
 
 
 
 
 
 
 
 
 
 
 
 


1 
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18. Consider the 2-D flow outside a rotating circular cylinder, at the surface of which there is an 
inward radial velocity, V, at the cylinder surface (r=R) due to suction through the wall of the 
cylinder.  Again, assume that the cylinder is in a fluid of infinite extent with kinematic 
viscosity  and density ; the cylinder is of radius R and rotates at a constant angular velocity 
.  Determine the solution for the steady-state velocity field in the fluid external to the 
cylinder using the vorticity equation for your solution: 


 


      



 
2VV


t
 


 
 Let one boundary condition be 0v   at r  ; consider the other boundary conditions 


carefully, and perform your solution as follows: 
 


a) Simplify the vorticity transport equation to an ordinary differential equation for 
z using the continuity equation to assist the simplification (i.e. find vr first); 
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So, vorticity equation reduces to: 
   


 








 







dr
dr


dr
d


rdr
d


r
VR zz  


or simplifying, 
 


 



















  VRkLet
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dVR
dr
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dr
d zz  
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dr


dr
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d zz 











 
 


Integrating once, gives: 
 


 1z
z Ck


dr
dr 
   


-VR/r 0 0 0 


0 
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So now, we need some appropriate boundary conditions. 


 
b) Consider the appropriate boundary conditions for vorticity and solve the resulting 


O.D.E. to for =(r, R, k, and A), where k=VR/ and A is an unknown constant; 
 


Here, the appropriate boundary conditions are: 
 


 


RrRv4


r0v3


r0
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z


z
























@)


@)


@)


@)


 


 
Now, applying B.C. 1) and 2) to the integrated equation gives: 
 


      0CC0k0Ck
dr


dr 111z
z 


  


 


Thus, 2z
z


z
z


z Crk
r


drkdk
dr


dr 







 lnln  


or,  k
z Ar   where C2 = lnA 


 
c) Using the results of b) solve for v= v(r, R, k, ), apply appropriate boundary 


conditions, and show that a solution exists over the flow field only if k=VR/>2 
 


Now let,  


       k1rk
z Ar


dr
rvd
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r
rv


r
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Integrating gives, 
 


 3


k2


C
k2


Arrv 







  


 
Applying B.C. 3) 
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C
k2


A0 










 


 
Note that if k>2, this gives C3=0, or: 
 


0 
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k2


Arv
k1









     (more about this boundary condition later) 


 
Applying B.C. 4),  
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ARRv 







  


or, 
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Now, since v 0 r@



  , k must be >1, or v will become infinite as infinity  


is approached. 
 


d) Determine the circulation, =(r), and note its limit at k=2; recalculate the value 
for vorticity, with A known from part c).  Here, we use: 
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Thus, k must be >2 in order for a finite solution to exist as r  . 
 
For vorticity, 


 
     


 
k


k1


k1k2


k1z R
rk2


rR
rk2R


dr
rd


rR
R


dr
rvd


r
1 






























  


 
e) If =2 and R=1 (both dimensionless), plot z, v, and  for 1 < r < 10, for k = 3 


and k = 6, and for the no suction case, V = 0, which is the solution determined in 
section 11.4.3.  Plot separate graphs of z, v, and , with the three curves for 
k=3, 6, and no suction on each plot. Interpret the results of these plots. 
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Here, the effect of increased suction is to restrain the vorticity from diffusing 
away, and thus creating much higher gradients near the rod, compared to the no 
suction case.  Clearly, the limit would be when the vorticity can no longer diffuse 
away. 
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This graph illustrates that as suction increases (k increases), the vorticity is held 
closer to the rod, and does not diffuse away.  This is illustrated clearly in the 
circulation graph below. 


 
 


For the circulation graph, the net circulation (rod+fluid) for both suction cases 
decreases toward zero as the radius increases.  Since the suction retains the 
vorticity close to the rod, the positive circulation due to the rod is counter 
balanced by the retained negative vorticity in the fluid.  Note that as the suction 
is reduced (e.g. k=3), the vorticity will move further from the rod, and thus a 
much larger radius (r>10) would be needed to bring the encompassed region of 
circulation to zero (including that in the rod).  


 
f) Extra credit:  Explain why there is the limiting behavior indicated in part c) and 


d), and see if you can determine what the limit of k=2 implies physically. 
 


Note that when k=2, the velocity profile matches the no suction case, the vorticity in the 
flow field disappears, and the circulation becomes the value due to the rotating rod only (the  
only source of circulation for the no suction case).  This represents the maximum suction  
velocity (for the fluid viscosity and the rod radius) that will still allow all the vorticity  
generated when the rod began rotating to escape the effects of the suction, and diffuse to  
infinity.  What happens at this point is that the original vorticity equation is correct, but  
decoupled (i.e. the two terms don’t depend on each other).  Since z 0  everywhere, then  


0
z


z 



  and 0
z 2


z
2







 everywhere also.  Thus, for k < 2, our governing equation reduces  


to: 


Circulation vs. Radius


0


2


4


6


8


10


12


14


0 1 2 3 4 5 6 7 8 9 10


Radius


C
ir


c
u


la
ti


o
n


Circulation, No Suction
Circulation, k=3
Circulation, k=6







Study Problems Solutions, Chapter 11 11-39 
 


 


 


 0
dr


dr
dr
d


rdr
d


r
VR zz 










 




  


or 


 0
dr


d z 
      or     0


dr
dr


dr
d z 










 
 


And as we know from the solution for the no suction case, integrating either of these  
decoupled equations will yield same velocity field as the no suction case.  Thus, for 
k  2, the solution for the suction case will be identical to the no suction case. 
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Chapter 12 
 


Study Problems Solutions 
 
1.  Consider the solution for a decaying Oseen-Lamb vortex solved in section 12.3.1.  Using the solution 


for the velocity (Eq. 12.29), determine the shear stress for the vortex, and create a graph showing 
r vs r.





 



from 0 < r < 6 cm for water ( = 10-2 cm2/s).  On one graph, show 3 plots for t = 1, 5, and 


10 seconds.  Briefly explain what is happening as time increases. 


We have from Eq. 12.29   
2rv 1


2 r 4 t
exp





  
    


   
 


The shear stress in the z direction is given by: 
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v vv1r r
r r r r r
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The gaph of this expression is shown below 


 
 


Clearly, the vortex has an initial high concentration of shear stress near the core.  
However, as time increases, viscosity causes the shear stress to diminish, and would 
eventually die out completely. 
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2.  Consider the solution for a dissipating Taylor eddy examined in section 12.3.2.  Using the solution for 


the velocity (Eq. 12.31), determine the shear stress for the vortex, and create a graph showing 
r32 vs r


M
.






from 0 < r < 6.  Let =1, and r and t be dimensionless.  On one graph, show 3 plots for t 


= 1, 2, and 3.  Briefly explain what is happening as time increases. 
 


We have from Eq. 12.31   
2


2 2


M r rv exp
16 t 4 t


 
  


   
 


The shear stress in the z direction is given by: 
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The graph of this expression is shown below 


 
 


Clearly, the vortex has an initial high concentration of shear stress near the core.  
However, as time increases, viscosity causes the shear stress to diminish, and would 
eventually die out completely. 
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3.  Consider the situation where an infinite plate and the flow above it are moving at a  
 


constant velocity U.  At t=0, the plate is suddenly stopped, decelerating from u = U to u = 0 
instantaneously.  


 
 
 
 
    
 


 
 
For this flow, the Navier-Stokes equation simplifies to: 
 


 2


2


y
u


t
u













  


 
Thus, only the local x-direction acceleration and shear forces are non-zero.  Solve this 


equation for u(y,t) using a “similarity” solution of the form )( f
U
u


, where the similarity 


parameter is 
t2


y



 .  Indicate clearly the appropriate boundary and initial conditions, 


reduce the equation to an ODE in terms of f(), and solve to determine f(), and thus u(y,t). 
 
Create two graphs:  One of u/U vs.  for 0 <  < 2; another showing three plots of u/U vs. y 
between 0 cm < y < 2 cm, for t = 1 s, 10 s, and 100 s.  Assume the fluid to be water with  = 
10-2 cm2/s. 
 


We first determine the u derivative terms of the above equation in terms of , as  


follows, using the chain rule, and designating f
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Substituting into the reduce N.S. equation gives: 
 


 


ff
t2


y


f
y


f
t2


2


2


2




















  


 
 
 
 0f2fff2   
  
This equation is an O.D.E. for f as a function of the similarity (stretching)  
parameter,  
 


 
t2


y



 . 


 
The appropriate initial and boundary conditions for the flow are: 
 
Initial condition:    U0tyu  ),(   
Boundary conditions: 00t0yu  ),(       U0tyu  ),(  
 
For this similarity parameter, the initial and boundary conditions become: 
 
Initial condition: 1fU0tyu  )(),(  
 
Boundary conditions: 00f00t0yu  )(),(


   
  1fU0tyu  )(),(   
 
Thus, we have not only reduced the differential equation from a P.D.E  to an  


Note that these 
conditions are 
identical, and 
thus represent 
one limiting 
condition 


 


f2 2   







Study Problems Solutions, Chapter 12 12-5 
 


 


O.D.E., but we have reduced the limiting conditions from three to two as well  
(which we must, if we are to achieve a solution). 
 
To solve our ODE, we let f  and substitute into above equation, such that:  


 2  
 
Separating variables and integrating gives: 
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Integrating  f ' gives:       2
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Applying the two limiting conditions we have: 
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This gives a final solution for )( f
U
u


, and thus ),( ty
U
u


, of: 


 





























t2
yerf


U
u


)erf()(f 
 


 


=0 


=1 


z 







Study Problems Solutions, Chapter 12 12-6 
 


 


 
 


 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 


0


0.2


0.4


0.6


0.8


1


1.2


1.4


1.6


1.8


2


0.0 0.2 0.4 0.6 0.8 1.0





u/U


u/U vs. 


0


0.2


0.4


0.6


0.8


1


1.2


1.4


1.6


1.8


2


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1


y 
(c


m
)


u/U


u/U vs. y(cm)


u/U| t=1s


u/U| t=10s


u/U| t=100s







Study Problems Solutions, Chapter 12 12-7 
 


 


 
4.  For the Ekman Drift problem done in section 12.4, using equation 12.41, determine the value 


of  Vwind (in m/s) for which 0u will be 3% of  Vwind after one hour of exposure. 
 


Equation 12.41 gives a relationship for the velocities as: 
 


   0uV
t


u3369 2
0wind


0 .  


 
Letting wind0 V030u . , and substituting into Eq. 12.41 gives: 
 


  0V030V
t


V0303369 2
windwind


wind  ...  


 


 
2wind


wind
11.079V 0.97V 0


t
   


wind
11.079 0.9409V 0


t
   


 
Solving for Vwind: 
 


wind
11.775V


t
   


 
So, to have 0u  be 3% of Vwind after one hour (3600 s), we get: 
 


wind
mV 0.1963
s


 , which is about ½ mph. 


 
This is obviously very low wind velocity, which again brings into question the assumption of 
constant shear used in section 12.4 
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5.  For the Ekman Drift problem done in section 12.4, using equation 12.41, determine the value 


of Vwind (in m/s) required for which 0u will be 0.5 m/s after (a) 5 minutes of exposure and 
(b) one hour of exposure. 


 
Equation 12.41 gives a relationship for the velocities as: 
 


   0uV
t


u3369 2
0wind


0 .  


 
Expanding the equation gives: 
 


 2 20
wind wind 0 0


u369 3 V 2V u u 0
t


.      


2 20
wind wind 0 0


uV 2V u 369 3 u 0
t


. 
    


 
 


 
We now use a root solver (I used Goal Seek in Exel) to determine Vwind when u0 = 0.5 m/s. 
 


When t = 5 minutes = 300 s,    wind
mV 3.77
s


 , which is about 8.5 mph. 


 


When t  = 1 hour = 3600 s,     wind
mV 2.25
s


 , which is about 5 mph. 


 
These are reasonable velocities, but will probably have turbulent behavior at the surface 
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6. For the Ekman Drift problem done in section 12.4, make graphs for 10y0  cm of: 
 


a.  yvs
y
u


0


w .










 , and  


 


b.  yvsu


0


w .




 (let 


s
cm10


2
2 , which will give 


0


wu




units of cm) 


 
Comment on what these show about the flow. 
 
For graph a, we plot: 
 


























































t2
yerf1


y
u


o


w  


 
Graph a 


 
 
For graph b, we plot: 
 






























































































t2
yerf1y


t4
yt2u 2


o


w exp  
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Graph b 


 
Graph a shows that the constant shear is spread slowly by viscosity.  It also shows why the 
assumption of a constant shear stress is artificial.  In reality, one would expect the surface 
shear to mediate (reduce), after initial application of an external wind. 
 
Graph b shows the spreading of the initial surface velocity in a negative y direction.  It also 
illustrates the continued increase in the surface velocity with time.  In reality, one would 
expect the water to reach some equilibrium value with larger times. 
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7.  For the Ekman Drift problem done in section 12.4, use a similarity method similar to that 
used for the water to derive the behavior of the shear stress and velocity for the air flow 
above the water.  You will use the same reduced equation and similarity parameter,  (only 
for the kinematic viscosity in air), and will determine solutions for the region 0y  .  Also, 
your initial condition will be U0t0yu  ),( = constant, and the second and third 


boundary conditions will be 00ty
y
u






 ),(  and U0tyu  ),( .  From your 


solutions, plot (let 
2cm0 15


s
  . , which will give 


 


0


Uu




 units of cm): 


 


A.  
y
uvs


0


a












 .  , from 0 <  < 2 


B.  
0u
Uuvs 


 .  , from 0 <  < 2, where 













t2u o
0   


(note that 
0u
Uu 


 is termed a velocity "deficit") 


C.  
 


o


Uuvsy



. , from 0 < y < 10 cm 


 
Comment on the behavior of your graphs, and what they show about this flow. 


 
We start with the reduced equation: 
 


2


2


y
u


t
u













 


And then consider the following geometric conditions 
 


 
 


Here, we consider the region y > 0, in air. 
 
Since we have a second-order boundary condition that is non-zero, this means that we need to 


do a solution for  ty
y
u ,






 as the similarity profile variable, and then determine u(y,t) from 


that solution.  To do this, we take the derivative of our initial reduced equation with respect to 
y, such that: 
 


 
































































































y
u


yy
u


ty
u


yt
u


y 2


2


2


2


  


y 


x o = constant Air 


Water 
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Note that this is an equation for  ty
y
u ,






, which is solved by a “similarity” solution of the 


form )(



 f
y
u


, where the similarity parameter is 
t2


y



 , where  is the kinematic 


viscosity of air.  To solve Eq. 12.33, we reduce the equation to an ODE in terms of f(), and 


solve to determine f(), and thus  ty
y
u ,






. 


 
We first determine the derivative terms of the above equation in terms of , as  


follows, using the chain rule, and designating f
d
df






and 
2


1 12
2 2


d f yf with
d 2 t


  






: 


Term 1:  


t2
f


t2
f


t2t2
1


t2


y
4


ty
t


where
t


f
td


df
t


f
y
u


tU
1


2
1


2
1


2
3


2
1














 



























































































)(


  


 
Term 2: 


y
f


yy
1


t2


y


t2


1
y


where
y


f
yd


df
y


f
y
u


yU
1


2
1


2
1


2
1


2
1




























































































 )(


 


 


  


2


2
2
1


2
12


22


2


22


2


2


2


2


y
f


0
t2


1
yyyy


where0f
y


f


y
f


y
f


yy
f


yy
f


y
f


yy
f


y
u


yU
1












































































 































































































































 )(


  


Substituting into the reduced N.S. equation gives: 


 


ff
t2


y


f
y


f
t2


2


2


2
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0f2fff2   
 
This equation is an O.D.E. for f as a function of the similarity (stretching) parameter,  
 


t2
y



 . 


 
The appropriate initial and boundary conditions for the flow are: 
 
Initial condition:    U0t0yu  ),(   


Boundary conditions: constant0t0y
y
u o 












 ),(  


  00ty
y
u






 ),(  


  U0tyu  ),(  
 
For this similarity parameter, the two second order boundary conditions become: 
 


Boundary conditions: 

















 oo 0f0t0y
y
u )(),(


   


  0f00ty
y
u






 )(),(  


  
Thus, we have reduced the differential equation from a P.D.E  to an O.D.E., with  
appropriate boundary conditions. 
 
To solve our ODE, we let f  and substitute into O.D.E., such that  
 


 2  
 
Separating variables and integrating gives: 
 


 2
1


2


C
d
dff


or
C












exp


ln
 


Integrating  f ' gives:       2
2


12
0


2
1 Cerf


2
CCdCf 



 





)(exp  
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Applying the two limiting conditions we have:  
 


















































o
2121


o
221


o


2C2CCerf
2


C0f


CC0erf
2


C0f


)()(


)()(
 


 


This gives a solution for )(



 f
y
u


, and thus ),( tyf
y
u







, of: 


 



































































t2
yerf1


y
u


)erf(1)(f 


o


o


 


 


To obtain u(y,t), we integrate 
y
u






with respect to y (I used Wolfram Alpha to do the  


integration), and get: 
 


)(exp),( tg
t2


yerf1y
t4


yt2tyu
2


o 


























































































  


 
Applying our original initial and boundary conditions: 
 


Initial condition:         U0t0yu  ),(  
 


        U0gerf1y0tyu o 




 )(exp),(  


   U0g0g11y0tyu o 




 )()(),(  


 
 Boundary condition:   00tyu  ),(  
 


       Utgerf1t2tyu o 






















 )(exp),(  


     Utg110t2tyu o 






















 )(),(  


   Utg0tg000tyu o 




 )()(),(  


 
Thus: 


=0 


=1 


=1 


=1 
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t2
yerf1y


t4
yt2Utyu


2
o exp),(  


 


Note that in this u equation, the collection of terms 









 t2


w


o has the units of velocity, so 


letting: 
 















t2u o
0    


 
we can rewrite Eq.12.36 as: 
 
























































































t2
yerf1


t2
y


t4
y


u
U


u
u 2


00


exp  


Since we don't know U relative to 0u , we will rearrange the equation to give what will be a 
difference, or defect in the velocity profile from U, as u-U, giving: 


 



























































































t2
yerf1


t2
y


t4
y


u
Uu 2


0


exp  


And substituting our similarity parameter, 
t2


y



 , into this equation gives: 


 


    
 erf1
u


Uu 2


0


exp  


 
However, we don't know the values of o , and thus we can't calculate the value of 0u as a 


function of time, relative to the U value.  So, let's factor o  and  out of the equation, and 
write our deficit equation as: 


 


 






























































































t2
yerf1y


t4
yt2Uu 2


o


exp  


 
Now, we plot our similarity graphs, and our dimensional deficit graph. 


 


Graph A:   


















































t2
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y
u


o


 


 







Study Problems Solutions, Chapter 12 12-16 
 


 


 
 
 
 


Graph B:       
 erf1
u


Uu 2


0


exp  
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Graph C:    
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8. Substitute Eq. 12.54a for the x-direction velocity, u, into Eq. 12.55, and solve for  in terms 


of J to show that Eq. 12.56 is correct. I would suggest you do the integration using Wolfram 
Alpha. 


 
Substituting Ea. 12.54a into Eq. 12.55, and using Wolfram Alpha to integrate: 
 


 
4 4


2 4 4
2 2 2/3


3 3


4 4 yJ u dy sech ( )dy sech ( )dy
x39x 9x


  


  


  
    



    


    24 4
2/3 4


2
3


tanh sech 24 4J 3 x sech ( )d
3 39x










     
     


  
  


 
     4 31 0 2 1 0 24 16J


3 3 9
       


  
 


 


 
Solving for , 
 


1
3


3 9J J0.8255
16


 
      


    
  which is Eq. 12.56 
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9. Using Eq. 12.54a for the x-direction velocity, u, into Eq. 12.55, determine the x-direction 


mass flowrate per unit depth, m, as a function of x. Let , , and J = 1.  Use your resulting 


equation to plot 
x 1


m
m 


from x = 1 to x =10 x 1m 
.  What does this show is happening in the 


flow? 
 


The equation for the x-direction mass flowrate per unit depth is: 


m udy






   


Substituting Eq. 12.54a, 
 


2 2 12 2/3 2 2 23
1 1


3 3


2 2m sech ( )dy 3 x sech ( )d 2 x sech ( )d
3x 3x


  


  


 
                 


 
1 1 123 3 3tanh( )m 2 x 2 x 1 1 4 x








 
                


 


1
3 1


3Jm 3.302 x
 


   
  


 


If , , and J = 1, 
1
3m 3.302x  


So,  
1


3


x 1


m x
m 


  


 


Plotting 
1


3


x 1


m x
m 


  


 
 
 
 
 
 
 
 
 
 
The graph shows that the x-direction mass increases with distance.  This comes from inflows 
in the y direction that are induced by the initial jet.  This is seen in the streamline plot of 
figure 12.11. This entrainment is typical of any jet entering a quiescent environment. 
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10.   Consider the decaying vortex velocity given by Eq. 12.31, and derived by G.I. Taylor.  For 


this velocity, the momentum is a constant, given by M. 
 


a) Show that M is a constant by integrating for the angular momentum (massless), given by 


2


0


M 2 v r dr



  .  Hint, rewrite Eq. 12.31 in terms of 
t


r



 . 


2 3 2
2


2 2 2 2
0 0


M r r M r rM 2 exp r dr exp dr
16 t 4 t 8 t 4 t


 
   


       
       


   


Now, we write the equation in terms of : 
2 2


3 2


0 0


MM exp d 2exp ( 4)
8 4 4






    
           


   
  


       
M MM 2 0 4 2 1 0 4 0 8 M
8 8


            


Note that 
2


2exp 0
4


 
   


 
 by L’hospital’s rule. 


b) Calculate the vorticity for this flow, and plot 
2


z8 vs. r
M


 
 for 0 < r < 8, at t = 1, 2, and 


3. Let  = 1. 
  2 2 3 2


2
z 2 2 2 2


rv1 M r M r 2r rr exp 2r exp exp
r r 16 t r r 4 t 16 t r 4 t 4 t 4 t



         


               
               


 


2 2


z 2 2


M r r1 exp
8 t 4 t 4 t


   
     


     
 


2 2 2
z


2


8 1 r r1 exp
M t 4 t 4 t
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c) Calculate the circulation, , and plot 
28 vs. r


M
 


 for for 0 < r < 8, at t = 1, 2 and 3. Let  


= 1. What is the value of  when r  ?  How do you explain that? 
 


   
2 2 2


2 2 2 2


M r r M r rv 2 r exp 2 r exp
16 t 4 t 8 t 4 t


   
          


       
 


 
2 2 2


2


8 r rexp
M t 4 t


  
  


 
 


 


 
When r  , clearly  0, which is due to the sum of the positive and negative vorticity 
cancelling out. Note also for t >> 0 the circulation approaches zero for all r, as the vortex 
slowly dissipates  
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Chapter 13 
 


Study Problems Solutions 
 


1. A thin flat plate 0.4 m. wide and 2 m. long is towed through 20 °F water at 1 m/s 
 Compute the drag due to surface resistance on the two surfaces (in Newtons) 
 


Here we can make use of the Blasius solution for total drag on a flat plate.  Assuming that the flow is 
uniform in width, the total drag on one surface is given by: 
 


 2


L


0.664Drag U WL
Re      where  





LU
L


Re  


The kinematic viscosity of water at 20° F is roughly 
2


6 m10
sec


  , and L= 2 m,  


W=0.4 m, U=0.5 m/sec, and the density is roughly 3


kg1000
m


   


So, 
   


 


6
L 2


6


m0 5 2 mU L 10
m10


.
secRe


sec








  



   (note that this is at the extremes of laminar flow) 


 


Thus,        
2


2
3 2 26


L


0 664 0 664 kg m kg mDrag U WL 1000 1 0 4 m 2 m 0 531 0 531N
m10


. . . . .
sec secRe 



      


 
So the total drag on both sides of the plate is only 2x0 531N 1 062N. .  
 
Not a lot of drag. 
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2.  For the flow described in problem 1, determine the boundary layer, displacement, and momentum 


thicknesses at the end of the plate. 
 


From problem 1, we know that L = 2 meter and  
   


 


6
L 2


6


m0 5 2 mU L 10
m10


.
secRe


sec








  



  


So, the boundary layer, displacement, and momentum thicknesses are given by: 
 


 
 


6
L L


5 2 m5 5L 0 01m 1cm
L 10


.
Re Re



        


 


 
 


6
L


1 717 2 m1 717L 0 00343 m 0 343 cm
10


..* . .
Re


      


 


 
 


6
L


0 660 2 m0 660L 0 00132 m 0 132 cm
10


.. . .
Re


      


 
Even at this elevated Reynolds number, these thicknesses are quite small. Note that  


0 005 0 5
L


. . %
  . 
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3. A laminar, uniform air flow at 20 °C passes over a thin flat plate 1 meter wide and 4 meters 


long.  If the Reynolds number based on the plate length is 5x105, determine the flow velocity, 
and the boundary layer, displacement, and momentum thicknesses at the end of the plate, 
compute the drag due to surface resistance on the two surfaces (in Newtons.) 


 
Since Re = 5x105, we assume that the flow is a Blasius-type flow and uniform in width. Note that flat 
plate Reynolds numbers at or less than 5x105 are generally considered laminar, so this flow is at the 
upper end of that level.   


The kinematic viscosity of air at 20 °C is 
2


5 m1.52x10
sec


  , and L = 4 m. 


Thus, the velocity to achieve this Reynolds number is: 


   


 


L


2
5 5


L


U LRe


m1.52x10 5x10Re msU 1.90
L 4 m s
















  


.   


 
The boundary layer, displacement, and momentum thicknesses for this flow are: 
 


 
  cm822m02820


10x5
m45L55


L
 


5
LL


..
ReRe






 


 


 
  cm9710m009710
10x5


m47171L7171
5


L


...
Re


.*   


 


 
  cm3730m003730
10x5


m46600L6600
5


L


...
Re


.
  


 
At this Reynolds number, these thicknesses are relatively small. Note that  


%71000710
L


.. 



. 


 
The total drag on one surface is given by Eq. 13.36: 
 


 WLU6640Drag 2


L



Re
.


    


 


Here, W = 1 meter, U = 1.90 m/sec, and the density is roughly 3m
kg2061. . Equation 


13.36 predicts a drag of: 
 


        N016350
s


mkg016350m4m1
s
m613


m
kg2061


10x5
6640Drag 22


2


35
.....
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Alternatively, if we use Eq. 13.38 to calculate the drag using the momentum thickness, we get: 
 


          N016240
s


mkg016240m003730m1
s
m613


m
kg2061WUDrag 22


2


3Lx
2 ..... 



   


Note that this value is slightly less than the calculation obtained using Eq.13.36.  This is due to 
the different coefficient value used in calculating the momentum thickness (0.66 vs. 0.664, as 
discussed previously in Section 13.5). 
 
Using our first calculated values of drag, the total drag for both sides of the plate is


N03270N016350x2 ..  . Pretty low drag. At more practical Reynolds numbers ( > 5x105) 
the flow will become turbulent, resulting in higher drag (see Chapter 17) 
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4. Use the tabular data from table 13.1 to calculate the shear stress, yx, vs.  in the Blasius boundary layer 


for water ( = 10-3 N-s/m2,  = 10-2 cm2/s) for a flat plate flow with U=10 cm/s, at a location x = 100 
cm.  Plot a graph of yx vs.  for 0 <  < 8.  Hint: copy the table from this chapter to an Excel sheet to do 


the plotting.  Note that 

























x
v


y
u


yx , and you will have to determine 
x
v




from )(  FxU , 


similar to how 
y
u




 is determined on page 13 in section 13.3.  How much impact does the 


x
v




term 


contribute to the shear stress? 
 


From section 13.3, we have: 
 


 )( FF
x


U
2
1


x
v 










   


Thus, 
 


 


















































 


x
FF


xx
F


x
U


2
1FF


x
U


4
1


xx
v


32


2


)(  


But, 
 


 
x2x


1
x


Uy
2
1


x











   


So,  
 


 


)(


)(


FFF
x


U
4
1


xx
v


x2
F


x
U


2
1FF


x
U


4
1


xx
v


2
32


2


32


2





























 






























 


 
From Section 13.3 we have: 
 


 F
x


UU
yy


u
2


2

















 
  


Using these relationships, and noting that 

























x
v


y
u


yx , we use the values in table 13.1 to 


determine the following table of yxand
x
v


y
u













 ,,, . 
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 u/y (s-1) v/x (s-1)  (N/m^2) 


0.0 10.5019 0.000000 0.0105019 


0.2 10.4988 -0.000002 0.0104988 


0.4 10.4830 -0.000006 0.0104829 


0.6 10.4387 -0.000014 0.0104387 


0.8 10.3533 -0.000025 0.0103533 


1.0 10.2142 -0.000039 0.0102141 


1.2 10.0118 -0.000055 0.0100117 


1.4 9.7367 -0.000073 0.0097366 


1.6 9.3825 -0.000092 0.0093824 


1.8 8.9461 -0.000112 0.0089460 


2.0 8.4370 -0.000133 0.0084368 


2.2 7.8551 -0.000152 0.0078549 


2.4 7.2132 -0.000169 0.0072130 


2.6 6.5301 -0.000184 0.0065299 


2.8 5.8186 -0.000196 0.0058184 


3.0 5.1039 -0.000205 0.0051037 


4.0 2.0302 -0.000201 0.0020300 


5.0 0.5028 -0.000164 0.0005026 


6.0 0.0759 -0.000142 0.0000758 


7.0 0.0063 -0.000137 0.0000062 


8.0 0.0000 -0.000136 -0.0000001 


 


A plot of shear stress vs.  is shown  below.  Note from the table that 
x
v




contributes little  


to the shear stress, except when the edge of the boundary layer is approached (i.e.  > 6).  
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5. Using the Blasius results from section13.3 and table 13.1, determine if the boundary layer equations 


should give reasonable results for 1000xU
x 



 Re .  If not, what is the minimum value for  xRe  


that would satisfy our initial assumption for using the boundary layer equations?  Hint: consider the ratio 


of  
u
v


 and 
x



  at the edge of the boundary layer. 


 
In section 13.2.1 it was suggested that both ratios should be on the order of 1/100.  For  


1000x Re we calculate that: 
 


 1580
1000
55


x x


.
Re






 


And 
 


 02730
1000
86508650


U
v


x


..
Re
.@ 





  


 


So 
x



 is greater than 0.01, although 
v
U








 is closer. 


 
If we use 0.01 as our ratio criteria, we would need: 
 


 5
2


x
x


10x52
010
50105


x
.


.
Re.


Re
















 


 


  74825860108650
U
v 2


x
x






 .Re.
Re
.  


 


So, we might choose 00010x ,Re   as a limit, which gives 
u
v


 < 0.01, and 0505
x x


.
Re






,  


which is small enough to justify x . 
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6. Determine how much vorticity is generated at the flat plate surface (y = 0) for the boundary 


layer.  Show this using Eq. 11.48 in Chapter 11, and then confirm this by calculating 
y 0y









directly from the Blasius solution.  Note that z
u v
y x


  
   


  
, and you may have to determine 


x
v




from U xF( )    , similar to how 


y
u



  is determined in section 13.3. 


 


Eq.11.48 is 
0y


z
0y0y


z v
x
P1


t
u1


y
 


































 


 
However, for a steady flow with a solid boundary only the third term on the right is non-zero, 
so we have: 
 


z


y 0


1 P 
y x





 
 


  
  


But, since the pressure is constant in a flat plate boundary layer, and therefore z


y 0


0
y










.  


Thus, there is no vorticity generated after the leading edge of the plate. 
 


Note that at the plate surface, z y 0
y 0 y 0


v u u
x y y


 


   
     


   
(since there is no  change in 


v with x at y = 0). Differentiating, we have  
2


z
2


y 0 y 0


u
y y


 


 
 


 
. 


In Section 13.3, we showed that 
22 3


2 3


Uu F
y y x


  
 


  
, where U xF( )     and 


x
Uy



  . While table 13.1, doesn’t list a value for F at  = 0, we can determine F


using the Blasius equation for F,  Eq. 13.23, which is: 
 


1 1F FF 0 F FF
2 2


         


At  = 0 (y = 0), F(0) = 0, and  F 0 0.3321  .  So,     
1F 0 0 0.3321 0
2


    . 


Thus,  
22


z
2


y 0 y 0


Uu F 0 0
y y x





 


 
    


  
.  So, again this shows that no vorticity is 


generated at the bounding surface of a flat plate boundary layer flow. Thus, the initial 
vorticity within the boundary layer can only be redistributed by viscous and advective effects. 
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7. Consider a uniform flow, u = U entering a 2-D duct with sharp leading edges as shown.  The duct 


height is h and the flow remains laminar at all times through the duct.  Assume the flow may be broken 
into viscous and inviscid regions as shown.  Make use of the Blasius solution and determine: 


 
a) h = h(x) such that dp/dx = 0  (let ho be the initial duct height). 


 
b) the length, L, where your expression for h(x) ceases to be valid. 


 


  
 


Note that 
dP 0 U
dx   =constant in central inviscid (behaving) region 


Thus, by continuity we can write: 
 


 
 


    x2xhUudy2udyhUdyU
xy


0y


)x(h


0y
0


h


0y


0






 














      where     
 












xy


0y


dyx



  


 


 
 


 
 















 


x


0y


xy


0y
0 dyU2xhUudy2hU





 


    
 


 
 



 








 












x


0y


x


0y
0 dy1


U
uU2xhUdyUu2xhUhU





 


or factoring out U  and identifying the displacement thickness,  *. 
 


  
 


   
x


x


0y
0 Re


x72.12xh*2xhdy
U
u12xhh 











 


 






 


 
Solving for h(x) gives: 
 


   0 0
x


3 44x xh x h h 3 44
U


. .
Re 



     


 
L occurs when   2Lxh     (i.e. when the boundary layers from the two surfaces merge) 
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L


0
L Re


L44.3h
Re
L522xh 




















      when x = L 


  


Solving for L yields 




Uh


0232.0L
2
0  


For example, if this is air with 
2cm0.15


sec
  , 


mU 1




sec
, and 0h 30cm , 


 





Uh0232.0L
2
0 139.2 m.  and h(L) = 45.7 cm ., so curvature would not be a problem.   


 
However, at this location the Reynolds number would be well into the turbulent range, so we would have 
a much messier problem. 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 13 13-11 
 


 


 
8. For the Blasius solution, prove that /x = 0.664/(Rex)0.5   [hint: make use of the original ODE (


FF 2F   ), and the identity that   2FF F FF
     to assist the integration]. 


 


Note that  







0


dy
U
u1


U
u )(  


From Blasius solution:  x
U


x
U dydy



   


 


 
F


U
u


EqnBlasius0FFF 2
1











.)(


 


So   
 


 



0 0


2
U


x
U


x dFFdF1F )()(  


But      2FF F FF From Blasius eqn FF 2F.
           


     F2FFFF2FFF 22 





  


 


Thus,    





 




  0U
x


0
U


x F2FFFdF2FFF )()(  


For a flat plate boundary layer @ =5  (note for  > 5   Uu ): 
 
 1) F’   1    at the boundary layer edge, F’=1 
 2) F’’  0    at the boundary layer edge, F’=0 
  


 
      


x
U


x


U
x


U
x


0U
x


6640
x


6640
x


33206020F2F2F1F


Re
..


.
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9. For the Falkner-Skan solution, prove that  
    



















m31
88Fm0Fx2 mm


x
m Re


, where m is the 


momentum thickness, and mF  and mF   are functions at a specified value of m.  Make use of the 


original ODE,    21F 1 m FF m 1 F 0
2


       , and the identity   2
m m m m mF F F F F
     to assist 


the integration.  Take the upper limit of the boundary layer where @  = 8 (where  Uu ).  Note 
that the values of the mF function, and its derivative value are: 
 


   
0F1Fmon  dependingconstant aF8at


m;on  dependingconstant aF0F0F0at


mmm


mmm








,,,


,,,
 


 


Note that  







0


dy
U
u1


U
u )(  


From Blasius solution:  x
U


x
U dydy



   


 


 


   


F
U
u


EqnSkanFalkner0F1mFFm1
2
1F 2











.)(
  


So   
 


 



0 0


2
mmU


x
U


x
mm dFFdF1F )()(  


But     mm
2


mmmmmmm FFFFFFFFF 



  
  


   2
mmmmm FFFFF 



  


 
From Falkner-Skan Eqn. 
 


     0F1mFFm1
2
1F 2


mmmm   


 
Substituting for FFm   from above: 
 


       0F1mFFFm1
2
1F 2


m
2


mmmm 





 



  


 
Solving for 2


mF : 
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 m31


m2FFm1F2F


m2FFm1F2Fm31


mmm2
m


mmm
2


m


















 


 


Thus,  
  


 









 


































0


mmm
mU


x


0


2
mmU


x d
m31


m2FFm1F2FdFF )(  


 


 
 
 




























0


mmm
mU


x


m31
m2FFm1F2F  


 
Taking the upper limit of the BL @ =8, where  Uu ): 
 


 At 
0F1Fmon  dependingconstant aF8


mon  dependingconstant aF0F0F0


mmm


mmm








,,,


,,,
 


  
Applying limits to theta equation gives: 
 
  


   
 


   
  




















































0


mmmm
8


mmmm


m31
m2FFm1F2Fm31


m31
m2FFm1F2Fm31


x
2


Re
 


 
Which reduces to (after applying above limits): 
 


    



















m31
88Fm0Fx2 mm


x
m Re
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10. The following table (next page) is a Falkner-Skan solution for m = -0.05, a moderate adverse pressure 
gradient.  Copy this table to an Excel sheet, and determine and plot y vs. u (y vertical axis, u 
horizontal axis) at x = 10, 20, and 30 cm.  Assume Uo = 10 cm/s at x = 10 cm, and  = 10-2 cm2/s. All 
three plots should be on one graph. Hint: use the expression for u following Eq. 13.41, and note that 


)(xfU  given by Eq. 13.44. 
 
 


 Falkner-Skan table  


 for m = - 0.05  


    
 F F' F" 


0 0 0 0.2135 


0.2 0.0043 0.0437 0.2235 


0.4 0.0176 0.0894 0.2332 


0.6 0.0402 0.137 0.2424 


0.8 0.0725 0.1863 0.2509 


1 0.1148 0.2372 0.2582 


1.2 0.1675 0.2895 0.264 


1.4 0.2307 0.3427 0.268 


1.6 0.3046 0.3965 0.2698 


1.8 0.3893 0.4504 0.2691 


2 0.4848 0.504 0.2658 


2.2 0.5908 0.5566 0.2595 


2.4 0.7073 0.6076 0.2504 


2.6 0.8337 0.6566 0.2386 


2.8 0.9697 0.7029 0.2241 


3 1.1147 0.7461 0.2075 


3.2 1.2679 0.7858 0.1892 


3.4 1.4287 0.8217 0.1698 


3.6 1.5963 0.8536 0.1498 


3.8 1.7699 0.8816 0.13 


4 1.9487 0.9057 0.1108 


4.2 2.1319 0.926 0.0927 


4.4 2.3189 0.9429 0.0762 


4.6 2.5089 0.9566 0.0614 


4.8 2.7013 0.9676 0.0486 


5 2.8957 0.9762 0.0377 


5.2 3.0916 0.9828 0.0287 


5.4 3.2887 0.9878 0.0215 


5.6 3.4867 0.9915 0.0157 


5.8 3.6852 0.9942 0.0113 


6 3.8843 0.9961 0.008 
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6.2 4.0836 0.9974 0.0055 


6.4 4.2832 0.9983 0.0037 


6.6 4.4829 0.9989 0.0025 


6.8 4.6828 0.9993 0.0016 


7 4.8827 0.9996 0.001 


7.2 5.0826 0.9998 0.0007 


7.4 5.2826 0.9999 0.0004 


7.6 5.4826 0.9999 0.0002 


7.8 5.6826 1 0.0001 


8 5.8826 1 0.0001 


 


From page 447, FUu   and Eq. 13.44, 
m


0
0 x


xUU 











 .  Also, 


x
Uy



  , or 









U
xy .  Note that 'F


x
xUu


m


0
0 













 , since U  changes with x. 


 
So, we prepare the following table in Excel. 


 
Uo= 10 cm/s xo= 10   


 0.01 cm2/s m= -0.05   
x= 10 20 30    


 y, x=10 ux=10=U*F' y, x=20 ux=20=U*F' y, x=30 ux=10=U*F' 


 0.000 0.00 0.000 0.00 0.000 0.00 


 0.020 0.44 0.028 0.42 0.035 0.41 


 0.040 0.89 0.057 0.86 0.069 0.85 


 0.060 1.37 0.085 1.32 0.104 1.30 


 0.080 1.86 0.113 1.80 0.139 1.76 


 0.100 2.37 0.141 2.29 0.173 2.25 


 0.120 2.90 0.170 2.80 0.208 2.74 


 0.140 3.43 0.198 3.31 0.242 3.24 


 0.160 3.97 0.226 3.83 0.277 3.75 


 0.180 4.50 0.255 4.35 0.312 4.26 


 0.200 5.04 0.283 4.87 0.346 4.77 


 0.220 5.57 0.311 5.38 0.381 5.27 


 0.240 6.08 0.339 5.87 0.416 5.75 


 0.260 6.57 0.368 6.34 0.450 6.22 


 0.280 7.03 0.396 6.79 0.485 6.65 


 0.300 7.46 0.424 7.21 0.520 7.06 


 0.320 7.86 0.453 7.59 0.554 7.44 


 0.340 8.22 0.481 7.94 0.589 7.78 


 0.360 8.54 0.509 8.25 0.624 8.08 
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 0.380 8.82 0.537 8.52 0.658 8.34 


 0.400 9.06 0.566 8.75 0.693 8.57 


 0.420 9.26 0.594 8.94 0.727 8.77 


 0.440 9.43 0.622 9.11 0.762 8.93 


 0.460 9.57 0.651 9.24 0.797 9.05 


 0.480 9.68 0.679 9.35 0.831 9.16 


 0.500 9.76 0.707 9.43 0.866 9.24 


 0.520 9.83 0.735 9.49 0.901 9.30 


 0.540 9.88 0.764 9.54 0.935 9.35 


 0.560 9.92 0.792 9.58 0.970 9.39 


 0.580 9.94 0.820 9.60 1.005 9.41 


 0.600 9.96 0.849 9.62 1.039 9.43 


 0.620 9.97 0.877 9.63 1.074 9.44 


 0.640 9.98 0.905 9.64 1.109 9.45 


 0.660 9.99 0.933 9.65 1.143 9.46 


 0.680 9.99 0.962 9.65 1.178 9.46 


 0.700 10.00 0.990 9.66 1.212 9.46 


 0.720 10.00 1.018 9.66 1.247 9.46 


 0.740 10.00 1.047 9.66 1.282 9.46 


 0.760 10.00 1.075 9.66 1.316 9.46 


 0.780 10.00 1.103 9.66 1.351 9.47 


 0.800 10.00 1.131 9.66 1.386 9.47 


 
 
From which we can plot the following graph. 
 


 
 
 
 


0.0


0.2


0.4


0.6


0.8


1.0


1.2


1.4


0.00 2.00 4.00 6.00 8.00 10.00


y 
(c


m
)


u (cm/s)


y vs. u
m = -0.05


x=30 cm


x=20 cm


x=10 cm
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11. The table shown in Problem 10 is a Falkner-Skan solution for m = -0.05, a moderate adverse 


pressure gradient. Using appropriate information from that table, determine general expressions 
for *, , and shape factor H = */.  On a single graph, plot U ,  * ,and  vs. x (all on one 
graph) from x = 10 to 100 cm. Let Uo = 10 cm/s and  = 10-2 cm2/s. Note that )(xfU 


(given by Eq. 13.44) and must be taken into account when calculating xRe .  Plot * and  on 
the primary vertical axis, and U using a secondary vertical axis. 


 
For the displacement thickness, Eq.13.47, we have: 
 


 )(
Re


* 8F8x
m


x
m   


From the provided table, )(8Fm = 5.8826.  So, the displacement thickness for m = -0.05 is: 
 


x
m


x1172
Re


.*   


 
For the momentum thickness, Eq. 13.48, we have: 
 


    



















m31
88Fm0Fx2 mm


x
m Re


 


 
From the table provided,   213500Fm . ,   882658Fm . , and m = -0.05. So, the 
momentum thickness for m = -0.05 is: 
 


 


xx
m


x7510
1501


88826505021350x2
Re


.
.


...
Re

















  


 


H is given by 822
7510
1172H


m


m .
.
.*







 . 


 


Plotting U , * and  vs. x, noting that 
m


0
0 x


xUU 









 from Eq.13.44, we can prepare the 


following table, and plot the corresponding graph. 
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x (cm) U (cm/s) * (cm) cm


10 10.000 0.212 0.075 


20 9.659 0.305 0.108 


30 9.466 0.377 0.134 


40 9.330 0.438 0.155 


50 9.227 0.493 0.175 


60 9.143 0.542 0.192 


70 9.073 0.588 0.209 


80 9.013 0.631 0.224 


90 8.960 0.671 0.238 


100 8.913 0.709 0.252 
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12. The generation of vorticity for a steady, pressure gradient flow with solid boundaries, like the 


Falkner-Skan flow, is given by equation 11.48 as: 
 


2
z


2
y 0 y 0


u 1 P 
y y x


 


  
   


   
 


 


For the Falkner-Skan flow, 
dU1 dP U


dx dx




 



 from Bernoulli, 
m


0
0 x


xUU 












,and 
2


2
y 0


u
y









can 


be determined in terms of F  from page 448. Note that for all values of m, F = 0 and F’= 0 at 
y = 0. Show that the velocity derivative term and the pressure derivative term in the above 
equation are identical.  Note that you will need to use Eq. 13.46 to determine F  at y = 0. 
 


For the 
2


2
y 0


u
y










 term, we use the relationship we developed on page 448 


 
2 23 2 2


3 2 2
y 0 y 0


U Uu uF F
y x y y x


 


  


   
      


    
   


 
To Determine y 0


F
 


  we use Eq. 13.46, and solve for F . 
 


   21F 1 m FF m 1 F
2


        


 
At y=0, also =0, F=0 and F’=0, so  
 


     2


y 0


1F 1 m 0 F m 1 0 m
2 


         


 
So, 
 


 


2m 2m
2 2
0 022


0 0z
2


y 0 y 0
0


0


x xU m U m
x xUu m


y y x x x x
x





 


   
   


           
     


 
 


 


2m 12
0z


0 0y 0


U m x
y x x








 
  


   
 


 


For the 1 P
x




 


 term, we use Bernoulli to write 
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z


y 0


dU1 dP U
y dx dx










  


 
 


 


And we differentiate  
m


0
0 x


xUU 












 


 
m m 1


z
0 0


0 0 0y 0


dU x m xU U U
y dx x x x












   
     


    
 


 
2m 1


2z
0


0 0y 0


m xU
y x x








 
  


  
 


 
This is the same result we obtained for the viscous term. 
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13. The generation of vorticity for a steady, pressure gradient flow with solid boundaries, like the 


Falkner-Skan flow, is given by: 
 


2
z


2
y 0 y 0


u 
y y


 


 
 


 
 


 For the Falkner-Skan flow, 
2


2
y 0


u
y









can be determined directly in terms of F  from page 447. 


For the table shown below, determine, the vorticity generation in terms of  U0, x, x0, , and m  
 For the m values shown in the table, plot (on the same graph) the vorticity generation 


0 z
2
0 y 0


x
U y





 



vs  x/xo, from 1 < x/xo < 5.  Note that you will need to use Eq. 13.46 to 


determine F  at  = 0 (y = 0). 
 


Values of F, F', and F'' at =0 (y=0) 
 


 
 
 
 
 
 
 


 
 
What do your results indicate about a the generation of vorticity for a Falkner-Skan flow? 
 


For the 
2


2
y 0


u
y










 term, we use the relationship we developed on page 448 


 
2 23 2 2


3 2 2
y 0 y 0


U Uu uF F
y x y y x


 


  


   
      


    
   


 
To Determine y 0


F
 


  we use Eq. 13.46, and solve for F . 
 


   21F 1 m FF m 1 F
2


        


 
At y=0, also =0, F=0 and F’=0, so  
 


     2


y 0


1F 1 m 0 F m 1 0 m
2 


         


 


m F F' F" 


0.3 0 0 0.726 


0.1 0 0 0.497 


0 0 0 0.332 


-0.05 0 0 0.214 


-0.0905 0 0 0.0145 
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So, 
 


 


2m 2m
2 2
0 022


0 0z
2


y 0 y 0
0


0


x xU m U m
x xUu m


y y x x x x
x





 


   
   


           
     


 
 


 


2m 12
0z


0 0y 0


mU x
y x x








 
  


   
 


 
 
 


      m                0 z
2
0 y 0


x
U y





 



 


 
0.3 


0 4


0


x0 3
x


.


.



 
 
 


 


 
0.1 


0 8


0


x0 1
x


.


.



 
 
 


 


 
0 


 
0  


 
-0.05 


1 1


0


x0 05
x


.


.



 
  


 
 


 
-0.0905 


1 181


0


x0 0905
x


.


.



 
  


 
 


 
 


When z


y 0


0
y










, for m > 0, the slope of the vorticity is positive, which means that 


negative vorticity is being generated (see page 356, Eq. 11.48), which adds to the 
already negative vorticity of the boundary layer. This results in a flattening of the 
velocity profile, slows or reverses boundary layer growth, and keeps the flow attached 


to the bounding surface.  When z


y 0


0
y










, for m < 0, the slope of the vorticity profile 


is negative at the wall, which means that positive vorticity is being generated, which 
cancels with some of the negative vorticity already in the boundary layer. This results 
in a peak in vorticity away from the surface, creating an inflection in the velocity 
profile, which will both thicken the boundary layer and eventually lead to flow 
separation from the surface. 
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 Chapter 14 


 
Study Problems Solutions 


 


1.  Using the momentum integral equation, assume a velocity profile of the form 



ba
U
u


, 


where 




y


. Determine the constants a and b, and then the boundary layer parameters 


fcand,*,,  for a flat plate flow.  Compare you results to table 14.1 in section 14.2.2. 
 
The boundary conditions for this flow are: 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu     
 
Solving for the unknown constants:   


 
 B.C. #1 0a0a0   
 B.C. #2 1b    


 


















y
U
u


 


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 
 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


   









 








d1d
U
u1


1


0


1


0


 


 
22


1 1


0


2 












*   


and  


 


















































1


0


1


00


6
d1


d
U
u1


U
udy


U
u1


U
u


))((
  


and, 


 















 





U
d
du1


dy
d


d
du


dy
du


000y
0   


 
We now substitute the boundary layer parameters from above back into the 
momentum integral equation, Eq. 14.11, to obtain a differential equation for  (x): 
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UU
U


dx
dU


U
1


326dx
d


2  


or 


 






 













Udx
dU


U6
5


dx
d


6
1


  


However, recall that for a flat plate flow, 0
dx


dUconstU  
 .  


 











Udx
d


6
1    for a flat plate flow 


 
Separate variables and integrate, 
 


 




 dx


U
6d  


 1


2


C
U


x6
2













 


  
For a flat plate flow: 
 
  0C0x    0 1  @  
Thus, 


 











U
x4643


U
x12 .  


or 


 
x


4643
x Re


.




 where  





xU
x


Re   


 
Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 


 
x


x7321
U


x7321
2 Re


..* 











   


 
x


x5770
U


x5770
6 Re


.. 











  


 
 


x


2
2
12


0
U5770


xU4643


U


U
x4643


UU
Re


.


..








































  


 
These results are the same as listed in table 14.1  
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2.  Using the momentum integral equation, assume a velocity profile of the form 


32 dcba
U
u






, where 




y


, and determine the constants a, b, c, and d, and then 


the boundary layer parameters fcand,*,,  for a flat plate flow.  Assume that all 
derivatives are zero at 1 .  Compare you results to table 14.1 in section 14.2.2. 


 
The boundary conditions for this flow are: 
 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu    


 3)  1  @  0  
d
du1)( y  @  0 



  


 4)  1)( y  @  0
dy


ud
2


2


   


 
Solving for the unknown constants:   


 
 B.C. #1 0a000a0   
 B.C. #2 dcb1   
 B.C. #3 d3c2b0   
 B.C. #4 d6c20   
Solving simultaneously, we get b = 3, c = -3, and d = 1, so the velocity profile is: 
 


 
32


32 yy3y333
U
u

















































 


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 
 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


   









 








d331d
U
u1


1


0


32
1


0


 


 
442


3*
1


0


4
32 











 
  


and  


 


  


 


















 





28
3


34


d33133dy
U
u1


U
u


1


0
7


7
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4
1932


2
3


1


0


3232


0
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and, 


 


 






























































U3363U
d
du


d
du1


d
du


dy
d


dy
du


00
2


000y
0


  


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 
 


 
































U
3


U
U3


28
3


dx
d


2  


or 


 










U
3


dx
d


28
3


  


 










U
28


dx
d


 


Separate variables and integrate, 


 




 dx


U
28d  


 1


2


C
U


x28
2













 


For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 











U
x4837


U
x56 .  


or 


 
x


4837
x Re


.




 where  





xU
x


Re   


Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 


 
x


x8711
U


x8711
4
1


Re
..* 









   


 
x


x8010
U


x8010
28
3


Re
.. 









  


 
 


x


2
2
12


0
U8020


xU
U4010


U
x4837


U3U3
Re


..


.








































  


These results are the same as listed in table 14.1  
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3.  Using the momentum integral equation, assume a velocity profile of the form 


32 dcba
U
u






, where 




y


, and determine the constants a, b, c, and d, and then 


the boundary layer parameters fcand,*,,  for a flat plate flow.  Assume that the shear 


stress is zero at 1 , but for a fourth boundary condition, assume that 0
dy


ud
2


2


 at  0 .  


Note that this boundary condition is obtained from the original boundary layer equation when
0 , assuming that U=constant (see section 14.5, Eq. 14.42).  Compare you results to 


table 14.1 in section 14.2.2. 
 


The boundary conditions for this flow are: 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu    


 3)  1  @  0  
d
du1)( y  @  0 



  


 4)  0)( 0y  @  0
dy


ud
2


2


   


Solving for the unknown constants:   
 B.C. #1 0a000a0   
 B.C. #2 dcb1   
 B.C. #3 d3c2b0   
 B.C. #4 d6c20   
Solving simultaneously, we get b = 3/2, c = 0, and d = -1/2, so the velocity profile is: 


 
3


3 y
2
1y


2
3


2
1


2
3


U
u




































 


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 
 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


 





















 








d
2
1


2
31d


U
u1


1


0


3
1


0


 


 
8
3


8
1


4
3 1


0


42 












*  


and  


 


1


0 0


1
3 3


0


u u u u1 dy 1 d
U U U U


3 1 3 1 391 d
2 2 2 2 280


 


   


   
         


   


  
             


  


 





  


and, 
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2
U3


d
du1


dy
d


d
du


dy
du


000y
0   


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 
 


 




























 


U2
3


U2
U3


280
39


dx
d


2  


or 


 










U2
3


dx
d


280
39


  


 


 










U39
420


dx
d


 


Separate variables and integrate, 


 




 dx


U39
420d  


 1


2


C
U


x
39
420


2













 


  
For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 











U
x6414


U
x


39
840 .  


or 


 
x


6414
x Re


.




 where  





xU
x


Re   


Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 


 
x


x7401
U


x7401
8
3


Re
..* 









   


 
x


x6460
U


x6460
280
39


Re
.. 









  


 
 


 
x


2
2
12


0
U6460


xU
U3230


U
x64142


U3
2
U3


Re
..


.








































  


 
These results are the same as listed in table 14.1 







Study Problems Solutions, Chapter 14 14-7 
 


 


 
4.  Using the momentum integral equation, assume a velocity profile of the form 


432 edcba
U
u






, where 




y


.  Determine the constants a, b, c, d and e,  


and then the boundary layer parameters fcand,*,,  for a flat plate flow.  Assume that all 
derivatives are zero at 1 .  Compare you results to table 14.1 in section 14.2.2. 


 
The boundary conditions for this flow are: 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu    


 3)  1  @  0  
d
du1)( y  @  0 



  


 4)  1)( y  @  0
dy


ud
2


2


  


 5)  1)( y  @  0
dy


ud
3


3


   


  
Solving for the unknown constants:   
 B.C. #1 0a000a0   
 B.C. #2 edcb1   
 B.C. #3 e4d3c2b0   
 B.C. #4 e12d6c20   
 B.C. #5 e24d60   
Solving simultaneously, we get b = 4, c = -6, d = 4, and e = -1, so the velocity profile is: 


 
432


432 yy4y6y4464
U
u


































































 


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


   









 








d4641d
U
u1


1


0


432
1


0


 


 
55


122
1


0


5432 












*  


and  
 


 


  


1


0 0


1
2 3 4 2 3 4


0


u u u u1 dy 1 d
U U U U


44 6 4 1 4 6 4 d
45
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and, 


 















 





U4
d
du1


dy
d


d
du


dy
du


000y
0   


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 
 


 
































U
4


U
U4


45
4


dx
d


2  


or 


 










U
4


dx
d


45
4


  


 


 
 
















U
45


U4
180


dx
d


 


Separate variables and integrate, 


 




 dx


U
45d  


 1


2


C
U


x45
2













 


For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 











U
x4869


U
x90 .  


or 


 
x


4869
x Re


.




 where  





xU
x


Re   


Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 


 
x


x8971
U


x8971
5
1


Re
..* 









   


 
x


x8430
U


x8430
45
4


Re
.. 









  


 
 


x


2
2
12


0
U8430


xU
U42160


U
x4869


U4U4
Re


..


.








































  


 
These results are the same as listed in table 14.1  
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5.  Using the momentum integral equation, assume a velocity profile of the form 


432 edcba
U
u






, where 




y


, and determine the constants a, b, c, d and e,  


and then the boundary layer parameters fcand,*,,  for a flat plate flow.  Assume that the 


shear stress and 2


2


dy
ud


 are zero at 1 , but for a fifth boundary condition, assume that 


0
dy


ud
2


2


 at  0 .  Note that this boundary condition is obtained from the original boundary 


layer equation when 0 , assuming that U = constant (see section 14.5, Eq. 14.42).  
Compare you results to table 14.1 in section 14.2.2. 


 
The boundary conditions for this flow are: 
 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu    


 3)  1  @  0  
d
du1)( y  @  0 



  


 4)  1)( y  @  0
dy


ud
2


2


  


 5)  0)( 0y  @  0
dy


ud
2


2


   


Solving for the unknown constants:   
 B.C. #1 0a000a0   
 B.C. #2 edcb1   
 B.C. #3 e4d3c2b0   
 B.C. #4 e12d6c20   
 B.C. #5 c20   
Solving simultaneously, we get b = 2, c = 0, d = -2, and e = 1, so the velocity profile is: 
 


 
43


43 yy2y222
U
u

















































 


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


   









 








d221d
U
u1


1


0


43
1


0
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5
1


2
1 1


0


542 












*  
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and  


 


  


1


0 0


1
3 4 3 4


0


u u u u1 dy 1 d
U U U U


372 2 1 2 2 d
315


 


   


   
         


   


              


 





 


and, 


 















 





U2
d
du1


dy
d


d
du


dy
du


000y
0  


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 


 
































U
2


U
U2


315
37


dx
d


2  


or 


 










U
2


dx
d


315
37


  


 


 










U37
630


dx
d


 


Separate variables and integrate, 


 




 dx


U37
630d  


 1


2


C
U


x
37
630


2













 


For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 











U
x8365


U
x


37
1260 .  


or 


 
x


8365
x Re


.




 where  





xU
x


Re   


 
Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 
 


 
x


x7511
U


x7511
10
3


Re
..* 
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x


x6850
U


x6850
315
37


Re
.. 









  


 
 


x


2
2
12


0
U6860


xU
U3430


U
x8365


U2U2
Re


..


.








































  


 
These results are the same as listed in table 14.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 14 14-12 
 


 


6.  Using the momentum integral equation, assume a velocity profile of the form )bsin(a
U
u






, 


where 




y


, and determine constants a and b, and then the boundary layer parameters 


fcand,*,,  for a flat plate flow.  Note that you cannot use u = 0 at  0  , because the result is 
indeterminate in calculating the constants.  Instead, use the first and second derivatives at 1  as 
boundary conditions.  Compare you results to table 14.1 in section 14.2.2.  What are the problems 


with this assumed velocity profile? [hint: consider the boundary condition for 1at
dy


ud
2


2


 ] 


The boundary conditions for this flow are: 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu     
 
Solving for the unknown constants:   
 B.C. #1 )sin(0a0   
 B.C. #2 )sin(ba1  
 
Since these could have a number of solutions for a and b, we will introduce a third  
boundary condition as: 


 3)  1  @  0  
d
du1)( y  @  0 



  


This BC gives: 
 
 B.C. #3 0 abcos(b) 0 cos(b)     


From BC #3, 
2


b 
 , and BC #2 then gives a = 1, so velocity profile is: 


 





































y
22U


u sinsin  


Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  
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1d
U
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1


0


1


0


sin  


 36340221
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1


0


.cos* 





































   


and  
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00


d
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d
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1
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d
U
u1


U
udy


U
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U
u


sinsinsinsin
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13660
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4
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2
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1


0


.
cossin






















































   


and, 


 















 



2
U


d
du1


dy
d


d
du


dy
du


000y
0   


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 
 


 






































U2U2
U


2
4


dx
d


2  


or 


 
















U2dx
d


2
4


  


 
  









U4dx
d 2


  


Separate variables and integrate, 


 










 dx


U4
d


2


 


 1


22


C
U


x
42



















 


For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 



























U
x7954


U
x


4
2 2


.  


or 


 
x


7954
x Re


.




 where  





xU
x


Re   


 
Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 


 
x


x7421
U


x74212
Re


..* 














   


 
x


x6550
U


x6550
2


4
Re


.. 
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x


2
2
12


0
U6550


xU599


U


U
x79542


U
2
U


Re
.


..








































  


 
These results are the same as listed in table 14.1 


 


Note that 
















 24
-  


d
ud 2


2


2


sin , such that 
2


2


d u  0
d






 at =1, and thus this  


approximate velocity profile does not merge smoothly with the outer flow. 
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7. Using the momentum integral equation, assume a velocity profile of the form  2u a 1 e
U


 





  , 


where 




y


, determine the constant a using u = U



 at  1  , and then the boundary layer 


parameters fcand,*,,  for a flat plate flow.  Note that this function already satisfies u = 0 at  
0  , but does not satisfy any of the other higher order boundary conditions.  


 
 How well do the results compare with the Blasius solution?  What are the problems with this assumed 


velocity profile?  
 


The boundary conditions for this flow are: 
 1)   )0( 0y @  0u    
 2)   1)( y  @  Uu     


 
Using boundary condition 2 to determine a, we have for 1  : 
 


    2 2u 1 a 1 e a 1 e 0 865a a 1 157
U


. .  





         


 
Thus,  


  2u 1 157 1 e
U


.  





 


  
Using this approximate velocity profile we determine the functional relationship of  
the boundary layer parameters *, , and o in terms of the boundary layer thickness, . 
  


Using the form of   2u a 1 e
U


 





   to simplify calculations: 


 dy
U
u1


0















*  Note that 






dyd  and   ddy  


      
1 1 1


2 2


0 0 0


u1 d 1 a 1 e d 1 a ae d
U





   





 
              


 
    


        
1


2 2 2


0


a a a a1 a e 1 a e 0 1 a 1 e
2 2 2 2


*         
                     


     
 


And for a=1.157 
 
 0 343* .    
and  
 


 
     


   


1
2 2


0 0
1


2 2 2 4


0


u u1 dy a 1 e 1 a 1 e d
U U


a 1 a 1 e e ae 1 e d
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1
2 4


0
1


2 4


0


2 4


a 1 a 2a 1 e ae d


2a 1 aa 1 a e e
2 4


2a 1 2a 1a aa 1 a e e
2 4 2 4


   


   


 


         


 
      


 


  
       


 





 


For a=1.157 
 
 0 127.     
and, 


 


 


0
0 0y 0


2
00


du d du 1 du
dy dy d d


2a U 2 314 Udu U 2ae
d


.
 


   






      
           


      


 
    


  


  


We now substitute the boundary layer parameters from above back into the 


momentum integral equation, Eq. 14.11 with 0
dx


dUconstU  
 . , to obtain a  


differential equation for  (x): 
 


   2


2 314 Ud 2 3140 127
dx U U


. .. 


 


 
  


 
 


or 
   


 
d 18 22
dx U


.



 




 


Separate variables and integrate, 


 d 18 22 dx
U


.




     


 
2


1
x18 22 C


2 U
.





 
   


For a flat plate flow: 
  0C0x    0 1  @  
Thus, 


 
x x36 44 6 04


U U
. .


 


 
    


or 


 
6 04


x x
.
Re



  where  





xU
x


Re   


Substituting this result into the relationship of 0and  ,*,  as functions of  -- we  
can write: 
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x


x 2 072x0 343 2 072
U


* .. .
Re



        


 
x


x 0 767 x0 127 0 767
U


.. .
Re



       


 
 212


2
0


x


0 766 U2 314 U 2 314 U 0 383 U
x U x6 04


U


.. . .
Re.


  








  
    


 






 


 
2 072H 2 70
0 766


* . .
.



  



 


 
This velocity profile is not as close to the Blasius result as most of the other profiles shown in 
Table 14.1, with most properties 15-20% high.  However, the H value is closer than only one of 
the other profiles in the table.  The strong deviation in displacement and shear stress properties 
indicates that this is not a particularly good profile approximation. 
 
The real issue with this profile is that it meets none of the higher-order boundary conditions. 
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8. Water enters a two-dimensional nozzle at free-stream velocity U0.  The free-stream velocity accelerates 


exponentially according to the relationship, U(x) = U0exp(kx), where x is the distance from the start of 
the nozzle, and k is a constant.  Assume that the kinematic viscosity, , is constant and the boundary 
layer thickness is 0 at x = 0.  Assuming a boundary layer profile of the form, u/U(x)=A+By+Cy2+Dy3, 
use the momentum integral equation and, for a bounding surface of the nozzle, determine: 


 
First, we have to establish values for A, B, C, and D, which fit our flow. 
 


Here, 32 DyCyByA
U
u


  


And the boundary conditions to be satisfied are: 
 


 


   












D6C20yat0
dy


ud4


D3C2B0yat0
dy
du03


DCB1yatUu2
0A0D0C0BA00yat0u1


2


2


2


32


)


)
)


)()


     


 


This yields 32
1Dand,3C,3B











 . 


So, we have:  















































ywhere33yy3y3
U
u 32


32


 


 
a) Expressions for *, , and 0 as functions of . 
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1
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ddyywhered331d
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U
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1


0


4
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And, 
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3
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d33133dy
U
u1


U
u


1


0
7


7
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4
1932
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3


1


0


3232


0


 


 
And, 


 


 






























































U3363U
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du
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b) A differential equation for  as a function of x, with U0, , and k as constants. 
 


  EquationIntegralMomentum
Udx


dU
U
12*


dx
d


2
0 










 


 
Substituting from the expressions derived in part (a) gives: 
 


 
 


 
  


   














 








2


0


0
0


0 kxexpU
kxexpU3kxexpkU


kxexpU
1


28
6


4dx
d


28
3


 


 


 


 


 kxexp
U
28


3
k13


dx
d


kxexp
U
28


3
k13


dx
d


kxexpU
3


28
k13


dx
d


28
3


0


2


1


0


0











































  


 
c) A solution for  in terms of U0, 0, , k, and x 
 


Let 
dx
d


2
1


dx
d


dx
d2


dx
d2 















  


 
Substituting gives:  
 


 


 


 kxexp
U
56k


3
26


dx
d


kxexp
U
28


3
k13


dx
d


2
1


0


0


























 


 
To solve this equation, we address both the homogeneous and particular solution, PH   
 
Homogeneous solution: 
 


 























3
kx26expCkdx


3
26d


0k
3
26


dx
d


1H
H


H


H
H


 


 
Particular Solution: 
 
 Assume general solution of   kxexpC2  and substitute into original differential equation: 
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00
2


0
2


0
22P


P


kU
30.7


kU23
168C


U
56kC


3
23


kxexp
U
56kxexpkC


3
26kxexpkCk


3
26


dx
d






















 


So, the general solution for  is: 


  kxexp
kU


30.7
3
kx26expC


0
1PH 













  


Or, 


 


   


     
2
1


kxexp
kU


30.7kx67.8expCx


kxexp
kU


30.7kx67.8expC


0
1


0
1


2


























 


To determine C1, we note that 0xat0  , so 


  
0


2
01


0
10 kU


30.7C
kU


30.7C0
2
1














 
  


Substituting into  x  equation yields, 


     


        
2
1


2
1


kx67.8expkx67.8expkxexp
kU


30.7x


kxexp
kU


30.7kx67.8exp
kU


30.7x


2
0


0


00


2
0














































 



 


 
d) A plot of (x) (in inches) for 0  x  2 m, for both 0 = 0 cm and 0 = 1 cm, letting k = 0.4 m-1,  = 


10-6 m2/sec., and U0 = 25 cm/sec. 
 
Substituting for the constants gives a general equation of: 
 


        
1
22


0x 0 73 0 4x 3 47x 3 47x. exp . exp . exp .          


 
Where x is in meters, and the equation yields  in cm.  Note that we must substitute the appropriate 


value of 0=0 cm or 0=1 cm for the respective plots. 
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e) For the same values of k, , and U0 as in part d, determine the x location (in feet) and the free-stream 


velocity U (in ft/sec.), where  becomes a maximum.  Determine the location of the maximum for 
both 0 = 0 cm and 0 = 1 cm.  Physically explain what is happening to give such significantly 
different maxima. 
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For 0 00 inches x 0 704 ft U 1 325U. .       
 
For 0 1cm x no    answer from above equation.  Note from the graph that  


maximum occurs at start of nozzle, thus, the maximum is 0 01cm U U    . 
 
The behavior is caused by pressure gradient effects on the boundary layer.  When the boundary layer is 
zero, the boundary layer grows by shear effects until the pressure gradient exceeds the balance point for 
the boundary layer thickness.  From that point on, the pressure gradient overwhelms the shear effects, 
and causes the boundary layer to decrease as the flow accelerates.   
 
When the boundary layer already has already developed to 1 cm, the pressure gradient effects are 
sufficiently large to prevent further boundary layer growth, and will cause the boundary layer to 
decrease immediately.  Note that the boundary layer thicknesses asymptote to the same values with 
distance down the plate regardless of the initial thickness, as the boundary layer momentum and shear 
effects reach a balance with the pressure gradient effects. 
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9. Assuming the same conditions as problem 8, where U(x) = U0exp(kx), determine an expression for (x) 


using Thwaites method, and plot (x) vs. x for 0  x  2 ft, for 0 = 0 inches, letting k = 0.4 m-1,  = 10-6 
m2/sec., and U0 = 25 cm/sec.  On the same graph, plot for comparison the (x) expression you derived in 
problem 8 using a direct solution of the momentum integral equation. 


 
For Thwaites: 
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Integrating, gives: 
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So, for 1 6 2
0k 0.4 m , U 25 cm s, and 10 m s      
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100 307 0 4x 1 2x
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Where theta will be in meters, or 
 
  


1 2
0 097 0 4x 1 2x. exp( . ) exp( )        


 
Where theta is in cm, and x is in meters.  This equation is plotted on the next page in  
comparison to the result from problem 8.   
 
Note that n is given by: 
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Substituting, we get: 
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dU 0.47 1n exp( 6kx) exp(5kx) 1 U k exp(kx)
dx 5k U


0.094 1 exp( 5kx)



     





   


 


 







Study Problems Solutions, Chapter 14 14-24 
 


 


So n varies between 0 and -0.094, which is within the table values shown in Chapter 14.   
So this result should be a reasonable prediction of the expected behavior 
 


 
 
Extra Credit:  Again assuming the same conditions as problem8, use Thwaites method to determine 
(x), and plot (x) vs. x for 0  x  2 ft, for 0 = 1 cm, letting k = 0.4 ft-1,   
 = 10-6 m2/sec., and U0=25 cm/sec.  On the same graph, plot for comparison the (x) expression you 
derived in problem 8 using a direct solution of the momentum integral equation.  
 
  
Note:  You cannot do this directly using the original Thwaites equation, but need to reconsider the 
assumptions Thwaites made in deriving his governing equation. 
 
Note that this problem reveals a limitation of the Thwaites method, as presented in Chapter 14,  
and as presented by Thwaites in his papers.  The generic Thwaites equation for theta assumes  
that 0init  , which works for this case (0=0 inches), but doesn’t work where there is an initial  
thickness that is non zero.  If we revisit the derivation of the Thwaites equation for theta, we  
realize that the result of the integration of the equation should have been: 
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Thus, we reconfigure the equation as: 
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To see how this works, we apply this equation for the other case in problem #7, where 0 = 0.5  
inches.  We will assume that the boundary layer to momentum thickness ratio is that given by  


problem 8, and thus use 03 3 1cm 0 1071cm
28 28int


( ) .
     


 
We note that for the present case: 
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So redoing our analysis above, using theta initial, we get: 
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So again, for 1 6 2


0k 0 4 ft U 25cm s and 10 m s. , ,      
 


   
1 22


init 2 4x 0 0094 0 4x 2 4x
/


exp( . ) . exp( . ) exp( . )         
 
For this equation, theta is in cm, and x is in meters.  The following graph shows a comparison  
of this approach with the result of problem #8.  This again is a reasonable comparison, and  
shows how we can account for initial momentum thicknesses in the Thwaites method. 
 
Again, note that n for this case is given by: 
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Which, for 1 6 2
0k 0 4 m U 25 cm s 10 m s and 0 1071cm. , , , .        is: 
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   n 0 115 2x 0 094 1 2kx. exp( ) . exp( )       
 
Here n varies between -0.099 < n < -0.19), which within the range of Thwaites data.  And while the 
Thwaites data is above the Momentum Integral results, they do closely parallel each other, and either 
would be a good representation of the actual momentum thickness withn 10%. 
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10. Assume a velocity of  U(x) = U0exp(-kx) over a surface, with  = 0 at x = 0.  Determine an expression 


for (x) using Thwaites method, and one graph plot both (x) (in cm) and n vs. x for 0  x  2 m, letting 
k = 0.1 m-1,  = 10-6 m2/sec., and U0 = 0.3 m/sec.  Determine how far along the surface (in meters) this 
calculation is valid. 


 
For Thwaites: 
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Integrating, gives: 
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0k 0.1m , U 0.3 m s, and 10 m s      


   
 


 


6 1 2


1 2


100 307 0 1x 0 5x 1
0 3 0 1


0 00177 0 1x 0 5x 1


. exp( . ) exp( . )
. .


. exp( . ) exp( . )





    


    


 


 
Where theta will be in meters, or 
 
  


1 2
0 117 0 1x 0 5x 1. exp( . ) exp( . )      


 
Where theta is in cm, and x is in meters.  This equation is plotted on the next page.   
 
Note that n is given by: 
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Substituting, we get: 
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The following is a plot of n and  vs. x 
 


 
 
The limit for n before separation would occur is 0.090.  We equate n = 0.090, and solve for x. 
 


 0.094 exp(0.5x) 1 0.090
exp(0.5x) 1.957
0.5x ln(1.957) 0.6716
x 1.343m


 





 





 


 
So, the result for  would be invalid after x =  1.343 meters 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


Limit of calculation validity--flow 
would separate after n=0.090 
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11. A fluid entering a diffuser is decelerated according to the velocity U(x) = U0/(1+ax), where a is a 


constant indicating how rapidly the diffuser decelerates the flow.  Assume that U0 and  (kinematic 
viscosity) are known constants.  Using Thwaites method, do the following: 


 
a) Determine an expression for  as a function of U0, , a, and x. 
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Integrating, gives: 
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b) Determine an expression for the parameter n as a function of U0, , a, and x. 
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c)  Assuming that a is inverse units to x, and determine values of  at x = 1 for both a = 0.1 and a = 0.2 


in terms of U0 and .   
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This demonstrates that decelerating the boundary layer more rapidly over the same distance  
causes the boundary layer to grow more quickly. 
 
d)  Determine the values of x where U = 0.9 U0 for both a = 0.1 and a = 0.2; compare the respective 


values of  that occur at these points, and comment on the reason for any variations. 
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This demonstrates that if the boundary layer is decelerated to the same value, but more slowly,  
the boundary layer will grow to a larger value. 


 
e)  For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 


occurs.  Briefly explain the physical processes which result in the development of this maxima. 
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Thus, we recognize that the maxima will occur when the boundary layer just starts to separate  
from the surface (where the boundary layer assumptions fail, since v gets large rapidly).   
Separation initiates when the wall shear stress just reaches zero, so we set: 
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When  0 (from the table of Thwaites values)  n = 0.090 
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Solving for x gives: 
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Note that the boundary layer, and respectively the momentum thickness (), initiate at the entrance of the 
diffuser and grow continuously under the influence of shear and the pressure gradient.  However, when 
0 = 0, flow separation from the boundary occurs and the Thwaites method (or any calculation technique 
which uses the boundary layer approximations) ceases to apply after this separation point.  So, the 
momentum thickness, , will reach a maximum just before separation takes place, and is the value 
reflected in the result above.  
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12. A fluid entering a diffuser is decelerated according to the velocity U(x)= U0(1-ax), where a is a constant 


indicating how rapidly the diffuser decelerates the flow.  Assume that U0 and  (kinematic viscosity) are 
known constants.  Using Thwaites method, do the following: 
 
a) Determine an expression for  as a function of U0, , a, and x. 
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Integrating, gives: 
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b) Determine an expression for the parameter n as a function of a, and x. 
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a) Assuming that a is in inverse units to x, determine values of  at x = 1 for both a = 0.05 ft-1 and  


a = 0.1 ft -1 in terms of U0 and .   
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This demonstrates that decelerating the boundary layer more rapidly over the same distance  
causes the boundary layer to grow more quickly. 
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d)  Determine the values of x where U


 = 0.90 U0 for both a = 0.05 and a = 0.1; compare the respective 
values of  that occur at these points, and comment on the reason for any variations. 
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This demonstrates that if the boundary layer is decelerated to the same value, but more slowly,  
the boundary layer grows to a larger value. 
 
e) For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 


occurs.  Briefly explain the physical processes that result in the development of these maxima. 
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However, for x = 10,  , which is physically unreasonable.  Additionally, this would give  
n  , which is well beyond acceptable values. 
 
Thus, we recognize that the maxima will occur when the boundary layer just starts to separate  
from the surface (where the boundary layer assumptions fail, since v gets large rapidly). 
Separation initiates when the wall shear stress just reaches zero, so we set: 
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When  0 (from the table of Thwaites values)  n = 0.090 
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solving for x gives: 
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Note that the boundary layer, and respectively the momentum thickness (), initiate at the  
entrance of the diffuser and grow continuously under the influence of shear and the pressure  
gradient.  However, when 0 = 0, flow separation from the boundary occurs and the Thwaites  
method (or any calculation technique which uses the boundary layer approximations) ceases to  
apply after this separation point.  So the momentum thickness, , will reach a maximum just  
before separation takes place, and is the value reflected in the result above.  
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13. A fluid entering a nozzle is accelerated according to the velocity U


(x) = U0(1+ax) where a is a constant 
indicating how rapidly the nozzle accelerates the flow.  Assume that U0 and  (kinematic viscosity) are 
known constants.  Using Thwaites method, do the following: 


 
a) Determine an expression for  as a function of U0, , a, and x. 
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Integrating, gives: 
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b) Determine an expression for the parameter n as a function of a, and x. 
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c) Assuming that a is in inverse units to x, determine values of  at x = 1 for both a = 0.05 ft-1 and  
 a = 0.1 ft -1 in terms of U0 and .   
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This demonstrates that accelerating the boundary layer more rapidly over the same distance  
causes the boundary layer to grow more slowly. 
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d)  Determine the values of x where U


  = 1.10 U0 for both a = 0.05 and a = 0.1; compare the respective 
values of  that occur at these points, and comment on the reason for any variations. 
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This demonstrates that if the boundary layer is accelerated to the same value, but more slowly,  
the boundary layer grows to a larger value. 
 
e) For a = 0.1, determine the maximum value of  and the respective x value at which this maxima 


occurs.  Briefly explain the physical processes that result in the development of these maxima. 
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However, this is where θ is a minimum.  Examining our equation for θ, we can see that as x increases, θ 
grows slower and slower, asymptoting toward a maximum, but never quite reaching a maximum.  
 
Note from our equation above, n also asymptotes to a value of n   -0.0783  
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14. Consider the flow of air over a cylinder.  Assume that the impinging velocity is U = 1 cm/s, and the 


cylinder radius is R=10 cm. The kinematic viscosity for air is   = 16 mm2/s.  As the flow passes around 
the cylinder, a laminar boundary layer develops on the cylinder surface.  Assume that the velocity at the 
edge of the boundary layer can be approximated by the potential flow solution of U



 = 2Usin(), where 


 is the angle measured from the cylinder stagnation point around the cylinder.  
 
a.  Using Thwaites method, neglect curvature effects and determine the development of the momentum 


thickness () as a function of x, where x=R, when  is in radians.  You can integrate the Thwaites 
equation analytically (you need to review your integral tables)—do it in terms of , and then express 
in terms of x. 


 
We note that: 
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Using integral tables, or another integrator (e.g. Wolfram Alpha) we have: 
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Note that 



 2


 and n at the start of the integration are unstable since we are dividing by zero.  An  


examination shows that theta, and correspondingly n, are quite large as   0 , which is a  
function of U = 0 at  = 0.   So the value at  = 0 is indeterminate, but quite large.  It is not  
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essential to the problem solution, however.  To plot the behavior, I used an Excel table of the  
functions.   Here is the start and end of my Excel table: 
 
alpha alpha x V Sin(alpha) integral mom^2/nu n Theta
degrees radians cm cm/sec (mm)


0 0 0 0 0 0 #DIV/0! #DIV/0! #DIV/0!
0.1 0.001745 0.017453 0.003491 0.001745 5.92E-17 4.92282 -0.98456 8.874971
0.2 0.003491 0.034907 0.006981 0.003491 2.96E-16 0.384599 -0.07692 2.480641
0.3 0.005236 0.05236 0.010472 0.005236 3.43E-15 0.391674 -0.07833 2.503355
0.4 0.006981 0.069813 0.013963 0.006981 1.92E-14 0.390622 -0.07812 2.499992
0.5 0.008727 0.087266 0.017453 0.008727 7.36E-14 0.391649 -0.07833 2.503274
0.6 0.010472 0.10472 0.020944 0.010472 2.2E-13 0.391601 -0.07832 2.503121
0.7 0.012217 0.122173 0.024434 0.012217 5.54E-13 0.391669 -0.07833 2.503337
0.8 0.013963 0.139626 0.027924 0.013962 1.23E-12 0.391694 -0.07833 2.503418
0.9 0.015708 0.15708 0.031415 0.015707 2.5E-12 0.391695 -0.07833 2.503423


1 0.017453 0.174533 0.034905 0.017452 4.71E-12 0.391714 -0.07833 2.503481
1.1 0.019199 0.191986 0.038395 0.019197 8.34E-12 0.391724 -0.07833 2.503514
…
…
97 1.692969 16.92969 1.985092 0.992546 0.654001 1.607468 0.03918 5.071438
98 1.710423 17.10423 1.980536 0.990268 0.67072 1.671446 0.046524 5.171376
99 1.727876 17.27876 1.975377 0.987688 0.687234 1.739615 0.054427 5.275779


100 1.745329 17.45329 1.969616 0.984808 0.703522 1.812329 0.062942 5.384911
101 1.762783 17.62783 1.963254 0.981627 0.719562 1.889976 0.072125 5.499056
102 1.780236 17.80236 1.956295 0.978148 0.735331 1.972988 0.082041 5.618524
103 1.797689 17.97689 1.94874 0.97437 0.750811 2.061839 0.092763 5.743642
104 1.815142 18.15142 1.940591 0.970296 0.765982 2.157057 0.104368 5.874769
105 1.832596 18.32596 1.931852 0.965926 0.780826 2.259226 0.116946 6.012288
106 1.850049 18.50049 1.922523 0.961262 0.795328 2.368995 0.130597 6.156616  


 
b. Determine the angle max (in degrees) where the solution is no longer valid, using a parallel 


calculation of the parameter n.  Why does the solution fail at this point?
  


As shown in the table, the limiting value of n (n  0.090 occurs at approximately max  103 or  
x  17.977 cm.  This value of n is when the shear stress will go to zero, and thus the flow would  
separate. 
 
c. Plot  and n on the same graph vs. x, for 0 cm < x < 20 cm.  Use appropriate scales for  and n, such 


that the full extent of the changes in  and n can be observed and compared to each other. I suggest 
you use smaller increments of  near =0 to resolve the curves effectively. 
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15. Consider the flow of water with a Falkner-Skan type of outer region velocity
m


0
0 x


xUU 











 , where 


U0, xo,  and m are a constants, with U0 = 10 cm/s and xo = 100 cm. The kinematic viscosity for water is is 
 = 0.01 cm2/s.  The initial momentum thickness at xo is o = 0 cm. 
 
a.  Using Thwaites method, determine expressions for the momentum thickness ()  and the Thwaites 


pressure gradient parameter (n) as a function of x, in terms of o, , U0, xo, x, and m.   
 


To use Thwaites with o= 0 at xo, we use Eq. 14.30 written as: 
 


 dxUU470
x


x


56
2


0


 









 .  


Substituting for U gives: 
 


  
























 x


x
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dx
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xU470


x
xU .  


 
Integrating, we get: 
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Simplifying, 


 


  
















 












m5


1m5
0


1m5


m
0


m
02


x
xx


1m5xU
x470.


 


 


  























































 m5


0


0
m


0
0


2


x
x


x
x


1m5
x
xU


470.
 


 


 





































































 m5


0


0
m


0
0


02


x
x


1
x
x


1m5
x
xU


x470.
 


 







Study Problems Solutions, Chapter 14 14-40 
 


 


 








































































 m5


0


0
m


0
0


02


x
x


1
x
x


x
xU


x
1m5


470.
 


 


 
 










































































 m5


0


0
m


0
0


0


x
x


1
x
x


x
xU


x
1m5


470.
 


 
The Thwaites n parameter is given by Eq. 14.22c as: 


 


 
dx


dUn
2









  


For the present velocity behavior, 
1m


00
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x


x
mU


dx
dU




















 , so: 
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.
 


 
Or for calculation purposes, if we have calculated : 
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b. Create a graph of   (in cm) vs. 
0x


x
.  Show plots for m = 0 (Blasius), = 0.25 (accelerating),  


 and = - 0.05 (decelerating).  For your graph, use increments of 
0x


x
of  0.1 from 4


x
x1


0


 . 


 


  
 


c. Create a second corresponding graph of n vs. 
0x


x
showing plots for m = 0 (Blasius), = 0.25 


(accelerating), and = - 0.05 (decelerating).  For your graph, again use increments of 
0x


x
of 0.1 from 


4
x
x1


0


 . Is the decelerating flow likely to separate? What is your basis for judging whether or 


not it separates? 
 


  
The flow should not separate, since n < 0.09, the point at which the shear stress becomes zero, and 
separation can occur. 
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d. Create a third graph of 
B



 (where B is the Blasius value for m = 0) vs. m, for 4


x
x


0


 .  Plot your 


graph for 1m10  .  (use increments of 0.05).  Compare your graph to the results for the 
Falkner-Skan solution of Figure 13.11 in Chapter 13. 


 


   
 


Lines for 
B



 are similar.  However, Thwaites curve exhibits more variation at the extremes of m, as 


the Falkner-Skan graph (Fig. 13.11) shown below. 


 


e. Using your expression for n vs. 
0x


x
, use a root-finding program to determine the value of m for 


which the Thwaites method would indicate that the flow would reach separation at x = 400 cm.  
How does this compare with the actual Falkner-Skan solution? 


 Using Goal Seek in Excel, the Thwaites equation indicates that n = 0.09 (where the wall shear would 
go to zero) for m = -0.158.  This is significantly different than the Falkner-Skan value of m = -
0.0905.  
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Chapter 15 
 


Problem Solutions 
 


 
1.  Consider a telephone pole of circular cross section of 28 cm diameter, with a gale force wind 


blowing perpendicular to the pole at 20 m/s.  Determine the force per unit length on the pole 
due to drag if the pole surface is (a) smooth, or (b) rough. Assume air at 20 C, the kinematic 
viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3 (neglect any effect of the ground on 
the drag).   
 
The Reynolds number for this flow is: 
 


   


 


5
2


5
D 10x733


s
m10x51


m280
s
m20UD .


.


.
Re 









 


From figure 15.3: 
 
(a)  For a smooth surface, 21CD . , so 
 


        
m
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(b)  For a rough surface, 30CD .  , so 
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2.  A square sign post of 28 cm on a side, with a gale force wind blowing perpendicular to the post at 20 


m/s.  Determine the force per unit length on the post due to drag. Assume air at 20 C, the kinematic 
viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3.  Determine the highest drag to be expected, 
and the lowest drag for these conditions, and why? 


 
The Reynolds number for this flow is: 
 


   


 


5
2


5
D 10x733


s
m10x51


m280
s
m20UD .


.


.
Re 









 


From figure 15.10 (since 4
D 10Re ): 


 
(a)  For a flow perpendicular to a face of the post, 052CD . , so for a post width of W = 0.28 m: 
 


        
m
N8114


mkg
sN1m280


s
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m
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(b)  For a flow toward the corner of the post, 551CD . , so for a post width of W = 0.28 m 
 


        
m
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mkg
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m
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The drag on the post will depend on the direction of the wind relative to the face of 
the post, with an average of about 100 N.  Thus, we could expect variations of %16   
from the maximum to minimum expected force. 
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3.  A square sign post of 20 cm on a side, supports a circular metal sign 70 cm in diameter, with the sign 


attached to the post starting at 2 meters above the ground. Hurricane force winds blow perpendicular 
to the post at 50 m/s.  Determine the total force on the post and on the sign due to drag.  Assume air at 
20 C, the kinematic viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3.  Neglect boundary layer 
effects from the ground. What is the highest drag to be expected, and what is the lowest for these 
conditions, and why? 


 
The Reynolds number for this flow is: 
 


   


 


5
2


5
D 10x666


s
m10x51


m200
s
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.


.
Re 









 


From figure 15.10 (since 4
D 10Re ): 


 
For a flow perpendicular to a face of the post, 052CD . , so for a post of length L =  
2 m and width of W = 0.20 m: 
 


        
2 2


2
post D 3 2


1 kg m N sDrag C U WL 0.5 2.05 1.2 2500 0.20 m(2)m 1 1230 N
2 m s kg m



   



 


For flow perpendicular to the sign, from figure 15.10, for a circular disc 171CD .  


         
2 2


2 2 2 2
sign D 3 2


1 kg m N sDrag C U r 0.5 1.17 1.2 2500 (0.35) m 1 675 N
2 m s kg m



     



 


 
If the flow were parallel to the sign, the drag would be much less.  We don't have a  
CD for a circular plate, but we'll approximate it as flow over a flat plate of length L =  
0.7 m.  The Reynolds number for that flow would be the same as for flow  
perpendicular to the sign, which puts it just above a laminar flat plate flow.  For a  
laminar flow, the CD is given by Eqn. 13.36 as: 
 


D 21 5
2 L


Drag 1 328 1 328C 0 00163
U WL 6 66x10


. . .
( ) Re .


   



 


 
This is so much smaller than the drag on the post it is mounted on, we will assume that the drag 
parallel to the sign is just due to the post for L = 0.7m: 
 


        
2 2


2
sign post D 3 2


1 kg m N sDrag C U WL 0.5 2.05 1.2 2500 0.20 m(0.7)m 1 430.5 N
2 m s kg m



   



 


So, the maximum drag would be post signDrag Drag 1230 675 1905 N    , and  


the minimum drag would be post signDrag Drag post 1230 430.5 1660.5 N    . 
 
In either case, probably enough force to blow the post and sign over very quickly. 
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4.  A circular cross-section leg of an off-shore oil platform is 3 meters in diameter, and extends down 


100 meters.  An ocean current of 4 meters/s flows past the leg.  Determine the total force on the leg 
due to drag. Assume the flow velocity is uniform over the entire leg, sea water is at 12 C, the 
kinematic viscosity is 1.3x10-6 m2/s, and the density is 1027 kg/m3.   


 
The Reynolds number for this flow is: 
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Clearly this in turbulent regime, so from figure 15.3: 
 


30CD . , so 
 


            
2 2


2
D 3 2


1 kg m N sDrag C U DL 0.3 0.5 1027 16 3 m 100 739,440 N
2 m s kg m



   



 


 
Better make sure that support leg is strong! 
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5.  Two smooth spherical metal balls of density 3050 kg/m3 are dropped over the side of a boat.  The 


smaller piece is 2 cm diameter, and the larger piece is 20 cm diameter.  Assume sea water is at 12 C, 
the kinematic viscosity is 1.3x10-6 m2/s, and the density is 1027 kg/m3.  When the spheres reach 
terminal velocity (no longer accelerating), what will their descent velocities be (in m/s) and which 
will descend faster?  What are the results if the spheres are roughened? 
 
At terminal velocity, the weight of the sphere (in water) balances the drag.  Note that the weight is a 
function of the difference in the densities, and the drag area is the cross sectional area of the sphere. 
 
Weight in water = Drag 
 


   22
waterD


3
watermetal rU


2
1Cgr


3
4


  


 
Solving for U gives: 
 


 


waterD


watermetal


C
rg


3
8U






  


 
Assuming that the Reynolds number is < 3x105, from figure 15.4 we let 470CD .  for a smooth 
sphere. So the velocities for the two smooth spheres would be: 
 


 D = 2 cm,  
     


 


2 3


3


m kg0.01 m 9.81 3050 10278 ms mU 1.047kg3 s0.47 1027
m





   


 


This gives a Reynolds number of  
   


 


4
D 2


6


m1.047 0.02 mUD sRe 1.61x10
m1.3x10
s





  



, so our  


CD estimate is ok. 
 


D = 20 cm,  
     


 


2 3


3


m kg0.1 m 9.81 3050 10278 ms mU 3.31kg3 s0.47 1027
m





   


 


This gives a Reynolds number of  
   


 


5
D 2


6


m3.31 0.2 mUD sRe 5.09x10
m1.3x10
s





  



, so our  


CD estimate is again probably ok. 
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For roughened spheres, 100CD . , so: 
 


D = 2 cm,  
     


 


2 3


3


m kg0.01 m 9.81 3050 10278 ms mU 2.27kg3 s0.1 1027
m





   


 


This gives a Reynolds number of  
   


 


4
D 2


6


m2.27 0.02 mUD sRe 3.49x10
m1.3x10
s





  



. Since  


this Reynolds number is less than the roughened surface lower limit in figure 15.4,  
this sphere would still fall according to the smooth surface curve, so U = 1.047 m/s. 
 


D = 20 cm,  
     


 


2 3


3


m kg0.1 m 9.81 3050 10278 ms mU 7.18kg3 s0.1 1027
m





   


 


This gives a Reynolds number of  
   


 


6
D 2


6


m7.18 0.2 mUD sRe 1.10x10
m1.3x10
s





  



.  This is  


well into the regime for a roughen surface, so U = 7.18 m/s. 
 
Thus, the larger sphere will fall faster than the smaller sphere:  3.16 times faster for  
smooth spheres, and 6.86 times faster for roughened spheres. 
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6.  A car top carrier for a kayak has a front cross-strut that is circular in cross-section, with diameter 3 
cm and 1.3 meters long.  Assume the cylinder is smooth.  When the car is driven, the air flows 
perpendicular to the strut. Assuming the flow is uniform approaching the strut, determine the total 
force on the strut due to drag, when the car travels at 30 m/s without the kayak on the rack. Assume 
air at 20 C, the kinematic viscosity is 1.5x10-5 m2/s, and the density is 1.2 kg/m3.  How much power 
(in Watts) from the engine is required to maintain this force?  If we change the cross-section of the 
rod to an oval with t/L=0.25, where t = 3 cm, how much is the force and power requirement reduced? 


 
The Reynolds number for this flow is: 
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.
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From figure 15.3: 
 
For a smooth surface, 21CD . , so 
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The power to maintain this drag at the given velocity is: 
 


       Watts8631
s
J8631


mN
J1


s
m30N0621ityDragxVelocPower ... 



  


 
Since 746 Watts equal a horsepower, the power is 0.85 HP. 


 
If the support is a 0.25 oval, figure 15.8 indicates the support would be in laminar  
flow, with a 350CD . . Thus, the drag will be 6.14 N and the power will be 184.3  
Watts (a 71% reduction in both properties) 
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7.  The drag coefficient for a runner is roughly 1.2.  The world record holding sprinter, Usain Bolt, can 


run at an average speed of about 10.6 m/s for 100 meters.  The world record holder in the 1500 m run 
is Hicham El Guerrouj, who covered the distance in 3 minutes and 26 seconds.  Your typical 
recreational jogger runs at a speed of about 3 m/s in running 5000 m.  Assuming a cross sectional area 
of 0.75 m2 for all three runners, an air density of 1.2 kg/m3, and that they run at a constant speed for 
their respective distances, determine the drag force that acts on each runner during their run, the 
power they must expend, and the total work they do due to drag in covering their respective distances. 
 


Here we note that AU
2
1CDrag 2


D  , AU
2
1CVelocity x DragPower 3


D 


XAU
2
1C Distance x DragWork 2


D 









 , where X is the distance covered.  Thus: 


 


Usain Bolt:  
mU 10.6 , X 100m
s
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     Watts6536
s


mN6536
s
m610N5650 x UDragPower .... 



  


 
     Joules5056m100N5650 X x DragWork  .  
 


Hicham El Guerrouj:  
 


 


1500 m mU 7.28 , X 1500m
206 s s
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     Watts63173
s


mN63173
s
m287N8523 x UDragPower .... 



  


 
     Joules77535m1500N8523 X x DragWork ,.   
 


Jogger:  m5000X
s
m3U  ,  
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m3N054 x UDragPower ... 
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     Joules25020m5000N054 X x DragWork ,.   
 
It is pretty clear that Bolt has to overcome more drag, and exerts the most power.  It is interesting to 
note that Guerrouj does 75% more work than the jogger, but runs only 30% of the distance the jogger 
does.  It is also of interest to note that one can of regular cola has the food energy equivalent to about 
670,000 Joules, so the air drag on a runner is not going to have a significant effect in burning up food 
calories.  
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8.  For the conditions given in problem 1, determine the approximate vortex shedding frequency for the 


telephone pole. 
 


The Reynolds number for this flow is: 
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This places it at the limit of the constant Strouhal number.  So, we'll assume St =  
0.21.  Thus: 
 


 210
V


NDSt .  
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.


..  shedding frequency 
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9.  For the conditions given in problem 4, determine the approximate vortex shedding frequency for the 


oil platform leg. 
 


The Reynolds number for this flow is: 
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This places it at the limit of the Strouhal curve shown in figure 15.13, or roughly 
 


 250
V


NDSt .  


 


 
 


 
Hz3330
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s
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D
V250N .


..
  shedding frequency, or about 1 shed vortex every 3 


seconds—pretty slow. 
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10. For the conditions given in problem 6, determine the approximate vortex shedding frequency for the 


circular strut.  Would this be audible? How might you improve the design of this strut? 
 


The Reynolds number for this flow is: 
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.
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So, this is in the constant Strouhal region of figure 15.13.  So, we'll assume St =  
0.21.  Thus: 
 


 210
V


NDSt .  
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D
V210N 


.


..  shedding frequency 


 
This is at the low end of our hearing, but most likely will yield a low-frequency,  
audible, obnoxious sound.  It would be better to use the t/L = 0.25 strut, for minimal noise and drag. 
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11. For the conditions given in problem 2, determine the approximate vortex shedding frequency for the 


square post, for both the highest drag and lowest drag configuration. 
 


The Reynolds number for this flow is: 
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From figure 15.10 (since 4
D 10Re ): 


 
For a flow perpendicular to a face of the post, 052CD . .  From equations 15.3: 
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 For a flow toward the corner of the post, 551CD . , so: 
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  shedding frequency 


 
So, the orientation of the post should change the shedding frequency by about 20%. 
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12. We want to calibrate a hot-wire anemometer (an electrically-heated wire that can measure high 


frequency velocity variations) by using vortex shedding from a small cylindrical rod.  We want to do 
this in air, by measuring the vortex shedding frequency with the hot-wire anemometer and correlating 
it to the respective air velocity.  If we need to calibrate the anemometer over a range of velocities 
from 1 and 20 m/s, what is the range of rod diameters that we could use to assure that the velocity 
will be a linear function of the shedding frequency? Assume air at 20 C with kinematic viscosity of 
1.5x10-5 m2/s. What is the lowest shedding frequency we might measure with this range of rods?
  
If we want a constant Strouhal number of 0.21, we need to be between Re =103 and 105.   
 
For the lower limit of Reynolds number, we have: 
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For the upper limit of Reynolds number, we have: 
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So, we should use a rod of diameter 1.5 cm < D <7.5 cm to assure staying within the constant  
Strouhal number range. 
 
The lowest frequency we might measure will be for the lowest velocity, and the largest cylinder.  
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This might be too low to measure accurately, so we might want to use the smaller cylinder (D =  
1.5 cm), which would give us N = 14 Hz, which is probably more measureable. 
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13. Consider the flow of air over a cylinder.  Assume that the impinging velocity is U=1 cm/s, and the 


cylinder radius is R=10 cm. The kinematic viscosity for air is  = 16 mm2/s.  As the flow passes 
around the cylinder, a laminar boundary layer develops on the cylinder surface.  Assume that the 
velocity at the edge of the boundary layer can be approximated by the potential flow solution of U


 = 
2Usin(), where  is the angle measured from the cylinder stagnation point around the cylinder.  
 
a. Using Thwaites method (from Chapter 14), neglect curvature effects and determine the 


development of the momentum thickness () as a function of x, where x = R, when  is 
in radians.  You can integrate the Thwaites equation analytically (you need to review 
your integral tables) or using the Wolfram Alpha webpage—do it in terms of , and then 
express in terms of x. 


b.  
We note that: 
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Using integral tables, we have: 
 


          



cos8sin4sin3
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Thus, 
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and 


2


2


dU dU d 2Ucos( )n Where : 2Ucos( )
dx dx dx R


2Ucos( )n
R


  
    





  
   


 


 


  Note that 



 2


 and n at start of the integration are unstable since we are dividing by zero.  An 


examination shows that theta, and correspondingly n, are quite large as   0 , which is a 
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function of U1 = 0 at  = 0.   So the value at  = 0 is indeterminate, but quite large.  It is not 
essential to the problem solution, however.  To plot the behavior, I used an Excel table of the 
functions.   Here is the start and end of my Excel table: 


 
alpha alpha x V Sin(alpha) integral mom^2/nu n Theta
degrees radians cm cm/sec (mm)


0 0 0 0 0 0 #DIV/0! #DIV/0! #DIV/0!
0.1 0.001745 0.017453 0.003491 0.001745 5.92E-17 4.92282 -0.98456 8.874971
0.2 0.003491 0.034907 0.006981 0.003491 2.96E-16 0.384599 -0.07692 2.480641
0.3 0.005236 0.05236 0.010472 0.005236 3.43E-15 0.391674 -0.07833 2.503355
0.4 0.006981 0.069813 0.013963 0.006981 1.92E-14 0.390622 -0.07812 2.499992
0.5 0.008727 0.087266 0.017453 0.008727 7.36E-14 0.391649 -0.07833 2.503274
0.6 0.010472 0.10472 0.020944 0.010472 2.2E-13 0.391601 -0.07832 2.503121
0.7 0.012217 0.122173 0.024434 0.012217 5.54E-13 0.391669 -0.07833 2.503337
0.8 0.013963 0.139626 0.027924 0.013962 1.23E-12 0.391694 -0.07833 2.503418
0.9 0.015708 0.15708 0.031415 0.015707 2.5E-12 0.391695 -0.07833 2.503423


1 0.017453 0.174533 0.034905 0.017452 4.71E-12 0.391714 -0.07833 2.503481
1.1 0.019199 0.191986 0.038395 0.019197 8.34E-12 0.391724 -0.07833 2.503514
…
…
97 1.692969 16.92969 1.985092 0.992546 0.654001 1.607468 0.03918 5.071438
98 1.710423 17.10423 1.980536 0.990268 0.67072 1.671446 0.046524 5.171376
99 1.727876 17.27876 1.975377 0.987688 0.687234 1.739615 0.054427 5.275779


100 1.745329 17.45329 1.969616 0.984808 0.703522 1.812329 0.062942 5.384911
101 1.762783 17.62783 1.963254 0.981627 0.719562 1.889976 0.072125 5.499056
102 1.780236 17.80236 1.956295 0.978148 0.735331 1.972988 0.082041 5.618524
103 1.797689 17.97689 1.94874 0.97437 0.750811 2.061839 0.092763 5.743642
104 1.815142 18.15142 1.940591 0.970296 0.765982 2.157057 0.104368 5.874769
105 1.832596 18.32596 1.931852 0.965926 0.780826 2.259226 0.116946 6.012288
106 1.850049 18.50049 1.922523 0.961262 0.795328 2.368995 0.130597 6.156616  
 
 
 
b. Determine the angle max (in degrees) where the solution is no longer valid, using a parallel 


calculation of the parameter n.  Why does the solution fail at this point?
  


As shown in the table, the limiting value of n (n  0.090 occurs at approximately max  103 or  
x  17.977 cm.  This value of n is when the shear stress will go to zero, and thus the flow would 
separate. 


 
c. Using the pressure distribution given by the potential flow solution over a cylinder, determine 


the drag per unit depth on the cylinder.  For this real fluid flow, assume that after max the flow 
is separated, and that the pressure will remain constant at the P(max) value until =180 is 
reached.  Neglect the shear stress on the cylinder surface.  Express your results in terms of the 
drag coefficient: 
 


)( R2U
DragC 2


2
1d



  


 
How does the value you obtain compare to what you might expect for this flow? 
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The drag on a cylinder in potential flow was calculated using: 
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Here, we use this integration from  = 0 until  = max =103.  From  = max until  = 180, we 


assume that  max
22


max sin41U
2
1P)(PP    .  So, the calculation becomes: 
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For max =103,        467.2RU
2
1982.0


3
8RU


2
1 Drag 232 











 .  The negative sign is because 


the calculation was done from  = 0 to  = 180, which assumes the flow is from right to left over 
the cylinder, and thus in the negative x direction for the potential flow solution of Chap. 9.  Thus, 
we drop the negative sign, and use the absolute magnitude. Note that this is the drag on ½ the 
cylinder, so to calculate Cd, we double this value (since the cylinder is symmetric).  Thus, the drag 
coefficient is:  
 


  467.2
)R2(U


467.2RU
)R2(U


DragC 2
2
1


2


2
2
1d 










  


 
This is a bit higher than we would expect for a practical laminar flow, which is normally about Cd 
= 1.2 or so.  However, the pressure behind the cylinder, in reality, will be higher than the pressure 
at the angle of maximum separation, which will lower the differential pressures acting on the 
cylinder.  Note that for our drag model to work, max = 130, well beyond what our simple 
calculation would suggest. From figure 15.3, this suggests that our value would reflect a ReD 10 
to 20, which is a region in which steady flow over the cylinder would apply, and where separation 
at about 103° would seem reasonable.  
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14. The power P to maintain a bluff body with drag of FD at a velocity V, is given by  


P = FD V.  Consider the case of two cylinders, each of diameter d and length L, and each moving 
perpendicular to their length at a velocity V in a fluid of density .  Assume the cylinders are at Red = 
105.  Determine the power required to collectively move both the cylinders, in terms of V, d, L, and  
if the cylinders are: 
 
 a) Independent of each other 
 
 b) Inline with each other, separated by a distance x/d = 6 
 
 c) Inline and touching each other (x/d = 0)
  
From your calculations, what % less power is required for b) and c) relative to a)? 


 
FD is given by equation 15.1 as: 
 
 21


D D 2F C V A    where A is the frontal area 
 
So power is given by: 
 
 31


D D 2P F V C V A    
 


When the cylinders are independent of each other, the collective power required is: 
 
      3 3 31 1


total cylinder1 cylinder2 D1 D2 D2 2P P P C V dL C V dL C V dL               
 
Since D1 D2 DC C C 1 2   .  
 
  3


totalP 1 2 V dL .  (a) 
 
When the cylinders are inline at a spacing of x/d = 6, from figure 1.6 we can estimate that 


D1 D leadingC C 1 16 _ .  and D2 D trailingC C 0 3 _ . , so we have: 
 


    


         


3 31 1
total cylinder1 cylinder2 D leading D trailing2 2


3 3 31 1
2 2


P P P C V dL C V dL


1 15 V dL 0 3 V dL 0 725 V dL


     


     


_ _


. . .
         (b) 


 
When the cylinders are inline at a spacing of x/d = 0, from figure 1.6 we can estimate that 


D1 D leadingC C 1 04 _ .  and D2 D trailingC C 0 4 _ . , so we have: 
 


    


         


3 31 1
total cylinder1 cylinder2 D leading D trailing2 2


3 3 31 1
2 2


P P P C V dL C V dL


1 04 V dL 0 4 V dL 0 32 V dL


     


      


_ _


. . .
        (c) 


 
So, case (b) requires 0.725/1.2 = 60.4% of case (a), or roughly 40% less power. 
 
And case (c) requires 0.32/1.2 = 26.7% of case (a), or about 73% less power!  
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Chapter 16 
 


Study Problems Solutions 
 


1.  Consider Couette flow between parallel plates, the lower plate fixed and the upper plate moving at  
 U = 1 m/s.  If the gap between the plates is 1 mm, what are the values of shear stress for the 


following power-law fluids: applesauce, tomato paste, and synovial fluid?   
 


From Eq. 16.11 we have 
n


yx
UK constant
h


 
   


 
 


So, for applesauce: n=0.45 and K=7.3 Pa sn 


  
 


 
 


0.45


n
0.45


yx


m1U mmsK 7.3 Pa s 1000 163.4 Pa
h 1 mm m


 
  


     
   


 


 


 
Tomato paste: n=0.5 and K=15 Pa sn 


  
 


 
 


0.5


n
0.5


yx


m1U mmsK 15 Pa s 1000 474.3 Pa
h 1 mm m


 
  


     
   


 


 


 
Synovial Fluid: n=0.4 and K=0.5 Pa sn 


  
 


 
 


0.4


n
0.4


yx


m1U mmsK 0.5 Pa s 1000 7.92 Pa
h 1 mm m
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2.  Consider Couette flow between parallel plates, the lower plate fixed and the upper plate moving at 
velocity U.  If the gap between the plates is 1 mm and a shear stress of 35 Pa is applied to the upper 
plate, what will the velocity U be for the following Bingham plastic materials: mayonnaise, tomato 
ketchup, paint, and 40% drilling mud.   


 


From Eq. 16.51 we have B
yx B 0 0


Uu constant
y h


  
         


 
 


However, we must have yx 0    for the equation to apply. Table 1 indicates all fluids satisfy this 
criteria. 
 


We transform Eq. 16.51 to give:   yx 0
B


hU    



 


 
So, for mayonnaise: 0 =30 Pa and B =0.13 Pa s 


  
 


 
 


 


 yx 0
B


1 cm 1 mh mU 35 30 Pa 0.38
0.13 Pa s 100 cm s


 
       
  


 


 
Tomato ketchup: 0 =13 Pa and B =0.15 Pa s 


 
 


 
 


 


 yx 0
B


1 cm 1 mh mU 35 13 Pa 1.47
0.15 Pa s 100 cm s


 
       
  


 


 
Paint: 0 =15 Pa and B =0.065 Pa s 


 
 


 
 


 


 yx 0
B


1 cm 1 mh mU 35 15 Pa 3.08
0.065 Pa s 100 cm s


 
       
  


 


 
Drilling mud: 0 =11 Pa and B =0.030 Pa s 
 


 
 


 
 


 


 yx 0
B


1 cm 1 mh mU 35 11 Pa 8.00
0.030 Pa s 100 cm s
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3.  Consider Poiseuille flow between parallel plates spaced 4 cm apart.  If a pressure gradient of 30 
Pa/cm is applied, what are the values of flowrate per unit depth in cm2/s for the following power law 
fluids: applesauce, tomato ketchup, and raspberry jam? Note: the flowrate will be negative for a 
positive pressure gradient. 


 


From Eq. 16.15 we have 


1
2nn p h hQ


2n 1 x 2K 4
  


   
   


, which is the flowrate per unit depth, W. 


But this only gives the flowrate in the upper half of the gap, so we must double Eq. 16.15 to account 
for the entire channel, or  


1
2n


total
2n p h hQ 2Q


2n 1 x 2K 4
  


    
   


 


 
So, for applesauce: n=0.45 and K=7.3 Pa sn 


 
 


 


 
11 2 22 20.45n


total 0.45


4 cm 4 cm2n p h h 0.90 Pa cmQ 30 204.41
2n 1 x 2K 4 1.90 cm 2 7.3 Pa s 4 s


     
                 


 


 
Tomato ketchup: n=0.24 and K=33 Pa sn 


 
 


 


 
11 2 22 20.24n


total 0.24


4 cm 4 cm2n p h h 0.48 Pa cmQ 30 15.66
2n 1 x 2K 4 1.48 cm 2 33 Pa s 4 s


     
                 


 


 
Raspberry jam: n = 0.34 and K = 12.6 Pa sn 


 
 


 


 
11 2 22 20.34n


0.34


4 cm 4 cm2n p h h 0.68 Pa cmQ 30 159.49
2n 1 x 2K 4 1.68 cm 2 12.6 Pa s 4 s
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4.  Consider Poiseuille flow between parallel plates spaced 1 cm apart.  If a pressure gradient of 100 
Pa/cm is applied, what are the values of flowrate per unit depth in cm2/s for the following Bingham 
plastic fluids: mayonnaise, tomato ketchup, paint, and 40% drilling mud?   


We first have to check that 0
0


2y * 1
ph
x



 


 
 
 


 to assure fluid will move ( 0y *< 1), then use Eq. 


16.16, (dividing by W to get per unit depth)  o


3
y * 3


0 0
B


Q h p y * 3y * 2
W 24 x



   


 
to calculate the 


flow rate (we’ll let 
p
x




 be negative, giving flow in x-direction). Note that Eq. 16.61 gives the flow 


in the upper half of the gap, so we must double Q to get the total flow rate, so oy *total
2QQ


W W
 . 


Mayonnaise: 0 =30 Pa and B =0.13 Pa s   
 


   


0
0


2 30 Pa2y * 0.6 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   


3 33 2
3 3total


0 0
B


1 cmQ h p Pa cmy * 3y * 2 100 0.6 3 0.6 2 69.9
W 12 x 12 0.13 Pa s cm s



         


 
 


 


Tomato ketchup: 0 =13 Pa and B =0.15 Pa s  
 


   


0
0


2 13 Pa2y * 0.26 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   


3 33 2
3 3total


0 0
B


1 cmQ h p Pa cmy * 3y * 2 100 0.26 3 0.26 2 68.76
W 12 x 12 0.15 Pa s cm s



         


 
 


 


Paint: 0 =15 Pa and B =0.065 Pa s  
 


   


0
0


2 15 Pa2y * 0.30 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   


3 33 2
3 3total


0 0
B


1 cmQ h p Pa cmy * 3y * 2 100 0.3 3 0.3 2 144.49
W 12 x 12 0.065 Pa s cm s



         


 
 


 


Drilling mud: 0 =11 Pa and B =0.030 Pa s  
 


   


0
0


2 11 Pa2y * 0.22 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   


3 33 2
3 3total


0 0
B


1 cmQ h p Pa cmy * 3y * 2 100 0.22 3 0.22 2 375.17
W 12 x 12 0.03 Pa s cm s
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5. Consider Couette flow between concentric circular cylinders, with diameters of 20 cm and 16 cm, 
and one meter long. If the inner cylinder is fixed, and the outer cylinder rotates at a velocity of 10 
cm/s, determine the torque in N-cm required to rotate the outer cylinder for the following power law 
fluids: applesauce, tomato paste, and synovial fluid.   


Here, oR = 10  cm, L = 1 m, and a = 0.8, so we apply Eq. 16.28, 


n


o


2 2 o
o 2


n


2V
nRT 2 R a LK


1 a


 
 
  
  


  
   


 


For applesauce: n=0.45 and K=7.3 Pa sn 
 


     


 


  


 
 


n


o


2 2 o
o 2


n


0.45


2 22 0.45
22


.45


2V
nRT 2 R a LK


1 a


cm2 10
s


0.45 10 cm N 1 m2 10 cm 0.8 (1)m 7.3 Pa s 1 70.8 N cm
Pa m 100 cm1 0.8


 
 
  
  


  
   


 
 
 


            
  


 


 


 
 
Tomato paste: n=0.5 and K=15 Pa sn 


     


 


  


 
 


0.5


2 22 0.5
22


0.5


cm2 10
s


0.5 10 cm N 1 mT 2 10 cm 0.8 (1)m 15 Pa s 1 157 N cm
Pa m 100 cm1 0.8


 
 
 


          
  


  
 


 


 
 
Synovial Fluid: n=0.4 and K=0.5 Pa sn 


     


 


  


 
 


0.4


2 22 0.4
22


0.4


cm2 10
s


0.4 10 cm N 1 mT 2 10 cm 0.8 (1)m 0.5 Pa s 1 4.49 N cm
Pa m 100 cm1 0.8
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6.  Consider Couette flow between concentric circular cylinders, both 2 m long with diameters of 20 cm 
and 12 cm. The inner cylinder is fixed, and a torque of 200 N-cm is applied to the outer cylinder. 
Determine the steady state velocity of the outer cylinder for the following Bingham plastic materials: 
mayonnaise and 40% drilling mud.   
 


We must first determine if 0 2
0


Tr * a
2 LR


 
 


, where a = 0.6, and then which equation we use 


for oV .  The Choices are: 
 


oV = 0    if 0r *< a 


Eq. 16.81c:   o 2 2 2
B 0 0 0


T 1 1 1 1 aV ln
2 LR 2 a r * r * r *


    
      


     


  if 0a r * 1   


 


Eq. 16.78a:    o 2 2
B 0


T 1 1 1V 1 ln a
2 LR 2 a r *


  
    


   
  if  0r * 1  


 
So, for mayonnaise: 0 =30 Pa and B =0.13 Pa s 


 


     
0 2


2 20
2


200 N cmTr * 0.728 0.6
N 1 m2 LR 2 2 m 10 cm 30
m 100 cm



   


   
  


 


 


 


           


o 2 2 2
B 0 0 0


2 2 2


2


T 1 1 1 1 aV ln
2 LR 2 a r * r * r *


200 N cm 1 1 1 1 0.6 mln 0.987N 2 0.728 s0.6 0.728 0.7282 0.13 s 2 m 10 cm
m


    
      


     


    
              


 


 
Drilling mud: 0 =11 Pa and B =0.030 Pa s 
 


 


     
0 2


2 20
2


200 N cmTr * 1.20 1
N 1 m2 LR 2 2 m 10 cm 11
m 100 cm



   


   
  


 


 


 


 


         
 


o 2 2
B 0


2 2


2


T 1 1 1V 1 ln a
2 LR 2 a r *


200 N cm 1 1 1 m1 ln 0.6 28.34N 2 s0.6 1.202 0.03 s 2 m 10 cm
m
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7.  Consider Couette flow between concentric circular cylinders, both 2 m long with diameters of 20 cm 
and 12 cm. The inner cylinder is fixed, and a torque of 1000 N-cm is applied to the outer cylinder. 
Determine the steady state velocity of the outer cylinder in m/s for the following Bingham plastic 
materials: tomato paste and toothpaste.   


 


We must first determine if 0 2
0


Tr * a
2 LR


 
 


, where a = 0.6, and then which equation we use 


for oV .  The Choices are: 
 


oV = 0    if 0r *< a 


Eq. 16.81c:   o 2 2 2
B 0 0 0


T 1 1 1 1 aV ln
2 LR 2 a r * r * r *


    
      


     


  if 0a r * 1   


Eq. 16.78a:    o 2 2
B 0


T 1 1 1V 1 ln a
2 LR 2 a r *


  
    


   
  if  01 r *  


 
Tomato paste: 0 =104 Pa and B =0.3 Pa s 


 


     
0 2


2 20
2


1000 N cmTr * 0.875 0.6
N 1 m2 LR 2 2 m 10 cm 104


m 100 cm



   


   
  


 


 


 


           


o 2 2 2
B 0 0 0


2 2 2


2


T 1 1 1 1 aV ln
2 LR 2 a r * r * r *


1000 N cm 1 1 1 1 0.6 mln 6.44N 2 0.875 s0.6 0.875 0.8752 0.3 s 2 m 10 cm
m


    
      


     


    
              


 


 
 
 
Toothpaste: 0 =200 Pa and B =10 Pa s 
 


 


     
0 2


2 20
2


1000 N cmTr * 0.63 0.6
N 1 m2 LR 2 2 m 10 cm 200
m 100 cm



   


   
  


 


 


 


           


o 2 2 2
B 0 0 0


2 2 2


2


T 1 1 1 1 aV ln
2 LR 2 a r * r * r *


1000 N cm 1 1 1 1 0.6 mln 0.0052N 2 0.63 s0.6 0.63 0.632 10 s 2 m 10 cm
m
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8.  Consider a Poiseuille flow in a 4 cm diameter tube.  If a pressure gradient of 10 Pa/cm is applied, 


what are the values of flowrate in cm3/s for the following power law fluids: applesauce, tomato 
paste, and 40% drilling mud?  Note: the flowrate will be negative for a positive pressure gradient. 


 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


 


 
For applesauce: n=0.45 and K=7.3 Pa sn 


   
 


 


11
30.45n3 3


0.45


2 cmn p R 0.45 Pa cmQ R 8 cm 10 9.69
3n 1 z 2K 2.35 cm 2 7.3 Pa s s


      
             


        
 


 
Tomato paste: n=0.5 and K=15 Pa sn 


   
 


 


11
30.5n3 3


0.5


2 cmn p R 0.5 Pa cmQ R 8 cm 10 2.23
3n 1 z 2K 2.5 cm 2 15 Pa s s


      
             


        
 


 
Drilling mud:  n=0.51 and K=1.3 Pa sn 


   
 


 


11
30.51n3 3


0.51


2 cmn p R 0.51 Pa cmQ R 8 cm 10 271.3
3n 1 z 2K 2.53 cm 2 1.3 Pa s s
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9.  Consider a Poiseuille flow in a 2 cm diameter tube.  If a pressure gradient of 100 Pa/cm is applied, 
what are the values of flowrate in cm3/s for the following Bingham plastic materials: mayonnaise, 
tomato paste, and paint?   


We first have to check that 0
0


2r *
pR
z






 
 
 


 to assure fluid will move ( 0r *<1), then use Eq. 16.101, 


o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


      
to calculate the flow rate (we’ll let 


p
z




 be negative, giving flow 


in the positive z-direction) 
 


Mayonnaise: 0 =30 Pa and B =0.13 Pa s   
 


   


0
0


2 30 Pa2r * 0.6 1Pap 1 cm 100R
cmz



   


 
 
 


 


 


 
   


o


44 3
4 4


r * 0 0
B


1 cmR p Pa cmQ r * 4r * 3 100 0.6 4 0.6 3 73.46
24 z 24 0.13 Pa s cm s


 
            


 


 


Tomato ketchup: 0 =13 Pa and B =0.15 Pa s  
 


   


0
0


2 13 Pa2r * 0.26 1Pap 1 cm 100R
cmz



   


 
 
 


 


 


 
   


o


44 3
4 4


r * 0 0
B


1 cmR p Pa cmQ r * 4r * 3 100 0.26 4 0.26 3 171.44
24 z 24 0.15 Pa s cm s


 
            


 


 


Paint: 0 =15 Pa and B =0.065 Pa s  
 


   


0
0


2 15 Pa2r * 0.3 1Pap 1 cm 100R
cmz



   


 
 
 


 


 


 
   


o


44 3
4 4


r * 0 0
B


1 cmR p Pa cmQ r * 4r * 3 100 0.3 4 0.3 3 364.12
24 z 24 0.065 Pa s cm s
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10.  Mayonnaise and paint have properties that can be modeled as either a power-law fluid or a Bingham 
plastic.  Consider Poiseuille flow between parallel plates spaced 1 cm apart.  If a pressure gradient of 
100 Pa/cm is applied, what are the comparative power-law vs. Bingham plastic values of flowrate 
per unit depth in cm2/s for each of the fluids (i.e. what are Qpowerlaw vs. QBingham for each fluid?).   


 
Power Law 


From Eq. 16.15 we have 


1
2nn p h hQ


2n 1 x 2K 4
  


   
   


. But this is only for the upper half of 


channel, so we must double to get 


1
2n


channel
2n p h hQ 2Q


2n 1 x 2K 4
  


    
   


 


 
Mayonnaise:  n = 0.131 and K=100 Pa sn 


 
 


 


 
11 2 22 20.131n


channel 0.131


1 cm 1 cm2n p h h 0.262 Pa cmQ 100 0.00026
2n 1 x 2K 4 1.262 cm 2 100 Pa s 4 s


     
                 


 


 
Paint:  n = 0.6 and K=21.5 Pa sn 


 
 


 


 
11 2 22 20.6n


channel 0.5


1 cm 1 cm2n p h h 1.2 Pa cmQ 100 0.556
2n 1 x 2K 4 2.2 cm 2 21.5 Pa s 4 s


     
                 


 


 
Bingham Plastic 


We first have to check that 0
0


2y * 1
ph
x



 


 
 
 


 to assure fluid will move ( 0y *< 1), then use Eq. 


16.16, (dividing by W to get per unit depth)  o


3
y * 3


0 0
B


Q h p y * 3y * 2
W 24 x



   


 
to calculate the 


flow rate (we’ll let 
p
x




 be negative, giving flow in x-direction) 


 


Mayonnaise: 0 =30 Pa and B =0.13 Pa s   
 


   


0
0


2 30 Pa2y * 0.6 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   o


3 33 2
y * 3 3


0 0
B


Q 1 cmh p Pa cmy * 3y * 2 100 0.6 3 0.6 2 17.95
W 24 x 24 0.13 Pa s cm s



         


 
 


 


Paint: 0 =15 Pa and B =0.065 Pa s  
 


   


0
0


2 15 Pa2y * 0.30 1Pap 1 cm 100h
cmx



   


 
 
 


 


 
 


 
   o


3 33 2
y * 3 3


0 0
B


Q 1 cmh p Pa cmy * 3y * 2 100 0.3 3 0.3 2 31.31
W 24 x 24 0.15 Pa s cm s
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There is not a good correlation between the two comparative flowrate values for either material.  
This is probably that the cited property values only apply for a given range of shear, which may be 
different than the present conditions. And when I obtained these property values, there was no 
indication if the power-law materials and the Bingham plastic materials were of the same 
constituency. 
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11.  A cement slurry can be modeled as either a power law fluid or a Bingham plastic. Consider 
Poiseuille flow in a 20 cm diameter tube.  If a pressure gradient of 10 Pa/cm is applied, what are the 
comparative power-law vs. Bingham plastic values of flowrate in m3/s (i.e. what are Qpowerlaw vs. 
QBingham?).   


 
Power Law 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


. We let 
p
z




> 0 to allow the 


calculation, which would have flow right-to-left, but we drop the negative sign, since this give the 
absolute flowrate. 
 
Cement Slurry: n=0.36 and K=3.0 Pa sn 


   
 


 


1
n3


1
3 30.36


3
0.36 6 3


n p RQ R
3n 1 z 2K


10 cm0.36 Pa 1 m m1000 cm 10 1.347
2.08 cm 2 3.0 Pa s 10 cm s


   
    


    


    
      
    


 


  
Bingham Plastic 


We first have to check that 0
0


2r *
pR
z






 
 
 


 to assure fluid will move ( 0r *<1), then use Eq. 16.101, 


o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


      
to calculate the flow rate (we’ll let 


p
z




 be negative, giving flow 


in the positive z-direction) 
 


Cement Slurry: 0 =5.4 Pa and B =0.029 Pa s   
 


   


0
0


2 5.4 Pa2r * 0.108 1Pap 10 cm 10R
cmz



   


 
 
 


 


 


 
   


o


4
4


r * 0 0
B


4 3 3
4


6 3


R pQ r * 4r * 3
24 z


10000 cm Pa 1 m m10 0.108 4 0.108 3 1.159
24 0.029 Pa s cm 10 cm s


 
      


  
      


 


 


 
Values are relatively close. 
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12.  40% drilling mud can be modeled as either a power-law fluid or a Bingham plastic. Consider a 
Poiseuille flow in a 20 cm diameter tube.  If a flowrate of 1 m3/s is be achieved, what are the 
comparative power law vs. Bingham plastic values of pressure gradient in Pa/m required to achieve 


this flow rate (i.e. what are 
powerlaw


p
z




 vs. 


Bingham


p
z




?).  Note that you will need to assume that Q < 0 


for the power law model. And since 0
0


2r
p
z






 
 
 


 for a Bingham plastic, you will have to iterate to 


determine 
p
z




 and the appropriate 0r *  value.   


Power Law 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


, which we can solve for 
p
z




 as: 


n


3


p 2K Q 3n 1
z R R n
    


        
 


 
Drilling mud: n = 0.51 and K=1.3 Pa s0.51 


 


 


 


 


0.513
n 0.51


3 3


m12 1.3 Pa sp 2K Q 3n 1 2.53 Pas 1112
z R R n 0.1 m 0.001 m 0.51 m


 
       


                
  


 


  
Bingham Plastic 


We first have to check that 0
0


2r *
pR
z






 
 
 


 to assure fluid will move ( 0r *<1). We then solve for 


p
z




 from Eq. 16.101, 


o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


      
: 


oB r *
4 4


0 0


24 Qp
z R r * 4r * 3






     


 


Drilling mud: 0 =11 Pa and B =0.030 Pa s.  To start our iteration, we assume 
p
z




=1000 Pa/m: 


 


   


0
0


2 11 Pa2r * 0.22 1Pap 0.1 m 1000R
mz



   


 
 
 


 


   


 
o


3


B r *
44 4 4 4


0 0


m24 0.03 Pa s 124 Qp Pas 1079
z mR r * 4r * 3 0.1 m 0.22 4 0.22 3
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 Using Excel Goalseek we iterate Eqs. 0
0


2r *
pR
z






 
 
 


and 
o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


      
 using 


p
z




=1000 Pa/m,  to start our iteration, and change 


p
z




 until Q = 1 m3/s . 


 The result is  
p
z




=1057 Pa s and 0r *  = 0.208 to give Q =1 m3/s . 


 
This a quite close to our power law answer. 
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13. Consider Couette flow of peanut butter between concentric circular cylinders, with diameters of 20 
cm and 16 cm and lengths of 1 m. If the inner cylinder is fixed, and the outer cylinder rotates, 
determine the respective torques in N-m required to rotate the outer cylinder at velocities of 10 cm/s 
and 50 cm/s. 


 
Here, Vo = 10 and 50 cm/s, oR = 0.1 m, L = 1 m, and a = 0.8, so we apply Eq. 16.28, 


n


o


2 2 o
o 2


n


2V
nRT 2 R a LK


1 a


 
 
  
  


  
   


 with K=500 Pa s0.07 and n = 0.07 for peanut butter. 


 
For Vo = 10 cm/s 


      


 


  


 


0.07


2 0.07
2 2


0.07


m2 0.1
s


0.07 0.1 mNT 2 .01 m 0.64 1 m 500 Pa s 25.43 N m
Pa m 1 0.8


 
 
 
    
  


  
  


 


 


For Vo = 50 cm/s 


      


 


  


 


0.07


2 0.07
2 2


0.07


m2 0.5
s


0.07 0.1 cmNT 2 0.01 cm 0.64 1 m 500 Pa s 28.46 N m
Pa m 1 0.8


 
 
 
    
  


  
  


 


 


 
Since peanut butter is strongly shear thinning, a 400% increase in velocity results in only a 12% 
increase in torque! 
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14.  Peanut butter is pumped 100 m through a 12 cm diameter pipe from the processing area to the 
bottling area of a plant.  If a pressure gradient of 200 Pa/cm is required, and Poiseuille flow is 
assumed, determine the flowrate in cm3/s through the pipe, and the total power required for the 
pumping process in kWatts.  What is the change in flowrate and power requirements if the pressure 
gradient is increased to 250 Pa/cm? 


 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


 


We have L=100 m, R = 6 cm, 
p
z




=200 Pa/cm. 


The power law properties for peanut butter are:   K=500 Pa s0.07 and n = 0.07  


   
 


 


11
0.07n3


3
3


0.45


6
s


cmn p R 0.07 PaQ R 216 cm 200
3n 1 z 2K 1.21 cm


3
2 50


c
0 Pa s


m5 1
      


            
        


 


 
The power required is given by 


     
3 2


2 2


p cm Pa N 1 m N mP sQ L 530 200 100 m 1060
z s cm Pa m 100


1.06 t
00 cm s


kWa t
   


     
   


 


 


If we increase the pressure gradient to 
p
z




=250 Pa/cm. 


   
 


 


11
0.07n3


3
3


0.45


6
s


cmn p R 0.07 PaQ R 216 cm 250
3n 1 z 2K


cm12,868
c1.21 m 2 500 Pa s


      
            


        
 


 
The power required is given by 


     
3 2


2 2


p cm Pa N 1 m N mP sQ L 12868 250 100 m 32,170
z s cm Pa m 1000 s


32.17 kWa
cm


tt
0


   
     


   
 


 
A flowrate increase of 2323% and power increase of 2934%!  A seriously shear thinning behavior. 
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15.  A 49% fine coal slurry in water is pumped 400 m from a mine site to a railroad tank car through a 30 
cm diameter pipe as a Poiseuille flow.  If we want a flowrate of 3 m3/s, determine the pressure gradient 


required, in Pa/m, and the power required in kWatts. Since 02
0 p


z


r 








  for a Bingham plastic, you will 


have to iterate to determine 
p
z




 and the appropriate 0r  value.   


 


We first have to check that 0
0


2r *
pR
z






 
 
 


 to assure fluid will move ( 0r *<1). We then solve for 


p
z




 from Eq. 16.101, 


o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


     
 (dropping the negative sign) 


oB r *
4 4


0 0


24 Qp
z R r * 4r * 3






     


 


 
49% fine coal slurry in water: 0 =1 Pa and B =0.005 Pa s.  To start our iteration, we assume 


p Pa100
z m







,  so: 


 


   


0
0


2 1 Pa2r * 0.133 1Pap 0.15 m 100R
mz



   


 
 
 


 


   


 
o


3


B r *
44 4 4 4


0 0


m24 0.005 Pa s 324 Qp Pas 91.7
z mR r * 4r * 3 0.15 m 0.133 4 0.133 3



  


           


 


 Using Excel Goalseek we iterate Eqs. 0
0


2r *
pR
z






 
 
 


and 
o


4
4


r * 0 0
B


R pQ r * 4r * 3
24 z
 


     
 using 


p
z




=100 Pa/m  to start our iteration, and change 


p
z




 until Q = 3 m3/s. 


 The result is  
p
z




= 93.22 Pa/m and 0r *  = 0.143 to give Q =3 m3/s. 


 
The power is given by; 


     
3


2


p m Pa N N mP s6Q L 3 93.22 400 m 111,862
z s m P


111.8 kWa
s


t
a m


t
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16.  A 40% sand in water mixture is pumped 1000 m from a mixing site to a processing plant through a 
40 cm diameter pipe as a Poiseuille flow.  If a flowrate of 1 m3/s is be achieved, what pressure 
gradient in Pa/m is required to achieve this flowrate? Note that you will need to assume that Q < 0 
for the power law model.  Also, how much power will be required for this process in kilo Watts? 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


;  neglecting the negative sign we can 


solve for 
p
z




 as: 


n


3


p 2K Q 3n 1
z R R n
    


       
 


 
We have L=1000 m, R = 0.2 m, Q = 1 m3/s . 
 
The power law properties for 40% sand/water mixture are:   K=0.0269 Pa s1.21 and n = 1.21 . 


 


 


 


 


1.213
n 1.21


33 3


m1


m
2 0.0269 Pa sp 2K Q 3n 1 4.63s


z R R n 0.2 m 1.2
6


10.2
a


m
P117.6


 
       


                
  


 


 
The power required is given by 


     
3


2


p m Pa N N mP sQ L 1 117.66 1000 m 117660
z s m Pa


117.66kW
m s


att
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17.  If the sand-water mixture in problem 16 is diluted to 20% sand in water mixture, and the flowrate 
increased to 2 m3/s (which will keep the amount of sand delivered the same), will this reduce or 
increase the pressure gradient required and the power required? Again note that you will need to 
assume that Q < 0 for the power law model.   


 


From Eq. 16.40 we have  
1
n2n p RQ R R


3n 1 z 2K
   


     
    


; neglecting the negative sign we can 


solve for 
p
z




 as: 


n


3


p 2K Q 3n 1
z R R n
    


       
 


 
We have L=1000 m, R = 0.2 m, Q = 2 m3/s . 
 
The power law properties for 20% sand/water mixture:   K=0.000313 Pa s1.48 and n = 1.48 . 


 


 


 


 


1.483
n 1.48


33 3


m22
m


0.000313 Pa sp 2K Q 3n 1 5.44s
z R R n 0.2 m 1.480.


P
2


13.98
m


a
 
       


                
  


 


The power required is given by 


     
3


2


p m Pa N N mP sQ L 2 13.98 1000 m 27.96
z s m Pa


2
m s


7.96kWatt
  


    
  


 


So, reducing the sand/water mix will reduce both the pressure gradient (88% less) and the power 
(76% less) required. 
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18.  If latex paint behaves as a Bingham plastic, how thick can a paint layer be before it starts to run down 
a vertical wall?  How thick would a layer of toothpaste (using its Bingham plastic properties ) have to 
be before it would flow down the wall?  Note the density of paint is 1200 kg/m3, and the density of 
tooth paste is 1300 kg/m3. 


 
Consider the model of a Bingham plastic layer, shown 
at the right.  For a Bingham plastic flowing vertically 
downward, the wall will be at y = 0, and the  
outside of the layer will be at yo, the thickness  
of the layer. The shear stress at y = 0 will be  
o, and the shear at the free surface yo will be  
 = 0, since it is a free surface, and the pressure 
is constant on all surfaces.  The only force acting  
on the fluid is gravity. 
 
A force balance on the model in the x-direction, similar to that done in 
Section 16.5.1.2, gives: 
 


 0 0L 0 L gLy 0     
Where  is the fluid density.  Solving for yo gives: 


0
0y


g







 


Similar to the argument in Section 16.5.1.2 that the pressure gradient must exceed o before a 
Bingham plastic will flow, here g must exceed o in order for the Bingham plastic to begin to flow.  
So, the layer thicknesses required before the Bingham plastic materials would flow are: 
 
Paint:  o = 15 Pa and  = 1200 kg/m3 


     


   


2 2
0


0


3 2


N kg m15 Pa 1 1
m Pa Nsy m0.00127 mkg .mg 1200 9.81
m s


1 27 m
   



 


 
Toothpaste:  o = 200 Pa and  = 1300 kg/m3 


     


   


2 2
0


0


3 2


N kg m200 Pa 1 1
m Pa Nsy m0.0157 m 15.7 mmkg mg 1300 9.81


m s


1.57c
    



   


 
So, paint would be about the thickness of paper clip wire, and toothpaste about the thickness of a pad 
of writing paper before they would start to flow.  However, this is at room temperature.  If the 
temperature increases or decreases, o would change, and the thickness would also. 


 


  


y 


x 


 L 


g 
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19.  Using basic principles, similar to Section 16.4.1, derive an equation 
for u(y) of a power law fluid flow down a vertical wall, where 


p 0
x
 


 
 


 and gx = g (where g acts in the x-direction, toward the 


ground, and y is oriented outward from the wall, as shown).  


Equation 16.7 simplifies to yxg 0
y



  



, where 


n


yx
uK
y


 
   


 
, 


with boundary conditions u = 0 at y = 0, and 
u 0
y







 at y = t, where t 


is the fluid layer thickness.  What will the velocity at y = t be? 
 


Substituting for yx  into the simplified differential equation we get: 
n


uK g
y y


   
   


    


 


Integrating 
n


1
uK gy C
y


 
   


 
 


At y = t,  0
y
u







, so: 


1C gt   
Thus, 


 
n


uK g t y
y


 
   


 
 


Or 


 


1
1n
n


u g t y
y K
  


  
  


 


Integrating gives: 


 


1
n 1n
n


2
n gu t y C


n 1 K


  
     


  
 


Applying BC of u = 0 at y = 0: 
1 1


n 1 n 1n n
n n


2 2
n g n g0 t C C t


n 1 K n 1 K


 
      


         
      


 


Thus, 


   


1 1 1
n 1 n 1n 1 n 1n n n
n nn n


n g n g n gu t y t t t y
n 1 K n 1 K n 1 K


             
               


            
 


Simplifying, 


y 


x 
g 
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1 n 1
n nn gt yu t 1 1


n 1 K t


 
           


     
 


 


Letting 
y y*
t
 , 


 


1
n 1n
n


n gtu t 1 1 y*
n 1 K


    
          


 


 
And the velocity at the outside surface,  at y* = 1 is: 


1
n


y* 1
n gtu t


n 1 K
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y 


x 


 L 


g 


 


20.  Using basic principles, similar to Section 16.5.1, derive an equation for u(y) for a Bingham plastic 


material flowing down a vertical wall, where 
p 0
x
 


 
 


 and gx = g (where g acts in the positive x-


direction, toward the ground, and y is oriented outward from the wall). See problem 19 schematic.  


Equation 16.108b simplifies to yxg 0
y



  



, where yx B 0


u
y


 
     


 
 when 0yx   (and  


u 0
y







when yx 0   ).  The boundary conditions are u = 0 at y = 0, and 
u 0
y







 at y = t, where t is 


the fluid layer thickness.  Here, you will have to use a variation on Eq. 16.55 as 0
0y t


g



 



, since 


gravity is the driving force, not the pressure gradient. 


 
From out reduced equation in the problem statement we have: 


yx g
y



 



 


Which integrates to: 


yx 1gy C     
So the shear stress again varies linearly with y, with the highest shear at the wall surface, decreasing 
toward the free surface. At some point, yo, we have 


0yx,y y 0   .  From the point, if y < yo, then


yx 0    and the material will behave as a fluid. If  y > yo , then yx 0   and the material will 
behave as a solid, just like section 16.5.1.2. 
 
Using a force balance similar to that done in Section 16.5.1.2 on a segment of the material in the 
solid region, yo < y< t thick and L long, we have: 


 
   0 0L 0 L gL t y 0      


Where  is the fluid density.  Solving for yo gives: 
 


0
0y t


g



 



 


For this flow, when yo < 0, the material remains a solid. 
When yo > 0, the region 0 < y < yo will behave as fluid, and 
the region yo < y < t will behave as a solid.  If yo > t, all the 
material will behave as a solid. 
 
Within the fluid region 00 y y  , and 0yx  , the above shear equation applies: 


yx 1gy C     


Applying a boundary condition that yx 0 0at y y    , we get: 


0 0 1 1 0 0gy C C gy         







Study Problems Solutions, Chapter 16 16-24 
 


 
 


So,     yx 0 0g y y     
Substituting the governing shear stress relationship for the fluid region, Eq. 16.44b: 


 yx B 0 0 0
u g y y
y


 
          


 
 


Which rearranges to: 


 0
B


u g y y
y
 


 
 


 


Integrating, gives: 
 


2


0 2
B


g yu y y C
2


 
   
  


  


Applying the boundary condition that u = 0 at y 0 , we determine C2 as: 


2C 0  
Substituting C2 and rearranging gives: 


 0
B


gyu 2y y
2



 



  for 00 y y    


Defining a non-dimensional y variable as 
yy*
t


 , and 0
0y * 1


gt



 



, then  
0y * 0u u y * , since 


the u velocity profile will be a function of 0y * , as well as y*, we rewrite the equation as: 


 
0y * 0


B


gy*u 2y * y*
2



 



 for 00 y* y *    


To determine the maximum velocity, which will be the velocity of the material “plug” at the edge of 
the layer, I let 


o oy * y *,max 0u u at y* y *  : 


 
0


2
0 0


y *,max 0 0
B B


gy * gy *u 2y * y *
2 2
 


  
 


  for 00 y* y *   


Defining 0


o


0


y *
y *


y *,max


u
u *


u
  gives: 


 0


0


0


y * 0
y * 2


y *,max 0


u y* 2y * y*
u *


u y *



   for 00 y* y *    


and 


0y *,maxu * 1  for 0y * y* t    


Where  0
0y * 1


gt
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21. A polymer solution of density 1000 kg/m3 flows at a free stream velocity of 1 m/s along a flat plate 
30 cm long.  The solution is listed as being modeled as either a power law (K = 0.3 Pa-sn and n = 
0.5) or an ideal Bingham plastic ( 0  = 2.28 Pa and B = 7.22 mPa-s).  Compare the results of these 
models for calculation of the boundary layer thickness and the wall shear stress at the end of the 
plate.  Do the calculations support a preference for either model? 


(a) Power-law calculations 


The Reynolds number is given by: 


     


 


1 5
1 5 0 5 0 5


2 n n 3 1 5


x
0 5


2 2


kg m1000 3 0 3 mU x m s 9487
K N kg m0 3 Pa s


Pa m Ns


.
. . .


.


.


.
Re


.









  
  
  
  


 


For the boundary layer, Eq. 16.115 


       


 


1 1
n 0 5n 1 1 5


1 1 1
n 1 n 1 1 5
x x


7 179 n 1 1 5 7 179 1 5 1 5F n 5 582 0 01246
x 448 159487


. .


.


. . . . . . .
.Re Re





 


             


 0 01246x 0 01246 30 cm 0 374cm. . .     
 
For the shear stress,  


 


 
    


n 0 51 1
wall n 1 1 5


f x
2


1 5 1 5c 2 2 9487 1 0368 0 00223 0 002311 F n 5 582U
2


.


.
. .Re . . .


.
 








   
           


 


 
     


2 2
2f


wall 3 2 2


0 00231c kg m Ns NU 1000 9 1 10 395 10 395 Pa
2 2 m s kg m m


.
. .



       


(b) Bingham plastic calculations 


The Reynolds number is given by: 


     


   


3


x
3B


2 2


kg m1000 3 0 3 mU x m s 124 654
N kg m7 22x10 Pa s 1


Pa m Ns


.
Re ,


.









  


  
  


 


 


For the boundary layer, Eq. 16.119 
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 x


4 641 30 cm4 641x 0 394cm
353 06


.. .
.Re


     


 
For the shear stress, 
 


wall 0
f


2 2x


0 646c 1 1U U
2 2


.
Re


 


 
  


 


 


     


 
 


 


2 2


2 3 2


wall 0
x


kg m Pa ms0 646 1000 9 1
0 646 U m s kg 2 28 Pa


2 353 062


8 23 2 28 Pa 10 51Pa


.
. .


.Re


. . .






     


  


 


 
So, the boundary layer predictions as a Bingham plastic is 5% higher than the power-law prediction.  
The shear stress prediction for the Bingham plastic is a little over 1% greater than the power-law 
prediction.  These are well within the 10% we would accept for engineering accuracy, so either of 
these models seems to work almost equally well.  Since we don’t have actual data to compare to no 
preference can be made (at least for the given conditions). 
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22. In a manufacturing plant, tomato paste at 25 C, and density of 1300 kg/m3, flows across a flat plate 2 
meters long.  Other than in the boundary layer the tomato paste flows uniformly at 1 m/s.  Assume 
that the boundary layer thickness is zero at the leading edge of the plate. Using the properties given 
in Table 1, determine the boundary layer thickness and the shear stress at the trailing end of the plate 
if the tomato paste is modeled as (a) a power-law fluid, and (b) an ideal Bingham plastic.  Compare 
the results of these models for calculation of the boundary layer thickness and the wall shear stress at 
the end of the plate.  Do the calculations support a preference for either model? 


(a) Power-law calculations, n = 0.5 and K = 15 Pa sn. 


The Reynolds number is given by: 


     


 


1 5
1 5 0 5 0 5


2 n n 3 1 5


x
0 5


2 2


kg m1300 1 2 mU x m s 122 57
K N kg m15 Pa s


Pa m Ns


.
. . .


.


.


Re .







  
  
  
  


 


For the boundary layer, Eq. 16.115 


       


 


1 1
n 0 5n 1 1 5


1 1 1
n 1 n 1 1 5
x x


7 179 n 1 1 5 7 179 1 5 1 5F n 5 582 0 227
x 24 67122 57


. .


.


. . . . . . .
..Re Re





 


             


 0 227x 0 227 2 m 0 452m 45 4cm. . . .      
 
For the shear stress,  


 


 
    


n 0 51 1
wall n 1 1 5


f x
2


1 5 1 5c 2 2 122 57 1 0368 0 0405 0 04201 F n 5 582U
2


.


.
. .Re . . . .


.
 








   
           


 


 
     


2 2
2f


wall 3 2


0 042c kg m Pa msU 1300 1 1 27 3Pa
2 2 m s kg m


.
.



      


(b) Bingham plastic calculations:  0  = 104 Pa and B =0.3 Pa-s 


The Reynolds number is given by: 


     


   


3


x
B


2 2


kg m1300 1 2 mU x m s 8667
N kg m0 3 Pa s 1


Pa m Ns


Re
.






  
  


  
 


 


For the boundary layer, Eq. 16.119 
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 x


4 641 2 m4 641x 0 0997m 9 97cm
93 1


.. . .
.Re


      


 
For the shear stress, 
 


wall 0
f


2 2x


0 646c 1 1U U
2 2


.
Re


 


 
  


 


 


     


 
 


 


2 2


2 3 2


wall 0
x


kg m Pa ms0 646 1300 1 1
0 646 U m s kg 104 Pa


2 93 12


4 51 104 Pa 108 51Pa


.
.


.Re


. .






     


  


 


 
These values on boundary layer thickness and shear stress are not anywhere close to each other.  I 
obtained these from different sources, but supposedly for the same material.  Clearly, they were not 
similar materials.  This shows the difficulty of determining the appropriate model (and the 
appropriate parameters) for non-Newtonian fluids. 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 16 16-29 
 


 
 


23. 40% drilling mud of density of 2750 kg/m3, flows across a flat plate 2 meters long and develops a 
boundary layer.  Outside the boundary layer the mud flows uniformly at 1 m/s.  Assume that the 
boundary layer thickness is zero at the leading edge of the plate. Using the properties given in Table 
1, determine the boundary layer thickness and the shear stress at the trailing end of the plate if the 
drilling is modeled as (a) a power-law fluid, and (b) an ideal Bingham plastic.  Compare the results 
of these models for calculation of the boundary layer thickness and the wall shear stress at the end of 
the plate.  Do the calculations support a preference for either model? 


 


(a) Power-law calculations, n = 0.51 and K = 1.3 Pa sn. 


The Reynolds number is given by: 


     


 


1 51
1 51 0 51 0 51


2 n n 3 1 51


x
0 51


2 2


kg m2750 1 2 mU x m s 3012
K N kg m1 3 Pa s


Pa m Ns


.
. . .


.


.


Re
.









  
  
  
  


 


For the boundary layer, Eq. 16.115 


       


 


1 1
n 0 51n 1 1 51


1 1 1
n 1 n 1 1 51
x x


7 179 n 1 1 5 7 179 1 51 1 5F n 5 558 0 0276
x 201 3163012


. .


.


. . . . . . .
.Re Re





 


             


 0 0276x 0 0276 2 m 0 0552m 5 52cm. . . .      
 
For the shear stress,  


 


 
    


n 0 511 1
wall n 1 1 51


f x
2


1 5 1 5c 2 2 3012 1 0255 0 00497 0 0050991 F n 5 558U
2


.


.
. .Re . . .


.
 








   
           


 


 
     


2 2
2f


wall 3 2


0 005096c kg m Pa msU 2750 1 1 7Pa
2 2 m s kg m


.



      


(b) Bingham plastic calculations:  0  = 11 Pa and B =0.03 Pa-s 


The Reynolds number is given by: 


     


   


3


x
B


2 2


kg m2750 1 2 mU x m s 183 333
N kg m0 03 Pa s 1


Pa m Ns


Re ,
.






  
  


  
 


 


For the boundary layer, Eq. 16.119 
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 x


4 641 2 m4 641x 0 0217m 2 17cm
428 2


.. . .
.Re


      


 
For the shear stress, 
 


wall 0
f


2 2x


0 646c 1 1U U
2 2


.
Re


 


 
  


 


 


     


 
 


 


2 2


2 3 2


wall 0
x


kg m Pa ms0 646 2750 1 1
0 646 U m s kg 11 Pa


2 428 22


2 07 11 Pa 13 07 Pa


.
.


.Re


. .






     


  


 


 
These values on boundary layer thickness and shear stress differ by factors of roughly two, with the 
power law boundary layer twice that of a Bingham plastic model, and the power law shear stress half 
that of the Bingham plastic.  I obtained these from different sources, but supposedly for the same 
material.  Clearly, they were not similar materials, possibly composed of different particle sizes for 
the mud concentrations.  This shows the difficulty of determining the appropriate model (and the 
appropriate parameters) for non-Newtonian fluids. 
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Chapter 17  


Study Problems Solutions 


1. If crit *Re Re 520   for a flat plate boundary layer, determine the corresponding value for 


crit xRe Re .You will need to make use of Eq. 13.30. 
 


x


* 1.717
x Re



  


Multiplying by U and dividing by  
 


x


U * 1.717U
x Re


 



 
 


And rearranging gives: 


* x
x


U * U x1.717Re 1.717 Re
Re


 




  


 
 


Solving for Rex 
 


2
x *Re 0.582 Re  


So, *Re 520   


 
2 5


x,critRe 0.582 520 1.574x10   
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2. Consider a flat plate boundary layer in water with 
s


cm10U   and 
s


cm10
2


2 .  If 


crit *Re Re 520  , for a flat plate boundary layer, what will be the displacement thickness when 


critRe  is reached?  What will be the boundary layer thickness? At what x location will this occur 
along the plate? You will need to use equations for a laminar boundary layer from Chapter 13. 


  


When *Re 520  , *
U * Re










, or *Re*


U







  , so: 


   


 


2
2


*


cm10 520Re s* 0.52cmcmU 10
s












     


From Eq. 13.30 


x x


1.717 1.717* x x
Re Re


    


Multiplying by U and dividing by  
 


* x
x


U * U x1.717Re 1.717 Re
Re


 




  


 
 


Solving for Rex 
 


2
x *Re 0.582 Re  


So, *Re 520   


 
2 5


x,critRe 0.582 520 1.574x10   
Solving for x 


  


 


x


2
5 2


x


U x Re


cm1.574x10 10Re sx 157.4cmcmU 10
s
















  


 


From Eq. 13.29 


 
5


x


5 5x 157.4 cm 1.984cm
Re 1.574x10
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3. Consider a flat plate boundary layer in air with 
mU 10
s   and


s
m10x521


2
5 . .  If 


crit *Re Re 520  , for a flat plate boundary layer, what will be the displacement thickness when 


critRe  is reached?  What will be the boundary layer thickness? At what x location will this occur 
along the plate? You will need to use equations for a laminar boundary layer from Chapter 13. 


  


When *Re 520  , *
U * Re










, or *Re*


U







  , so: 


   


 


2
5


*


m1.52x10 520Re s* 0.00079m 0.079cmmU 10
s












      


From Eq. 13.30 


x x


1.717 1.717* x x
Re Re


    


Multiplying by U and dividing by  
 


* x
x


U * U x1.717Re 1.717 Re
Re


 




  


 
 


Solving for Rex 
 


2
x *Re 0.582 Re  


So, *Re 520   


 
2 5


x,critRe 0.582 520 1.574x10   
Solving for x 


  


 


x


2
5 5


x


U x Re


m1.574x10 1.52x10Re sx 0.2392m 23.92cmmU 10
s
















   


 


From Eq. 13.29 


 
5


x


5 5x 23.92 cm 0.301cm
Re 1.574x10


     


 
 
 
 
 
 







Study Problems Solutions, Chapter 17 17-4 


 


 
 


4. Using Eq. 17.32 for the logarithmic layer of the inner region, determine an expression for the eddy 
viscosity, , in terms of k, y, and 


u .   Next, determine an expression for , in terms of k, y+, and the 
kinematic viscosity, .   What is the value of / for y+ =300? 
 
From Eq. 17.22 


____


turbulent vu
y
U







   


So,  


turbulent


U
y


  
 


  
 
 
 


  


And since, wu







, where we equate turbulent w    in the logarithmic layer, where 


yu u yuU 1 ln B or U ln Bu
u k k


  






   
 


 


So, differentiating we have: 
udU


dy ky
  


So, the eddy viscosity is given by: 


w
2u u yu ky k k y


uU
y ky


 






  
 
           


     
   
   


 


 
So, at y+ = 300,  


   ky 0.385 300 111.5
  



 


Clearly, the turbulent stresses dominate viscous stresses. 
 
 
 
 
 
 
 
 
 
 
 
 
 







Study Problems Solutions, Chapter 17 17-5 


 


 
 


5. Using Eqs. 17.36 and 17.37 for the van Driest model of the entire inner region, determine an 
expression for the eddy viscosity, , in terms k, A, y+, and the kinematic viscosity, .   What is the 
value of / for y+ =5, 21, and 300?  


 
From Eq. 17.22 


____


turbulent vu
y
U







   


So,  


turbulent


U
y


  
 


  
  


 
 


  


And since, wu







, where we equate turbulent w    in the logarithmic layer, and note that Eq. 


17.36 gives: 


 
2 2 2


2


Ud
udu dU 2 2
u ydy u dy 4 u 1 1 4d 1 1







  


 
 


    
 


    
  


2l l


         where   
u 



l
l  


So, 


 


2


2


2udU
dy 1 4











   l


     where  




























A
y1ky expl  


Thus, 
2


2


2udU
dy y1 4 ky 1 exp


A












   
        


   


 


 
So, the eddy viscosity is given by: 
 


w 2
1 y1 1 4 ky 1 exp
2 AU


y






  
                              


 


 


 
So, at y+ = 5, 21, and 300, where k = 0.385 and A = 21 
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w
2


y 5


1 51 1 4 0.385 5 1 exp 1.145
2 21U


y
 


  
                             


 


 


 


  


w
2


y 21


1 211 1 4 0.385 21 1 exp 5.635
2 21U


y
 


  
                             


 


 


 


  


w
2


y 300


1 3001 1 4 0.385 300 1 exp 116
2 21U


y
 


  
                             


 


 


 
So, eddy viscosity far exceeds kinematic viscosity very rapidly with distance from the wall and is 
clearly why only the Reynolds stresses (which reflect the eddy viscosity) are considered in the 
logarithmic zone. 
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6. Consider Eq. 17.55 where cf = f (Re), but the relationship is implicit.  Eq. 17.56 was determined by 
assuming flat plate values for k, B, and A(), determining Re values implicitly by assuming several 
values of cf from 0.0015 to 0.005 and using a root finding program to determine the corresponding 
Re values.  The resultant cf vs. Re were then fit to a power law curve to determine cf = f(Re).  
Repeat the curve fit process to verify Eq. 17.56 for a flat plate (A() = 2.5), and then determine the 
power law curve fit of cf = f (Re), for a strong favorable pressure gradient, with A() = 1.0.  Assume 
flat plate values for k and B for both flows.  It is suggested you use Excel and its function "Goal 
Seek" to determine cf vs. Re, and then "Trendline" on an Excel plot of cf vs. Re to establish the 
power law fit, giving cf = f (Re). Compare your results for A=1.0 to the flat plate Eq. 17.55. 


 


 
 


Fitting Red to Cf A = 2.5 
 


    


k= 0.385 A+B=2.5+4.2= 6.7     


Cf Red 
  


0.0015 3528868 
  


0.002 464726   
 


0.0025 114956 
  


0.003 40634 
  


0.0035 17996 
  


0.004 9290 
  


0.0045 5353 
  


0.005 3347 
  


 
  


  


Using k=0.385 and B=4.2 for flat plate [Marusic et al. (2010)]     


take Cf=0.0195 Red
-0.173 


 


y = 0.0195x-0.173


R² = 0.9936


0


0.001


0.002


0.003


0.004


0.005


0.006


1.E+03 1.E+04 1.E+05 1.E+06 1.E+07


Cf


Re


Cf vs. Re, A=2.5
Flat plate BL
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Fitting Red to Cf for A=1.0 
 


    


k= 0.385 A+B=1+4.2= 5.5     


Cf Redel 
  


    


0.0015 5600652 
  


0.002 737565 
  


0.0025 182447 
  


0.003 64490 
  


0.0035 28561 
  


0.004 14745 
  


0.0045 8496 
  


0.005 5315 
  


 
  


  


Using k=0.385 and B=4.2 for flat plate [Marusic et al. (2010)]     


take Cf=0.0212 Red
-0.173 


 


 
 


Interestingly, the cf values for the different A() values differ only in the constant, not the power of 
Re. 
 
 
 


 


y = 0.0212x-0.173


R² = 0.9936


0


0.001


0.002


0.003


0.004


0.005


0.006


1.E+03 1.E+04 1.E+05 1.E+06 1.E+07


Cf


Re


Cf vs. Re,  A=1.0 
Strong favorable pressue gradient
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7. Consider a flat plate boundary layer in water with 
mU 0.2
s   , 


s
m10


2
6 , 3m


kg1000 , a plate 


length of 5 meters, and width of 2 meters.   
a. If crit *Re Re 520  , determine the corresponding value for xcrit ReRe  .   
b. Then determine the drag force on the plate assuming:  


(1) the flow is turbulent from the leading edge, or  
(2) that the flow transitions at the crit xRe Re you determined.   


Assume n = 7 in Eq. 17.54.  Is the difference between (1) and (2) substantial? 
 


x


* 1.717
x Re



  


Multiplying by U and dividing by  
 


x


U * 1.717U
x Re


 



 
 


And rearranging gives: 


* x
x


U * U x1.717Re 1.717 Re
Re


 




  


 
 


Solving for Rex 
 


2
x *Re 0.582 Re  


So, for *Re 520   


 
2 5


x,critRe 0.582 520 1.574x10   
 


The plate Reynolds number is: 


   


 


6
L 2


6


m0.2 5 mU L sRe 10
m10
s








  



 


 
Turbulent from leading edge, Eq. 17.69 


0.147


D
L


C 0.0432
Re


 
  


 
 and n = 7    09720.






  


0.147


D 6


0.0972C 0.0432 0.00402
10


 
  


 
 


 
 


     
2


2 2
D 3 2


0.004021 kg mDrag C U WL = 1000 0.04 10 m  =0.804 N 
2 2 m s   


 
Now assuming that the flow transitions at the 5


crit xRe Re 1.57x10   using Eq. 17.74 
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0.853
0.587


L crit crit


D
L


0.853
0.5876 5 5


6


0.011442 Re Re 6.61Re
C


Re


0.011442 0.0972 10 1.57x10 6.61 1.57x10
0.0972


10


0.00378


 
    


 
  


 





 


 
 


     
2


2 2
D 3 2


0.003781 kg mDrag C U WL = 1000 0.04 10 m  =0.756 N 
2 2 m s   


 
So, the drag difference is about 6% less for transition at Recrit 
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8. Consider a flat plate boundary layer in air with 
s
m10U   , 


s
m10x521


2
5 . , 3m


kg21. , a plate 


length of 5 meters, and width of 2 meters.   
a. If crit *Re Re 520  , determine the corresponding value for crit xRe Re .   
b. Then determine the drag force on the plate assuming:  
 (1) the flow is turbulent from the leading edge, or  
 (2) that the flow transitions at the crit xRe Re you determined.   


Assume n = 8 in Eq. 17.54.  Is the difference between (1) and (2) substantial? 
 


x


* 1.717
x Re



  


Multiplying by U and dividing by  


x


U * 1.717U
x Re


 



 
 


And rearranging gives: 


* x
x


U * U x1.717Re 1.717 Re
Re


 




  


 
 


Solving for Rex 
 


2
x *Re 0.582 Re  


So, *Re 520   


 
2 5


x,critRe 0.582 520 1.574x10   
 


The plate Reynolds number is: 


   


 


6
L 2


5


m10 5 mU L sRe 3.289x10
m1.52x10
s








  



 


 
Turbulent from leading edge, Eq. 17.69 


0.147


D
L


C 0.0432
Re


 
  


 
 and n = 8    0.0889


  



 


0.147


D 6


0.0889C 0.0432 0.00333
3.289x10


 
  


 
 


 
 


     
2


2 2
D 3 2


0.003331 kg mDrag C U WL = 1.2 100 10 m  =1.998 N 
2 2 m s   


 
Flow transitions at the 5


crit xRe Re 1.57x10   using Eq. 17.74 
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0.853
0.587


L crit crit


D
L


0.853
0.5876 5 5


6


0.011442 Re Re 6.61Re
C


Re


0.011442 0.0889 3.289x10 1.57x10 6.61 1.57x10
0.0889


3.289x10


0.00332


 
    


 
  


 





 


 
 


     
2


2 2
D 3 2


0.003321 kg mDrag C U WL = 1.2 100 10 m  =1.992 N 
2 2 m s   


 
So, the drag difference is about 0.3% less for transition at Recrit, so essentially negligible. 
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9. Consider a flat plate boundary layer in water with 
s


cm10U   , 
s


cm10
2


2 , and a plate length 


of 5 meters.  Assume n = 8 in Eq.17.54, and determine the displacement thickness (*) and 
momentum thickness () in cm at the trailing edge if: 


 
(a) the flow is turbulent from the leading edge, or  
(b) the flow transitions to turbulence at 5


crit xRe Re 3x10  .  
  


Is the difference between (a) and (b) substantial? 
 


The plate Reynolds number is: 


     


 


5
L 2


2


cm cm10 5 m 100U L s mRe 5x10
cm10


s








  



 


Turbulent from the leading edge, Eq. 17.60 and 17.64b 


147.0
xRe


170.0
x




     for  n = 8,  0889.0






  and 


* 0.111




 


 
0.1475


0.170 0.0247
x 5x10



   


So, 
  0.0247L 0.0247 500 cm 12.35cm     


and  
  * 0.111 0.111 12.35 cm 1.371cm          


  0.0889 0.0889 12.35 cm 1.098cm      
Transition at Recrit =3x105 from the leading edge, Eqs. 17.72 and 17.64b 


 
0.853


0.587
x crit crit


x


0.01144 Re Re 6.61Re


x Re


 
           


for  n = 8,  0889.0




  and 


* 0.111




 


   
0.853


0.5875 5 5


x


0.01144 5x10 3x10 6.61 3x10
0.0889 0.0156


x Re


 
       


So, 
  0.0156L 0.0156 500 cm 7.8cm     


  * 0.111 0.111 7.8 cm 0.866cm          


  0.0889 0.0889 7.8 cm 0.693cm      
 
A significant difference at this low Reynolds number.  The transition value is 37% lower than the 
turbulent from leading edge. 
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10. Consider a flat plate boundary layer in air with 
s
m10U   , 


2
5 m1.52x10


s
  , and a plate length 


of 5 meters.  Assume n = 8 in Eq.17.54, and determine the displacement thickness (*) and 
momentum thickness () at the trailing edge if: 


 
(a) the flow is turbulent from the leading edge, or  
(b) the flow transitions to turbulence at 5


crit xRe Re 6x10  .   
Is the difference between (a) and (b) substantial? 
 


The plate Reynolds number is: 


   


 


6
L 2


5


m10 5 mU L sRe 3.289x10
m1.52x10
s








  



 


Turbulent from the leading edge, Eq. 17.60 and 17.64b 


147.0
xRe


170.0
x




     for  n = 8,  0889.0






  and 


* 0.111




 


 
0.1476


0.170 0.0187
x 3.289x10



   


So, 
  0.0187L 0.0187 500 cm 9.35cm     


  * 0.111 0.111 9.35 cm 1.037cm          


  0.0889 0.0889 9.35 cm 0.831cm      
 


Transition at Recrit =3x105 from the leading edge, Eqs. 17.72 and 17.64b 


 
0.853


0.587
x crit crit


x


0.01144 Re Re 6.61Re


x Re


 
           


for  n = 8,  0889.0




  and 


* 0.111




 


   


 


0.853
0.5876 5 5


6


0.01144 3.289x10 6x10 6.61 6x10
0.0889 0.01678


x 3.289x10


 
       


So, 
  0.0167L 0.01678 500 cm 8.39cm     


  * 0.111 0.111 8.39 cm 0.931cm          


  0.0889 0.0889 8.39 cm 0.746cm      
 


A small difference at this higher Reynolds number.  The transition value is about 5 to 10 % lower 
than the turbulent from leading edge. 
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11. Consider two flat plate boundary layer flows over a plate of length 5 meters. One flow is water with 
cmU 20
s   , 


s
cm10


2
2 , and the other is air with 


s
m10U   , 


2
5 m1.52x10


s
  . Assume 


n = 9 in Eq.17.54, and determine the boundary layer thicknesses () at the trailing edge for both flows 
if they both transition to turbulence at 5


crit xRe Re 3x10  .  Also, determine the Kolmogorov length 
scales (in mm) at the trailing edge for both flows. 


 
Water:  the plate Reynolds number is: 


     


 


6
L 2


2


cm cm20 5 m 100U L s mRe 10
cm10


s








  



 


 
Transition at Recrit =3x105 from the leading edge, Eqs. 17.72 and 17.64b 


 
0.853


0.587
x crit crit


x


0.01144 Re Re 6.61Re


x Re


 
           


for  n = 9,  0.0818
  



  


   


 


0.853
0.5876 5 5


6


0.01144 10 3x10 6.61 3x10
0.0818 0.0183


x 10


 
       


So, 
  0.0183L 0.0183 500 cm 9.15cm     


 
The Kolomogorov length scale is: 


   


 


0.256
61


3 4 3


33
3


3


cm10 9.15 cm
sL 0.058mm


cmU 20
s


 
   


    
   


  


 


 
Air: the plate Reynolds number is: 


   


 


6
L 2


5


m10 5 mU L sRe 3.289x10
m1.52x10
s








  



 


 
Transition at Recrit =3x105 from the leading edge, Eqs. 17.72 and 17.64b 
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0.853


0.587
x crit crit


x


0.01144 Re Re 6.61Re


x Re


 
           


for  n = 9,  0.0818
  



  


   


 


0.853
0.5876 5 5


6


0.01144 3.289x10 3x10 6.61 3x10
0.0818 0.01495


x 3.289x10


 
       


So, 
  0.01495L 0.01495 500 cm 7.48cm     


 
The Kolomogorov length scale is: 


   


 


0.256
15 21


3 4 3
5


33
3


3


m3.512x10 7.48x10 m
sL 2.264x10 m 0.02264mm


mU 10
s


 





 
   


     
   


  


 


 
So, the boundary layer thickness and Kolomogorov scale are roughly 20 % and 40% smaller for 
air. 
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12. Consider the flow of air over a flat plate, which has roughly the area of one wing of a Boeing 777.  
The plate is of span 30 meters and chord 5 meters.  The air flows at roughly a Mach number of 0.3, or 


s
m100U   with 


2
5 m1.52x10


s
   and 2m


kg21. . Assuming n = 9, and a flow that is 


turbulent from the leading edge, what is total shear drag (consider both sides) on the plate? (note the 
flow is across the chord of the plate, so L = 5 meters). 


 
The plate Reynolds number is: 


   


 


7
L 2


5


m100 5 mU L sRe 3.289x10
m1.52x10
s








  



 


 
Turbulent from leading edge, Eq. 17.69 


0.147


D
L


C 0.0432
Re


 
  


 
 and n = 9    0.0818


  



 


0.147


D 7


0.0818C 0.0432 0.00235
3.289x10


 
  


 
 


        
2


2 4 2
Both Sides D 3 2


1 kg mDrag 2C U WL = 0.00235 1.2 10 150 m  =4,230 N 
2 m s   


 
The power required to overcome this drag is: 


   BothSides
mPower Drag U 4,230 N 100 423,000W or 423kW
s    
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13. Consider a uniform flow, u = U
 entering a 2-D duct, which develops a turbulent a boundary layer from 


the leading edges, as shown below.  The duct height is h and the flow remains turbulent at all times 
through the duct.  Assume the flow may be broken into viscous and inviscid regions as shown.  Make use 
of the Nikuradse solution for * with n = 7 and determine: 


a) h = h(x) such that dP/dx = 0  (let ho be the initial duct height). 
 


b) the length, L, where your expression for h(x) ceases to be valid. 
 


 


 


   
0 y xh h(x)


0
y 0 y 0 y 0


U dy U h udy 2 udy U h x 2 x



  


  


              where     
 y x


y 0


x dy






    


 
 


 
 y x x


0
y 0 y 0


U h 2 udy U h x 2 U dy
 


  


 


     


    
 


 
 x x


0
y 0 y 0


uU h U h x 2 u U dy U h x 2U 1 dy
U


 


    


 


 
      


 
   


or factoring out U , 


  
 


 
x


0
y 0


uh h x 2 1 dy h x 2 *
U








 
      


 
  


For n=7, 
* 0.125




 and 147.0


xRe
158.0


x




 


Thus, 


 0.147
x


* 0.01975
x Re



  


 
0.853


0.147 0.1470.147
x


0.01975x 0.01975x 0.01975x*
Re U x U 


   
   
   


    


 


 
Substituting and solving for h(x) gives: 


   0 0.147
0.0395xh x h
U x
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L occurs when  h x L 2      (i.e. when the boundary layers from the two surfaces merge) 
 


   00.147 0.1470.147
x


0.158L 0.316L 0.0395Lh x 2 2 h
Re U L U L 


 
       


    
   


    


 


00.147 0.147
0.316L 0.0395Lh
U L U L 


 
   
   


    


 


0.853


00.147
0.2765L h


U



 
 
 


 


Solving for L yields 
0.17230.1723


1.1723 0
0 0


U hUL 4.514h 4.514h    
    


    
 


For example, if this is air with 
2


5 m1.53x10
sec


  , 
mU 5


sec  , and 0h 1m , 


0.1723
0


0
U hL 4.514h  


  
 


= 40.24 m.  and h(L)=1.143 m., so curvature would not be a problem.   
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14.  Assuming an approximate velocity profile for a flat plate turbulent boundary layer modeled as 
U y1 0.119ln 0.00023


U


  
      


.  First, determine * and  for this profile, and subsequently 


the shape factor H to show this is an acceptable approximation of the velocity profile.  This is a 
pretty messy integration, so I suggest you use Wolfram Alpha to integrate for * and .  Then, 
following a procedure similar to Section 17.7.5, integrate the Momentum Integral Equation to 
determine expressions for /x = f(Rex) and cf = f(Rex).  Again assume that cf = f (Re) is given by Eq. 
17.56, and the flow is turbulent from the leading edge.  Compare your results to the corresponding 


equations for /x = f(Rex) and cf = f(Rex) in Section 17.7.5.1.   Also, since 
y 0


dU
dy





is finite, assume 


laminar behavior at the wall and calculate /x = f (Rex) and compare it to that obtained using Eq. 
17.56.  Why doesn’t this latter approach work? 


 
First, we calculate the boundary layer parameters: 


1


0 0


U U* 1 dy 1 d
U U


 


 


   
         


   
          where   


y 
   


 
 


  
1


0


* 0.119ln 0.00023 d (Wolfram Alpha) 0.118743






          


1


0 0


U U U U1 dy 1 d
U U U U


 


   


   
         


   
          where   


y 
   


 
 


     


 


1


0


0.119ln 0.0023 1 0.119ln 0.0023 d


0.090711 by Wolfram Alpha








       


 


  


This gives a shape factor of:   
* 0.11874H 1.309


0.09071



  



 


This is a little higher than the H for the Nikaradse power law, but not much. 
 
Now, similar to what was done in Section 17.7.5, we integrate  
 


dx
dU 2


w



   by letting 

 



, and using Eq. 17.56 to provide w  , giving: 


dx
dUUU


2
10195.0 2


173.0
2 


















 






  


Which still gives us Eq. 17.59, 




















 ddxU00975.0 173.0
173.0
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Which we integrate from the leading edge to give us again Eq.17.60 


147.0
x


853.0


Re
0216.0


x







 


With cf  again given by Eq. 17.63 


1470
x


1470


2


w
f


03680
dx
d2


dx
d2


U
2
1


c .


.


Re
. 























 


So, the only difference in this analysis from Sections 17.7.5 and 17.7.5.1 is the value of 


0.09071
  



, which falls between the comparable Nikaradse values of n=7 and n=8 


(actually close to n=8).  


So, we end up with equations for 
x



  and cf of: 


 
0.853


0.147 0.147
x x


0.0216 0.09071 0.1673
x Re Re






   


and 


 
0.147


f 0.147 0.147
x x


0.0368 0.09071 0.0259c
Re Re


   


Note that these give results are very close to that for a Nikaradse power law profile with  
n = 8. The following shows a plot of both the present profile and the Nikaradse n = 8, which 
demonstrates the similarity of the profile shapes. 
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Now, since 
y 0


dU
dy





has a finite value, what if we try to calculate w  using a laminar calculation 


in the sublayer?  Differentiating U, we have: 


0.119U 0.119UdU 1
ydy y 0.000230.00023


  
   


 
 


  


So, in the laminar sublayer, we have: 


w
y 0


0.119U UdU 517.4
dy 0.00023


 





 
    


 
  


The integral equation becomes, 


dx
dU 2


w



   


2U d517.4 U
dx






 
  



 


Integrating, 
x


0 0


d 517.4 dx
U









  


   


2


517.4 x
2 U


 




 


2


x


1034.8 x 1034.8 x 106.8x
U 0.09071 U x Re 


 
   



 


x


105.4
x Re

  


Note that this is essentially the same functionality that we had for our laminar behavior in Chapter 
14, but indicating a grossly more accelerated boundary layer growth, that doesn’t fit empirical 
results.  This also it does not at all approximate the results from section 17.7.5.  Why not? 
Because this assumes that laminar behavior exists throughout the boundary layer when 
calculating θ, which it does not.  So, while this seems like a reasonable approach, it does not 
account for the strong mixing that takes place outside the viscous sublayer.   


This also points up what we are doing when we utilize Eq. 17.56 to define the shear stress.  We 
are in essence doing a complicated curve fit of the empirical data used to create the prediction 
equations.  That the fitted equations reasonably predict the velocity behavior that was used to fit 
the equations should not be surprising.  While useful equations, they are not obtained apriori, and 
depend on the judicious fitting of the measured empirical data. 
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